1
|
Wang H, Wei S, Huang S, Liu W, Wang Z. Practical Remediation of Hg-Contaminated Groundwater by MoS 2: Batch and Column Tests. Molecules 2024; 29:5132. [PMID: 39519773 PMCID: PMC11547822 DOI: 10.3390/molecules29215132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Trace mercury contamination in groundwater poses a serious threat to ecological systems and human health. The kinetics and isotherms of MoS2 (MS) for Hg removal were studied in batch tests under an unfavorable high salinity and low mercury environment. Flower-like MS with nanosheets can effectively remove Hg in the groundwater matrix, with a shorter equilibrium time (3 h), superior removal efficiency (94.26%), excellent distribution coefficient (5.69 × 106 mL g-1), and higher maximum adsorption capacity (926.10 ± 165.25 mg g-1). Furthermore, the Adams-Bohart model (R2 = 0.9052-0.9416) can accurately describe the dynamic interception process of the initial stage (≤40 PVs), and the Yan model (R2 = 0.9765-0.9941) depicts the whole process (140 PVs) of MS in a fixed column well. A higher dosage of m, but lower C0 and νp facilitate the interception efficiency in column tests. Based on the characterizations of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which were used to simultaneously consider the species of Hg and the groundwater matrix, surface complexation, electrostatic attraction, ion exchange, and precipitation is a plausible interfacial adsorption mechanism of MS for mercury. The excellent performance demonstrates that MS with nanosheets is a promising candidate for the PRB remediation of trace Hg in saline groundwater.
Collapse
Affiliation(s)
- Haifeng Wang
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Shuai Wei
- Department of Science and Technology Evaluation Service, Henan Provincial Science Research Platform Service Center, Zhengzhou 450008, China
| | - Shuai Huang
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Wei Liu
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Zongwu Wang
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| |
Collapse
|
2
|
Singh R, Vigelahn L, Schütt C, Burmeier H, Chakma S, Birke V. Defining quality assurance guidance for effective selection of technical grade zero-valent iron production batch for groundwater remediation using permeable reactive barrier. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:121945. [PMID: 39142097 DOI: 10.1016/j.jenvman.2024.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Zero-valent iron (ZVI) applied to the remediation of contaminated groundwater (GW) in situ, especially using engineered permeable reactive barriers (PRBs), has been proven to be an effective reactive material. However, many of ZVI brands do not represent tailored reagents specifically regarding destroying pollutants in GW. Thus, their reactivity towards certain contaminants in GW may vary significantly in a wide range even with different production batches of the same ZVI brand. This issue has rarely been known and consequently not addressed to a higher extend so far. Therefore, this study implemented extensive, long-term column experiments followed by short-term batch experiments for chlorinated volatile organic compounds (cVOCs) degradation for developing a semi-empirical test methodology to thoroughly resolve this pivotal issue by achieving an improved quality assurance guidance regarding proper field-scale emplacement of different ZVI brands and their production batches. The results showed that during column experiments perchloroethylene (PCE) led to a significant degradation up to a certain period but sulfate-reducing microorganisms enhanced the dehalogenation and led approximately to 100 % PCE removal. However, the efficacy varied for different ZVI brands, i.e., Gotthart Maier (GM) and Sponge Iron (Responge®). Furthermore, it could be shown that it might even vary among different production batches of the same ZVI brand. It was also observed that evolution of sulfate-reducing microorganisms may improve the efficacy of PCE degradation vastly that occur at different intensities with different ZVI brands and their respective production batches over time. Further, comparing comprehensive long-term column (kobs = 0.0488 1/h) and short-term batch experiments (kobs = 0.07794 1/h) as well as refined kinetic analyses (kobs = 0.0424 1/h) clearly prove that an appropriate guidance protocol for successful full-scale in situ remediation is required for properly select the right ZVI brand and production batch before it is loaded to a PRB in the field.
Collapse
Affiliation(s)
- Rahul Singh
- Hochschule Wismar - University of Applied Sciences, Technology, Business, and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany; Indian Institute of Technology Delhi, Department of Civil Engineering, Hauz Khas, New Delhi, 110016, India.
| | - Lothar Vigelahn
- Hochschule Wismar - University of Applied Sciences, Technology, Business, and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany.
| | - Christine Schütt
- Ostfalia University of Applied Sciences, Faculty of Civil and Environmental Engineering, Campus Suderburg, Germany.
| | - Harald Burmeier
- Ostfalia University of Applied Sciences, Faculty of Civil and Environmental Engineering, Campus Suderburg, Germany.
| | - Sumedha Chakma
- Indian Institute of Technology Delhi, Department of Civil Engineering, Hauz Khas, New Delhi, 110016, India.
| | - Volker Birke
- Hochschule Wismar - University of Applied Sciences, Technology, Business, and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany.
| |
Collapse
|
3
|
Guo F, Ren Y, Zhou Y, Sun S, Cui M, Khim J. Machine learning vs. statistical model for prediction modeling and experimental validation: Application in groundwater permeable reactive barrier width design. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133825. [PMID: 38430587 DOI: 10.1016/j.jhazmat.2024.133825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Permeable reactive barrier (PRB) is an effective in-situ technology for groundwater remediation. The important factors in PRB design are the width and reactive material. In this study, the beaded coal mine drainage sludge (BCMDS) was employed as the filling material to adsorb arsenic pollutants in groundwater, aiming to design the width of PRB. The design methods involving traditional continue column experiments and empirical formulas, as well as machine learning (ML) predictions and statistical methods, which are compared with each other. Traditional methods are determined based on breakthrough curves under several conditions. ML method has advantages in predicting the width of mass transfer zone (WMTZ), which simultaneously consider the characteristics of material, pollutant, and environmental conditions, with data collected from articles. After data preprocessing and model optimizing, selected the XGBoost algorithm based on the high accuracy, which shows good prediction for WMTZ (R2 = 0.97, RMSE = 0.15). The experimentally derived WMTZ values were also used to validate the predictions, demonstrating the ML low error rate of 7.04 % and the feasibility. Subsequent statistical analysis of multiple linear regression (MLR) showed the error rate of 39.43 %, interpret superiority of ML due to the complexity of influencing factors and the insufficient precision of math regression. Compared to traditional width design methods, ML can improve design efficiency and save experimental time and manpower. Further expansion of the dataset and optimization of algorithms could enhance the accuracy of ML, overcoming existing limitations and gaining broader applications.
Collapse
Affiliation(s)
- Fengshi Guo
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Yangmin Ren
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Yongyue Zhou
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Shiyu Sun
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Mingcan Cui
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea.
| | - Jeehyeong Khim
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea.
| |
Collapse
|
4
|
Wang M, Han Q, Zhang M, Liu X, Liu B, Wang Z. Efficient remediation of mercury-contaminated groundwater using MoS 2 nanosheets in an in situ reactive zone. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104347. [PMID: 38657473 DOI: 10.1016/j.jconhyd.2024.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mercury contamination in groundwater is a serious global environmental issue that poses threats to human and environmental health. While MoS2 nanosheets have been proven promising in removing Hg from groundwater, an effective tool for in situ groundwater remediation is still needed. In this study, we investigated the transport and retention behavior of MoS2 nanosheets in sand column, and employed the formed MoS2in situ reactive zone (IRZ) for the remediation of Hg-contaminated groundwater. Breakthrough test revealed that high flow velocity and MoS2 initial concentration promoted the transport of MoS2 in sand column, while the addition of Ca ions increased the retention of MoS2. In Hg removal experiments, the groundwater flow velocity did not influence the Hg removal capacity due to the fast reaction rate between MoS2 and Hg. With an optimized MoS2 loading, MoS2IRZ effectively reduced the Hg effluent concentration down to <1 μg/L without apparent Hg remobilization. Additionally, flake-like MoS2 employed in this study showed much better Hg removal performance than flower-like and bulk MoS2, as well as other reported materials, with the Hg removal capacity a few to tens of times higher than those materials. These results suggest that MoS2 nanosheets have the potential to be an efficient IRZ reactive material for in situ remediation of Hg in contaminated groundwater.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xun Liu
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
5
|
Qiang J, Zhang S, Liu H, Zhu X, Zhou J. A construction strategy of Kriging surrogate model based on Rosenblatt transformation of associated random variables and its application in groundwater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119555. [PMID: 37980793 DOI: 10.1016/j.jenvman.2023.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/21/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
When using simulation-optimization models for optimizing the design of groundwater pumping-treatment plans for pollution, building a surrogate model for the numerical simulation model has become an effective means of overcoming the computational load of such models. However, previous studies often treated pumping time as a single optimization variable, leading to unnecessary excessive pumping. This paper considers the location, pumping rate, start time, and end time of each candidate pumping well as optimization variables, and proposes a Rosenblatt-transform-based optimal Latin hypercube sampling method for the associated random variables to ensure that the start time is less than or equal to the end time. This method is coupled with an adaptive sampling method based on batch local optimal solutions to construct a dynamic adaptive Kriging surrogate model for the numerical model, ensuring that the true value of the optimal remediation scheme is not lost. The results show that, at the final stage of remediation, the pollutant concentration in the 4 scenarios achieves comprehensive compliance. However, when considering the minimization of remediation costs as the evaluation criterion, the remediation scheme in scenario 1 (the pumping start and end times are independent optimization variables for all candidate pumping wells) is optimal. In the optimization design of groundwater pumping-treatment plans, the pumping wells should be arranged in the midstream and downstream regions of the contaminant plume and parallel to the regional flow direction. This paper provides a method reference for the construction and adaptive updating of surrogate models involving associated random variables, as well as guidance for the dynamic optimization of groundwater pumping and treatment at contaminated sites.
Collapse
Affiliation(s)
- Jing Qiang
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China; Jiangsu Center for Applied Mathematics (CUMT), Xuzhou, 221116, China
| | - Shuangsheng Zhang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Hanhu Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Junjie Zhou
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
6
|
Kwak E, Kim JH, Lee S. Longevity evaluation of non-pumping reactive wells for control of groundwater contamination: Application of upscaling methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122136. [PMID: 37419206 DOI: 10.1016/j.envpol.2023.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Non-pumping reactive wells (NPRWs) are subsurface structures used for the passive treatment of contaminated groundwater using wells containing reactive media. In the vicinity of NPRWs, a combination of hydrogeological and chemical processes makes it difficult to predict their longevity. In this study, we evaluated the longevity of NPRWs using the upscaling methods. A horizontal two-dimensional sandbox was constructed to mimic the hydrogeological and chemical processes in a single unit of NPRW (unit NPRW). The groundwater flow and solute transport were simulated numerically to validate the processes of contaminant spreading prevention in the sandbox. Dye tracing and arsenic transport tests showed different performance of NPRW due to induced flow and uneven consumption of reactivity, which is dependent on the pathway length and residence time of the coal waste. Through numerical modeling of the experiments, the fate-related processes of contamination around NPRW were described in detail in both spatial and temporal terms. The stepwise approach of the upscaling methods was used to predict the contamination-blocking performance of the entire facility based on the reactivity of the materials and the contamination removal of the unit NPRW.
Collapse
Affiliation(s)
- Eunjie Kwak
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Shaheen SM, Rinklebe J, O'Connor D, Lamb D, Wang H, Siddique KHM, Bolan N. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131575. [PMID: 37172380 DOI: 10.1016/j.jhazmat.2023.131575] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation, Environment Business Unit, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
8
|
Budania R, Dangayach S. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117343. [PMID: 36758361 DOI: 10.1016/j.jenvman.2023.117343] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Groundwater quality is deteriorating due to contamination from both natural and anthropogenic sources. Traditional "Pump and Treat" techniques of treating the groundwater suffer from the disadvantages of a small-scale and energy-intensive approach. Permeable reactive barriers (PRBs), owing to their passive operation, offer a more sustainable strategy for remediation. This promising technique focuses on eliminating heavy metal pollutants and hazardous aromatic compounds by physisorption, chemisorption, precipitation, denitrification, and/or biodegradation. Researchers have utilized ZVI, activated carbon, natural and manufactured zeolites, and other by-products as reactive media barriers. Environmental parameters, i.e., pH, initial pollutant concentration, organic substance, dissolved oxygen, and reactive media by-products, all influence a PRB's performance. Although their long-term impact and performance are uncertain, PRBs are still evolving as viable alternatives to pump-and-treat techniques. The use of PRBs to remove anionic contaminants (e.g., Fluoride, Nitrate, etc.) has received less attention since precipitates can clog the reactive barrier and hinder groundwater flow. In this paper, we present an insight into this approach and the tremendous implications for future scientific study that integrates this strategy using sustainability and explores the viability of PRBs for anionic pollutants.
Collapse
Affiliation(s)
- Ravindra Budania
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| | - Sanyam Dangayach
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
9
|
Lawrinenko M, Kurwadkar S, Wilkin RT. Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation - A mechanistic approach. GEOSCIENCE FRONTIERS 2023; 14:1-13. [PMID: 36760680 PMCID: PMC9903902 DOI: 10.1016/j.gsf.2022.101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.
Collapse
Affiliation(s)
- Michael Lawrinenko
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Richard T. Wilkin
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| |
Collapse
|
10
|
Singh R, Chakma S, Birke V. Performance of field-scale permeable reactive barriers: An overview on potentials and possible implications for in-situ groundwater remediation applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:158838. [PMID: 36122715 DOI: 10.1016/j.scitotenv.2022.158838] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Permeable reactive barriers (PRBs) are significant among all the promising remediation technologies for treating contaminated groundwater. Since the first commercial full field-scale PRB emplacement in Sunnyvale, California, in 1994-1995, >200 PRB systems have been installed worldwide. The main working principle of a PRB is to treat a variety of contaminants downstream from the contaminated source zone ("hot spot"). However, to accurately assess the longevity of PRBs, it is essential to know the total contaminant mass in the source area and its approximate geometry. PRBs are regarded as both a safeguarding and an advanced decontamination technique, depending on the contamination scenario and its outcome during the operational lifetime of the barrier. In the last three decades, many PRBs have performed very well, that is, met expected clean-up goals at a variety of contaminated sites. However, there is still the necessity of thoroughly evaluating the implications of the performance of different PRB designs and reactive or adsorptive materials worldwide. Therefore, this study presents a comprehensive overview of field-scale PRBs applications and their long-term performance after on-site emplacements. This paper provides in-depth insight into this passive in-situ remediation technology for treating and even eliminating a contaminated plume over a long time in the subsurface. The overview will help all stakeholders worldwide understand the implications of PRBs and guide them to take all the required measures before its on-site application to avoid any potential failure.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Faculty of Engineering Science, Department of Mechanical, Process, and Environmental Engineering, University of Wismar - University of Applied Sciences, Technology, Business, and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Volker Birke
- Faculty of Engineering Science, Department of Mechanical, Process, and Environmental Engineering, University of Wismar - University of Applied Sciences, Technology, Business, and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany
| |
Collapse
|
11
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
12
|
Witt K, Studziński W, Bożejewicz D. Possibility of New Active Substrates (ASs) to Be Used to Prevent the Migration of Heavy Metals to the Soil and Water Environments. Molecules 2022; 28:94. [PMID: 36615290 PMCID: PMC9822496 DOI: 10.3390/molecules28010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
This paper aims to propose an alternative to the known permeable reactive barriers (PRBs). PRB is one of the methods, which is a reactive barrier placed below the ground, to clean up contaminated groundwater. New polymer active substrates (ASs) were used to prevent soil contamination by toxic heavy metals. The active substrates consisted of a mixture of poly(vinyl chloride), Aliquat 336, and bis(2-ethylhexyl)adipate, which was applied to the skeleton material (fiberglass or textile). Aliquat 336 was used as a binding agent for metal ions (Cr(VI), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II)). In contrast with the PRBs, the ASs (from AS-1 to AS-5) were obtained in a simple way using the pouring method. The obtained ASs could be recycled and reused. The active substrates were used for the binding of various metal ions from aqueous solutions and the examined soil. It was found that the active substrate AS-1 decreased the concentrations of nickel, cadmium, and lead by more than 50% and that of chromium by more than 90% in the aqueous solution. High sorption efficiency for chromium and zinc metals (81% and 66%) with the use of AS-2 was also found, owing to which the migration of metals from soil to water can be limited. In the soil environment, active substrate AS-5 with the addition of a plasticizer showed the greatest effectiveness. This solution resulted in a reduction in each tested metal ion of at least 50%, and reductions in cadmium, lead, and copper of over 70%.
Collapse
Affiliation(s)
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, PL 85326 Bydgoszcz, Poland
| | | |
Collapse
|
13
|
Clavijo SP, Addassi M, Finkbeiner T, Hoteit H. A coupled phase-field and reactive-transport framework for fracture propagation in poroelastic media. Sci Rep 2022; 12:17819. [PMID: 36280683 PMCID: PMC9592620 DOI: 10.1038/s41598-022-22684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
We present a novel approach to model hydro-chemo-mechanical responses in rock formations subject to fracture propagation within chemically active rock formations. The framework developed integrates the mechanisms of reactive transport, fluid flow and transport in porous media, and phase-field modelling of fracture propagation in poroelastic media. The solution approach integrates the geochemical package PHREEQC with a finite-element open-source platform, FEniCs. The PHREEQC solver is used to calculate the localized chemical reaction, including solid dissolution/precipitation. The resulting solid weakening by chemical damage is estimated from the reaction-induced porosity change. The proposed coupled model was verified with previous numerical results and applied to a synthetic case exhibiting hydraulic fracturing enhanced with chemical damage. Simulation results suggest that mechanical failure could be accelerated in the presence of ongoing chemical processes due to rock weakening and porosity changes, allowing the nucleation, growth, and development of fractures.
Collapse
Affiliation(s)
- Santiago Pena Clavijo
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Mouadh Addassi
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Thomas Finkbeiner
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Hussein Hoteit
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| |
Collapse
|
14
|
Parigi R, Chen N, Liu P, Ptacek CJ, Blowes DW. Mechanisms of Ni removal from contaminated groundwater by calcite using X-ray absorption spectroscopy and Ni isotope measurements. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129679. [PMID: 35961074 DOI: 10.1016/j.jhazmat.2022.129679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
A flow-through cell (FTC) experiment was conducted to identify mechanisms of Ni removal by calcite through study of changes in Ni speciation and Ni isotope signature during the treatment of simulated Ni-contaminated groundwater. Synthetic Ni-contaminated groundwater was pumped through a FTC packed with crushed natural calcite. Effluent samples were collected to determine concentrations of anions, cations, and for Ni isotope-ratio measurement. X-ray absorption spectroscopy (XAS) was performed on chosen spots of the solid phase along the FTC length. Isotope data indicated multiple mechanisms affected Ni removal in the FTC system. Ni adsorption to and coprecipitation with calcite dominated the early part of the experiment yielding a fractionation factor of ε = -0.5 ‰. Subsequently, Ni precipitation as a Ni-hydroxide phase became the major process controlling Ni removal, resulting in a fractionation factor ε = -0.4 ‰. XAS analysis confirmed the presence of both Ni(OH)2 and (Ni, Ca)CO3 types of Ni local structural environments. Results from this study highlight the potential of Ni isotopes as auxiliary tools to determine the processes involved in Ni attenuation from the environment. The characterization of mechanisms involved in Ni removal from solution is necessary to evaluate potential impacts to the environment and to develop effective remediation strategies.
Collapse
Affiliation(s)
- Roberta Parigi
- Dept. of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ning Chen
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK S7N 2V3, Canada
| | - Peng Liu
- Dept. of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Carol J Ptacek
- Dept. of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - David W Blowes
- Dept. of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Chu L, Zhang C, Yu J, Sun X, Zhou X, Zhang Y. Adsorption of nitrate from interflow by the Mg/Fe calcined layered double hydroxides. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:511-529. [PMID: 35960834 DOI: 10.2166/wst.2022.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrate loss in interflow caused serious nitrate pollution of neighboring water bodies in the purple soil region of China's Sichuan Province. In this study, Mg/Fe(Al)-calcined layered double hydroxides (Mg/Fe(Al)-CLDHs) with varied Mg/Fe(Al) ratios were synthesized for nitrate removal from interflow, and 3:1 Mg/Fe CLDH exhibited the best adsorption performance. The effects of initial pH, adsorbent dosage and co-existing anions on the adsorption performance were investigated by batch experiments. The best-fitting kinetic and isothermal models for nitrate adsorption were the pseudo-second-order model and Freundlich model, respectively, indicating that the adsorption process was a physical-chemical multilayer process. The maximum adsorption capacity of nitrate was 73.36 mg/g, which was higher than that of many other commonly used adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET) techniques, and the XRD and FT-IR results revealed that the adsorption mechanism involved original layered structure reconstruction and ion-exchange interaction. Under the coexistence of SO42- and Cl-, 75.63% nitrate in interflow could be removed after 6 h of adsorption. Overall, the synthesized Mg/Fe CLDH is an effective and low-cost nitrate adsorbent for in-situ nitrate removal.
Collapse
Affiliation(s)
- Liquan Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yalie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
16
|
Ekolu SO, Solomon F, de Beer F, Bitandi L, Kilula RN, Maseko KT, Mahlangu FG. Measurement of pore volume, connectivity and clogging of pervious concrete reactive barrier used to treat acid mine drainage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55743-55756. [PMID: 35322361 DOI: 10.1007/s11356-022-18850-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
It has recently been shown that pervious concrete is a promising, effective technology as a permeable reactive barrier system for treatment of acid mine drainage (AMD). However, pore clogging also occurs simultaneously during AMD treatment. In the present study, mixtures of pervious concrete were made and used in a column experiment during which pore clogging occurred in the samples. Pore volume, connectivity and other parameters of pervious concrete were evaluated using five (5) different methods comprising the volumetric method (VM), linear-traverse method (LTM), image analysis (IA), falling head permeability test and X-ray microcomputed tomography. It was found that pervious concrete effectively removed from AMD, about 90 to 99% of various heavy metals including Al, Fe, Zn, Mn and Mg. Cr concentration significantly increased in the treated effluent, owing to leaching from cementitious materials used in mixtures. The VM and LTM gave statistically similar pore volume results, while IA's values were 20 to 30% higher than those of the conventional methods. The falling head permeability test and IA were found to be effective in quantifying pore clogging effects. Pervious concrete exhibited high pore connectivity of 95.0 to 99.7%, which underlies its efficacious hydraulic conductivity.
Collapse
Affiliation(s)
- Stephen O Ekolu
- Department of Civil Engineering, Nelson Mandela University, Gqeberha, South Africa
| | - Fitsum Solomon
- Department of Civil Engineering, Nelson Mandela University, Gqeberha, South Africa.
| | - Frikkie de Beer
- Nuclear Technology Division, NECSA, Box 582, Pretoria, 0001, South Africa
| | - Louisette Bitandi
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Rais N Kilula
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Khaya T Maseko
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Fatty G Mahlangu
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
17
|
Cho YC, Hsu CC, Lin YP. Integration of in-situ chemical oxidation and permeable reactive barrier for the removal of chlorophenols by copper oxide activated peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128726. [PMID: 35316633 DOI: 10.1016/j.jhazmat.2022.128726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In-situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) have been used in field practices for contaminated groundwater remediation. In this lab-scale study, a novel system integrating ISCO and PRB using peroxydisulfate (PDS) as the oxidant and copper oxide (CuO) as the reactive barrier material was developed for the removal of 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The influences of chlorophenol concentration and flow rate on the system performance were first evaluated using synthetic solutions. The removal efficiencies of target chlorophenols were greater than 90% when sufficient PDS was supplied ([PDS]/[chlorophenol]>1). It was also found that the removal efficiencies decreased with the increasing chlorophenol concentrations (10-150 μM) and flow rates (1.8-14.4 mL/min). When three real groundwaters were employed, the removal efficiencies of 2,4-DCP and 2,4,6-TCP slightly reduced to 90% and 85%, respectively. For PCP, the removal efficiency dropped to 20% in two groundwaters with relatively high levels of alkalinity. The influences of pH and TOC were found to be insignificant for the range investigated (pH 6.5-8.7 and TOC = 0.4-1.5 mgC/L). The reduced removal efficiency could be due to the formation of weaker radicals and the stronger competition between bicarbonate ions and PDS for the activation sites on the CuO surfaces.
Collapse
Affiliation(s)
- Yi-Chin Cho
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Chun Hsu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Pin Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; NTU Research Center for Future Earth, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Li W, Lin X, Lv S, Yin W, Fang Z, Huang J, Li P, Wu J. Column study of Cd(II) removal and longevity by nitrate-mediated zero-valent iron with mixed anaerobic microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153538. [PMID: 35104521 DOI: 10.1016/j.scitotenv.2022.153538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, hydrogen-autotrophic microorganisms and zero-valent iron (Fe0) were filled into columns to investigate hydrogenotrophic denitrification effect on cadmium (Cd(II)) removal and column life-span with sand, microorganisms, Fe0 and bio-Fe0 columns as controls. In terms of the experiment results, the nitrate-mediated bio-Fe0 column showed a slow Cd(II) migration rate of 0.04 cm/PV, while the values in the bio-Fe0 and Fe0 columns were 0.06 cm/PV and 0.14 cm/PV respectively, indicating much higher Cd(II) removal efficiency and longer service life of the nitrate-mediated bio-Fe0 column. The XRD and SEM-EDX results implied that this improvement was attributed to hydrogenotrophic denitrification that caused more serious iron corrosion and larger amount of secondary mineral generation (e.g., green rust, lepidocrocite and goethite). These active minerals provided more reaction sites for Cd(II) adsorption and further immobilization. In addition, the decrease of Cd(II) migration front and the increase of removal capacity along the bio-Fe0 column mediated by nitrate presented an uneven distribution in reactive zone. The latter half part was identified to be a more active region for Cd(II) immobilization. The above results indicate that the introduction of nitrate and microorganisms will improve the performance of iron-based permeable reactive barriers for the remediation of Cd(II)-containing groundwater.
Collapse
Affiliation(s)
- Weiquan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueying Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Sihao Lv
- School of Chemistry and Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jingling Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
19
|
Metallic Iron for Water Remediation: Plenty of Room for Collaboration and Convergence to Advance the Science. WATER 2022. [DOI: 10.3390/w14091492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Scientific collaboration among various geographically scattered research groups on the broad topic of “metallic iron (Fe0) for water remediation” has evolved greatly over the past three decades. This collaboration has involved different kinds of research partners, including researchers from the same organization and domestic researchers from non-academic organizations as well as international partners. The present analysis of recent publications by some leading scientists shows that after a decade of frank collaboration in search of ways to improve the efficiency of Fe0/H2O systems, the research community has divided itself into two schools of thought since about 2007. Since then, progress in knowledge has stagnated. The first school maintains that Fe0 is a reducing agent for some relevant contaminants. The second school argues that Fe0 in-situ generates flocculants (iron hydroxides) for contaminant scavenging and reducing species (e.g., FeII, H2, and Fe3O4), but reductive transformation is not a relevant contaminant removal mechanism. The problem encountered in assessing the validity of the views of both schools arises from the quantitative dominance of the supporters of the first school, who mostly ignore the second school in their presentations. The net result is that the various derivations of the original Fe0 remediation technology may be collectively flawed by the same mistake. While recognizing that the whole research community strives for the success of a very promising but unestablished technology, annual review articles are suggested as an ingredient for successful collaboration.
Collapse
|
20
|
Chang YC, Chen KF, Chen TY, Chen HH, Chen WY, Mao YC. Development of novel persulfate tablets for passive trichloroethylene (TCE)-contaminated groundwater remediation. CHEMOSPHERE 2022; 295:133906. [PMID: 35143855 DOI: 10.1016/j.chemosphere.2022.133906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, a biodegradable binder, hydroxypropyl methyl cellulose (HPMC), was used for the first time to mix with persulfate powder for developing novel persulfate-releasing tablets to remediate trichloroethylene (TCE)-contaminated groundwater. To obtain feasible parameters for the preparation of persulfate tablets, different pressures, HPMC/tablet mass ratios, and persulfate dosages were evaluated. The results showed that the persulfate tablet released 2868 mg-persulfate/day for 12 days under the optimal manufacturing parameters of HPMC/tablet mass ratio of 0.5 and pressure of 4.90 × 108 N/m2. Persulfate diffusion and gel layer erosion were dominant mechanisms for controlling the persulfate released in water. The persulfate release time and rate can be controlled by adjusting the persulfate dosage at the optimal HPMC/tablet ratio. In the column experiment, TCE with an initial concentration of 70 mg/L reached 55% removal efficiency by the tablet, which showed that the developed tablet was capable of degrading highly concentrated TCE. The results of electron spin resonance (ESR) spectroscopy showed that both SO4-· and ·OH were responsible for the oxidation of TCE. During 150 days of incubation, the biodegrading efficiency of HPMC by microbes in soil and activated sludge was 67% and 80%, respectively, under aerobic conditions, while 58% of HPMC was removed by soil bacteria under anaerobic conditions. The results showed that persulfate tablets could be used as a passive groundwater remediation system. There is no waste generated after persulfate is completely released during groundwater remediation. The developed persulfate tablets are environmentally friendly and meet the green remediation aspect.
Collapse
Affiliation(s)
- Yu-Chen Chang
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan.
| | - Ting-Yu Chen
- Department of Landscape Architecture, National Chin-Yi University of Technology, Taiping, Taichung, 411030, Taiwan
| | - Hung-Hsiang Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Wei-Yu Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Ying-Chih Mao
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| |
Collapse
|
21
|
Fang Z, Zhou Z, Xue G, Yu Y, Wang Q, Cheng B, Ge Y, Qian Y. Application of sludge biochar combined with peroxydisulfate to degrade fluoroquinolones: Efficiency, mechanisms and implication for ISCO. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128081. [PMID: 34933257 DOI: 10.1016/j.jhazmat.2021.128081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Peroxydisulfate (PDS) is increasingly used for in situ chemical oxidation (ISCO) of organic pollutants in groundwater, but the efficient and applicable activator is still scarce. In this study, sludge-derived biochar (SDBC) was prepared by pyrolysis to activate PDS, which could effectively degrade the fluoroquinolone antibiotics (FQs, levofloxacin, enrofloxacin, norfloxacin and ciprofloxacin). Compared with pig manure and corn straw derived biochar, SDBC showed higher efficiency in PDS activation. Singlet oxygen (1O2) was identified as the major reactive species, and the surface-bonded radicals also contributed to the FQs degradation. The selective oxidation of FQs by 1O2 was first reported, which followed the trend of enrofloxacin ~ levofloxacin > norfloxacin ~ ciprofloxacin. The CO and Fe2+ on SDBC were the dominant reactive sites for PDS activating. Products analysis revealed that FQs degradation proceeds via the cleavage of the piperazine ring, breaking of the quinolone ring, decarboxylation, and defluorination. Moreover, the tertiary amine of N (4) on enrofloxacin was more reactive towards singlet oxygen than the secondary amine of N (4) on ciprofloxacin, inducing the faster degradation and de-toxicity of enrofloxacin in the reaction system. SDBC showed high reusability in PDS activation and negligible metals leachates were detected. The column study proved the efficiency of PDS/SDBC in groundwater remediation.
Collapse
Affiliation(s)
- Zhihuang Fang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China
| | - Zilin Zhou
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yang Yu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China
| | - Qi Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Biran Cheng
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China
| | - Yinglong Ge
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China
| | - Yajie Qian
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China.
| |
Collapse
|
22
|
Miller E, Menashe O, Dosoretz CG. A tailored permeable reactive bio-barrier for in situ groundwater remediation: removal of 3-chlorophenol as a case study. ENVIRONMENTAL TECHNOLOGY 2022; 43:1200-1210. [PMID: 32912063 DOI: 10.1080/09593330.2020.1822922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The present study explored bacterial aerobic biodegradation of reduced carbon-contaminants (RCC) in a pilot system mimicking remediation of a saturated aquifer in a permeable reactive biobarrier (PRBB). Bioaugmentation was performed with a pure culture of Pseudomonas putida macro-encapsulated in a cellulose-acetate porous envelope and integrated transversely to the flow trajectory of the fluid in the biobarrier and compared with controls without capsules. The macro-encapsulation technique applied allowed the incorporation of a built-in nutrient core for the slow release of macronutrients, i.e. N, P, instead of exogenous nutrients supply. 3-Chlorophenol (3CP) at a concentration range of 350-500 mg/L was chosen as an RCC model compound. The findings indicate efficient 3CP biodegradation during the PRBB operation with a similar degree of transformation (76 ± 2% and 72 ± 2%) and mineralization (55 ± 4% vs. 49 ± 3%) for exogenous and built-in nutrients supply, respectively. The extent of dechlorination in both cases (54 ± 10% vs. 40 ± 2%, respectively) followed mineralization rather than transformation, suggesting that Cl- release took place in late transformation stages. Negligible decontamination was observed in the control system without bioaugmentation. Concluding, tailored PRBB with macro-capsules incorporating a built-in nutrient core to support bacterial growth presents a significant environmental advantage controlling excess nutrients release required in bioremediation of oligotrophic systems.
Collapse
Affiliation(s)
- Efrat Miller
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofir Menashe
- Water Industry Engineering Department, Achi Racov Engineering School, Kinneret Academic College on the Sea of Galilee, D.N. Emek Ha'Yarden, Haifa, Israel
| | - Carlos G Dosoretz
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. CHEMOSPHERE 2022; 289:133252. [PMID: 34902385 DOI: 10.1016/j.chemosphere.2021.133252] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology, as an emerging science, has taken over all fields of life including industries, health and medicine, environmental issues, agriculture, biotechnology etc. The use of nanostructure molecules has revolutionized all sectors. Environmental pollution is a great concern now a days, in all industrial and developing as well as some developed countries. A number of remedies are in practice to overcome this problem. The application of nanotechnology in the bioremediation of environmental pollutants is a step towards revolution. The use of various types of nanoparticles (TiO2 based NPs, dendrimers, Fe based NPs, Silica and carbon nanomaterials, Graphene based NPs, nanotubes, polymers, micelles, nanomembranes etc.) is in practice to diminish environmental hazards. For this many In-situ (bioventing, bioslurping, biosparging, phytoremediation, permeable reactive barrier etc.) and Ex-situ (biopile, windrows, bioreactors, land farming etc.) methodologies are employed. Improved properties like nanoscale size, less time utilization, high adaptability for In-situ and Ex-situ use, undeniable degree of surface-region to-volume proportion for possible reactivity, and protection from ecological elements make nanoparticles ideal for natural applications. There are distinctive nanomaterials and nanotools accessible to treat the pollutants. Each of these methods and nanotools depends on the properties of foreign substances and the pollution site. The current designed review highlights the techniques used for bioremediation of environmental pollutants as well as use of various nanoparticles along with proposed In-situ and Ex-situ bioremediation techniques.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazeelat Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Sciences, National Textile University Faisalabad, 37610, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
24
|
Austenitic Stainless Steel as a Catalyst Material for Photo-Fenton Degradation of Organic Dyes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this paper, a typical austenitic stainless steel was used as a catalyst in the visible photo-Fenton degradation process of two model dyes, methylene blue and methylorange, in the presence of hydrogen peroxide and potassium persulfate as free radical-generating species. The concentration intervals for both peroxide and persulfate were in the range of 333–1667 μg/L. Very high photodecoloration efficiencies have been achieved using peroxide (>93%), while moderate ones have been achieved using persulfate (>75%) at a pH value of 6.5. For methylene blue, the maximum mineralization yield of 74.5% was achieved using 1665 μg/L of hydrogen peroxide, while methylorange was better mineralized using 999 μg/L of persulfate. The photodegradation of the dye occurred in two distinct steps, which were successfully modeled by the Langmuir–Hinshelwood pseudo-first-order kinetic model. Reaction rate constants k between 0.1 and 4.05 h−1 were observed, comparable to those presented in the reference literature at lower pH values and higher concentrations of total iron from the aqueous media.
Collapse
|
25
|
Abstract
AbstractThe presence of water-immiscible organic liquids—commonly called non-aqueous phase liquids or NAPLs—in soils and groundwater, is a worldwide environmental problem. Typical examples of NAPLs include: petroleum products, organic solvents and organic liquid waste from laboratories and industry. The molecular components of NAPLs present in soils, rocks and groundwater are readily transferred to the vapour and aqueous phases. The extent to which they do this is determined by their solubility (which is quite limited) and vapour pressure (which can be quite high). These molecular components, once dispersed in the vapour phase or dissolved in the aqueous phase, can provide a long-term source of harm to biotic receptors. The object of this lecture text is to examine how we can assess the degree of harm using quantitative risk assessment and how NAPL contaminated environments can be restored through the use of chemical, biological and physical remediation technologies.
Graphical abstract
Collapse
|
26
|
Abbas T, Wadhawan T, Khan A, McEvoy J, Khan E. Iron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117825. [PMID: 34330012 DOI: 10.1016/j.envpol.2021.117825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The feasibility and effectiveness of iron turning waste as low cost and sustainable permeable reactive barrier (PRB) media for remediating dieldrin, endrin, dichlorodiphenyltrichloroethane (DDT), and lindane individually (batch system) and combined (continuous flow column) in water were investigated. After 10 min of reaction in a batch system, removal of endrin, dieldrin, and DDT was higher (86-91 %) than lindane (41 %) using 1 g of iron turning waste in 200 mL of pesticide solution (20 μg/L for each pesticide). Among the studied pesticides, only lindane removal decreased substantially in the presence of nitrate (37 %) and magnesium (18 %). Acidic water environment (pH = 4) favored the pesticide removal than neutral and basic environments. For the column experiments, sand alone as PRB media was ineffective for remediating the pesticides in water. When only iron turning was used, the removal efficiencies of lindane, endrin, and dieldrin were 83-88 % and remained stable during 60 min of the experiments. DDT removal was less than other pesticides (58 %). Sandwiching the iron turning waste media between two sand layers improved DDT removal (79 %) as well as limited the iron content below a permissible level in product water. In a long-term PRB column performance evaluation, iron turning waste (150 g) removed all pesticides in water (initial concentration of each pesticide = 2 μg/L) effectively (≥94 %) at a hydraulic retention time of 1.6 h. Iron turning waste, which was mainly in the form of zerovalent iron (Fe0), was oxidized to ferrous (Fe2+) and ferric (Fe3+) iron during its reaction with pesticides, and electrons donated by Fe0 and Fe2+ were responsible for complete dechlorination of all the pesticides. Therefore, it can be used as inexpensive and sustainable PRB media for groundwater remediation especially in developing countries where groundwater contamination with pesticides is more prevalent.
Collapse
Affiliation(s)
- Tauqeer Abbas
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108-6050, USA; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| | | | - Asad Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| |
Collapse
|
27
|
Reactive, Sparingly Soluble Calcined Magnesia, Tailor-Made as the Reactive Material for Heavy Metal Removal from Contaminated Groundwater Using Permeable Reactive Barrier. MINERALS 2021. [DOI: 10.3390/min11111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A laboratory method was designed and verified that allows for the testing of alkaline, magnesite-based reactive materials for permeable reactive barriers (PRBs) to remove heavy metals from contaminated groundwater. It was found that caustic calcined magnesia (CCM) with high reactivity and low solubility to remove Cu2+, Zn2+, Ni2+, and Mn2+ cations from mixed aqueous solutions can be prepared by calcination at a suitable temperature and residence time. Regarding the solubility of both the reactive material itself and the precipitates formed, the CCM should contain just a limited content of lime. One way is the calcination of a ferroan magnesite at temperatures above 1000 °C. However, the decrease in pH is accompanied by lower efficiency, attributed to the solid-phase reactions of free lime. A different way is the calcination of magnesite under the conditions when CaCO3 is not thermally decomposed. The virtually complete removal of the heavy metals from the model solution was achieved using the CCM characterised by the fraction of carbonates decomposed of approximately 80% and with the highest specific surface area. CCM calcined at higher temperatures could also be used, but this would be associated with higher consumption of crude magnesite. Under the conditions considered in the present work, the product obtained by the calcination at 750 °C for 3 h appeared to be optimal. The full heavy metal removal was observed in this case using less magnesite, and, moreover, at a lower temperature (resulting, therefore, in a lower consumption of energy for the calcination and material handling).
Collapse
|
28
|
Al-Hashimi O, Hashim K, Loffill E, Marolt Čebašek T, Nakouti I, Faisal AAH, Al-Ansari N. A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling. Molecules 2021; 26:5913. [PMID: 34641456 PMCID: PMC8512142 DOI: 10.3390/molecules26195913] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022] Open
Abstract
The provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people's lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this technique missed sustainability and the new concept of using renewable energy. Permeable reactive barriers (PRBs) have been implemented as an alternative to conventional pump-and-treat systems for remediating polluted groundwater because of their effectiveness and ease of implementation. In this paper, a review of the importance of groundwater, contamination and biological, physical as well as chemical remediation techniques have been discussed. In this review, the principles of the permeable reactive barrier's use as a remediation technique have been introduced along with commonly used reactive materials and the recent applications of the permeable reactive barrier in the remediation of different contaminants, such as heavy metals, chlorinated solvents and pesticides. This paper also discusses the characteristics of reactive media and contaminants' uptake mechanisms. Finally, remediation isotherms, the breakthrough curves and kinetic sorption models are also being presented. It has been found that groundwater could be contaminated by different pollutants and must be remediated to fit human, agricultural and industrial needs. The PRB technique is an efficient treatment process that is an inexpensive alternative for the pump-and-treat procedure and represents a promising technique to treat groundwater pollution.
Collapse
Affiliation(s)
- Osamah Al-Hashimi
- Babylon Water Directorate, Babylon 51001, Iraq
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 3AF, UK; (K.H.); (E.L.); (T.M.Č.)
| | - Khalid Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 3AF, UK; (K.H.); (E.L.); (T.M.Č.)
- Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon 51001, Iraq
| | - Edward Loffill
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 3AF, UK; (K.H.); (E.L.); (T.M.Č.)
| | - Tina Marolt Čebašek
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 3AF, UK; (K.H.); (E.L.); (T.M.Č.)
| | - Ismini Nakouti
- Built Environment and Sustainable Technology Research Institute, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK;
| | - Ayad A. H. Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad 10001, Iraq;
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden;
| |
Collapse
|
29
|
Toluene Bioremediation by Using Geotextile-Layered Permeable Reactive Barriers (PRBs). Processes (Basel) 2021. [DOI: 10.3390/pr9060906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sources of contamination in a subsurface environment are petrol, diesel fuel, gasoline at oil refineries, underground storage tanks, transmission pipelines, and different industries. The permeable reactive barrier (PRB) is a promising technology to remediate groundwater in-situ. In this study, synthetic groundwater samples containing toluene are treated in three reactor columns by biological processes. PRB-1 consisted of sand and gravel as reactor media, microbial inoculum (bioaugmentation—BA), and nutrients (biostimulation—BS); PRB-2 consisted of sand and gravel as reactor media, microbial inoculum, nutrients, and 12 layers of nonwoven geotextile fabrics; and PRB-3 consisted of only sand and gravel as reactor media (natural attenuation—NA). This study was conducted to assess the impact of geotextile fabric filter, bioaugmentation, and biostimulation on toluene degradation efficiency. After 167 days of treatment, toluene biodegradation efficiencies varied between 88.2% and 93.8% for PRB 1, between 98.0% and 99.3% for PRB 2, and between 14.2% and 68.6% for PRB 3. The effluent toluene concentrations for PRB-2 were less than the guideline value (0.7 mg/L) of the World Health Organization. Reaction rate data were fitted with a first-order kinetic reaction rate model. This study showed that the toluene removal efficiency in the geotextile layered PRB combined with BA and BS process was significantly higher compared to the other processes tested. This lab-scale study introduced a new PRB configuration suitable for the remediation of sites contaminated with toluene.
Collapse
|
30
|
Rajendran M, Thangavelu D. Removal of As(V) from water using galvanically coupled sacrificial metals. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124564. [PMID: 33248826 DOI: 10.1016/j.jhazmat.2020.124564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
The Permeable reactive barriers (PRBs) is one of the sustainable methods of environmental remediation for groundwater treatment. On using iron as reactive media for PRBs, the longevity of the column is affected by the accumulation of iron corrosion products resulting in permeability reduction. Hence, in this work, iron and zinc are employed as sacrificial metals to remove 50 mg/L As(V) from aqueous solution in an oxic environment, where copper is added as a noble metal. The iron-based system followed first-order reaction kinetics with rate constants -1.65 × 10-3 min-1 for iron and 2.95 × 10-3 min-1 for copper-iron. The zinc-based system followed second-order reaction kinetics with rate constants - 1.26 × 10-4 L.mg-1.min-1for zinc and 4.67 × 10-4 L.mg-1.min-1 for copper-zinc. The half-life was computed to be 420.1, 234.9. 171.1, and 46.6 min for Fe, Cu‒Fe, Zn, and Cu‒Zn. The constant supply of adsorption sites is ensured by the continuous generation of corrosion products by sacrificial metals on galvanically coupling with copper. The effectiveness of arsenic retention can be in the order: Cu‒Zn > Cu‒Fe > Zn > Fe. Among the studied systems, the copper-zinc system can be suggested as the best possible reactive media for PRB in arsenic remediation of groundwater.
Collapse
Affiliation(s)
- Malini Rajendran
- Central Electrochemical Research Institute, Karaikudi 630 003, India.
| | - Deepa Thangavelu
- Vivekanandha Arts and Science College for Women, Veerachipalayam, Sankari (t.k), Salem District 637303, India
| |
Collapse
|
31
|
Silva B, Rocha V, Lago A, Costa F, Tavares T. Rehabilitation of a complex industrial wastewater containing heavy metals and organic solvents using low cost permeable bio-barriers – From lab-scale to pilot-scale. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Silica Monolith for the Removal of Pollutants from Gas and Aqueous Phases. Molecules 2021; 26:molecules26051316. [PMID: 33804572 PMCID: PMC7957575 DOI: 10.3390/molecules26051316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/03/2022] Open
Abstract
This study focused on the application of mesoporous silica monoliths for the removal of organic pollutants. The physico-chemical textural and surface properties of the monoliths were investigated. The homogeneity of the textural properties along the entire length of the monoliths was assessed, as well as the reproducibility of the synthesis method. The adsorption properties of the monoliths for gaseous toluene, as a model of Volatile Organic Compounds (VOCs), were evaluated and compared to those of a reference meso-structured silica powder (MCM-41) of commercial origin. Silica monoliths adsorbed comparable amounts of toluene with respect to MCM-41, with better performances at low pressure. Finally, considering their potential application in water phase, the adsorption properties of monoliths toward Rhodamine B, selected as a model molecule of water soluble pollutants, were studied together with their stability in water. After 24 h of contact, the silica monoliths were able to adsorb up to the 70% of 1.5 × 10−2 mM Rhodamine B in water solution.
Collapse
|
33
|
Siggins A, Thorn C, Healy MG, Abram F. Simultaneous adsorption and biodegradation of trichloroethylene occurs in a biochar packed column treating contaminated landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123676. [PMID: 33264877 DOI: 10.1016/j.jhazmat.2020.123676] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/25/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Trichloroethylene (TCE) is a human carcinogen that is commonly found in landfill leachate. Contaminated leachate plumes may be intercepted prior to reaching groundwater and treated in situ using permeable reactive barriers (PRB). This study used a packed column system containing herbal pomace and spruce biochar, previously shown to have TCE adsorptive capabilities. Influent containing raw or autoclaved landfill leachate was used to investigate the potential for environmental micro-organisms to establish a TCE-dechlorinating biofilm on the biochar, in order to prolong the operational life span of the system. TCE removal ≥ 99.7 % was observed by both biochars. No dichloroethylene (DCE) isomers were present in the column effluents, but cis-1,2 DCE was adsorbed to the biochar treating raw landfill leachate, indicating that dechlorination was occurring biologically in these columns. Known microbial species that are individually capable of complete dechlorination of TCE to ethene were not detected by 16S rRNA gene sequencing, but several species capable of partial TCE dechlorination (Desulfitobacterium spp., Sulfurospirillium spp. and Desulfuromonas spp) were present in the biofilms of the columns treating raw landfill leachate. These data demonstrate that biochar from waste material may be capable of supporting a dechlorinating biofilm to promote bioremediation of TCE.
Collapse
Affiliation(s)
- Alma Siggins
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Civil Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Camilla Thorn
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Mark G Healy
- Civil Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Florence Abram
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
34
|
Crampon M, Hellal J, Mouvet C, Ollivier P. Degradation of tetrachloroethylene by zero valent iron nanoparticles in the presence of a natural groundwater bacterial biofilm in a sandy porous media. Heliyon 2021; 7:e05854. [PMID: 33474508 PMCID: PMC7803639 DOI: 10.1016/j.heliyon.2020.e05854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023] Open
Abstract
Biofilms are naturally present in aquifers and can interact with zero valent iron nanoparticles (nZVI) used as remediation agents in contaminated groundwater; thereby they may alter nZVI reactivity towards targeted contaminants in porous media. Laboratory scale experiments using columns filled with sand (50 cm long and 5.2 cm in diameter) were performed to investigate the impact of natural biofilms on nZVI reactivity towards tetrachloroethylene (PCE) in conditions simulating an unconsolidated sandy aquifer. Solutions containing PCE were injected through the sand columns in the presence or absence of biofilm and nZVI. Concentrations in PCE and its metabolites were monitored during 45 days in dissolved and gas phases. PCE concentrations decreased at the column outlets due both to its reductive dechlorination by nZVI (~30% of injected PCE) and its sorption or deposition (as PCE-DNAPL) on sand (~35% of injected PCE). No significant differences in PCE concentrations were found in presence or absence of biofilm. However, biofilm presence affected the nature of PCE metabolites. A higher release of ethene in the column containing biofilm was observed, whereas ethane was dominant in the absence of biofilm. Microbes consumed H2 released by the corrosion of nZVI limiting the hydrogenation of ethene to ethane. The consequences of biofilm development in porous media should be taken into account when considering treatment with nZVI, as it may affect the nature of produced metabolites.
Collapse
|
35
|
Comparative Study of Mercury(II) Removal from Aqueous Solutions onto Natural and Iron-Modified Clinoptilolite Rich Zeolite. Processes (Basel) 2020. [DOI: 10.3390/pr8111523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The contamination of soil and water bodies with mercury from anthropogenic sources such as mining and industry activities causes negative effect for living organisms due to the process of bioaccumulation and biomagnification through the food chain. Therefore, the need for remediation of contaminated areas is extremely necessary and very desirable when it is cost-effective by using low-cost sorbents. This paper compares the sorption abilities of natural and iron-modified zeolite towards Hg(II) ions from aqueous solutions. The influence of pH, solid/liquid ratio (S/L), contact time, and initial concentration on the sorption efficiency onto both zeolites was investigated. At the optimal pH = 2 and S/L = 10, the maximum amount of sorbed Hg(II) is 0.28 mmol/g on the natural zeolite and 0.54 mmol/g on the iron-modified zeolite. It was found that rate-controlling step in mass transfer is intraparticle diffusion accompanied by film diffusion. Ion exchange as a main mechanism, accompanied with surface complexation and co-precipitation were included in the Hg(II) sorption onto both zeolite samples. This is confirmed by the determination of the amount of sorbed Hg(II) and the amount of released exchangeable cations from the zeolite structure as well as by the scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) of saturated zeolite samples. In a wide pH range, 4.01 ≤ pH ≤ 11.08, the leaching of Hg(II) was observed in the amount of only 0.28–0.78% from natural zeolite and 0.07–0.51% from iron-modified zeolite indicating that both zeolites could be used for remediation purposes while the results suggest that modification significantly improves the sorption properties of zeolite.
Collapse
|
36
|
Mohanta VL, Mishra BK. Integration of cancer and non-cancer human health risk assessment for Aniline enriched groundwater: a fuzzy inference system-based approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3623-3639. [PMID: 32419090 DOI: 10.1007/s10653-020-00590-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This study outlines a methodological approach to evaluate the environmental risk from integrating data of Aniline in groundwater near to coal-based industries using fuzzy logic, and a comprehensive artificial intelligence approach and the results were validated using conventional risk assessment approach. The Aniline is well-known carcinogenic pollutant released from coal-based industries, so to understand the associated cancer and non-cancer risks (CR and NCR), 15 groundwater samples were analyzed for Aniline, whose concentration was found within the range 0.10-0.34 mg/L, which is up to 68 times higher than the permissible limit. The alkaline pH of water samples resulted in reduced attractive forces between the soil particles with Aniline, and thereby increased percolation of Aniline into the groundwater. Women were at least risk in terms of Mamdani cancer risk (MCR) and Mamdani hazard index (MHI) which was observed up to 1.04E-04 and 3.04, respectively, while maximum MCR and MHI were observed in case of children, i.e., 1.21-E04 and 3.26, respectively. The newly proposed fuzzy inference rule-based Mamdani combined index (MCI) depicts the combined effect of both CR and NCR and was found to be highly correlated with each other. The detailed comparison analysis exhibited that the fuzzy inference rule-based MCI has better resolving ability to find out priority risk prediction over conventional methods under efficient parameter uncertainty control. Hence, it can be concluded that the fuzzy analyses can reflect human considerations and expertise in indices, empowering them to manage nonlinear, questionable, uncertain and subjective data. Therefore, this tool can predict the more meaningful risk estimation of any pollutants on human health.
Collapse
Affiliation(s)
- Vijay Laxmi Mohanta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
37
|
Vinati A, Rene ER, Pakshirajan K, Behera SK. Activated red mud as a permeable reactive barrier material for fluoride removal from groundwater: parameter optimisation and physico-chemical characterisation. ENVIRONMENTAL TECHNOLOGY 2020; 41:3375-3386. [PMID: 31002580 DOI: 10.1080/09593330.2019.1609591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
The main aim of this work is to test the performance of red mud as a permeable reactive barrier (PRB) material for fluoride removal from water. Batch experiments were carried out to optimise the fluoride removal efficiency (RE) of activated red mud (ARM) based on four selected parameters, namely, the initial fluoride concentration (3-40 mg/L), adsorbent dose (0.5-5 g/L), pH (3.0-11.0) and ionic strength (0.001-0.5 M). Statistical analysis of the results revealed the optimum conditions as initial fluoride concentration -21.46 mg/L, adsorbent dose -2.77 g/L, pH 7.01 and ionic strength -0.24 M, respectively. Under the optimum conditions, fluoride RE of 87.3% was achieved. The individual effects due to initial fluoride concentration, adsorbent dose and ionic strength on fluoride removal were highly significant (F = 59.69; P < 0.005); whereas adsorbent dose, pH and ionic strength showed the greatest squared effects (F = 26.05; P < 0.001). The interaction effect due to initial fluoride concentration and adsorbent dose was also found to be significant (F = 12.52; P = 0.002) for fluoride removal. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analyses were performed to identify the change in functional group and surface topography following red mud activation.
Collapse
Affiliation(s)
- Ayi Vinati
- Department of Chemical Engineering, GMR Institute of Technology, Rajam, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shishir Kumar Behera
- Department of Chemical Engineering, GMR Institute of Technology, Rajam, India
- Industrial Ecology Research group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
38
|
Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, Bilal M. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114728. [PMID: 32408081 DOI: 10.1016/j.envpol.2020.114728] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution by heavy metals (HMs) has raised considerable attention due to their toxic impacts on plants, animals and human beings. Thus, the environmental cleanup of these toxic (HMs) is extremely urgent both from the environmental and biological point of view. To remediate HMs-polluted environment, several nanoparticles (NPs) such as metals and its oxides, carbon materials, zeolites, and bimetallic NPs have been documented. Among these, Fe-based NPs have emerged as an effective choice for remediating environmental contamination, due to infinite size, high reactivity, and adsorption properties. This review summarizes the utilization of various Fe-based NPs such as nano zero-valent iron (NZVI), modified-NZVI, supported-NZVI, doped-NZVI, and Fe oxides and hydroxides in remediating the HMs-polluted environment. It presents a comprehensive elaboration on the possible reaction mechanisms between the Fe-based NPs and heavy metals, including adsorption, oxidation/reduction, and precipitation. Subsequently, the environmental factors (e.g., pH, organic matter, and redox) affecting the reactivity of the Fe-based NPs with heavy metals are also highlighted in the current study. Research shows that Fe-based NPs can be toxic to living organisms. In this context, this review points out the environmental hazards associated with the application of Fe-based NPs and proposes future recommendations for the utilization of these NPs.
Collapse
Affiliation(s)
- Abdul Latif
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China; Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| | - Di Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Aown Abbas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| |
Collapse
|
39
|
Hu Y, Wu G, Li R, Xiao L, Zhan X. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. WATER RESEARCH 2020; 179:115914. [PMID: 32413614 DOI: 10.1016/j.watres.2020.115914] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 05/02/2020] [Indexed: 05/09/2023]
Abstract
Iron sulphides, mainly in the form of mackinawite (FeS), pyrrhotite (Fe1-xS, x = 0-0.125) and pyrite (FeS2), are the most abundant sulphide minerals and can be oxidized under anoxic and circumneutral pH conditions by chemoautotrophic denitrifying bacteria to reduce nitrate to N2. Iron sulphides mediated autotrophic denitrification (ISAD) represents an important natural attenuation process of nitrate pollution and plays a pivotal role in linking nitrogen, sulphur and iron cycles in a variety of anoxic environments. Recently, it has emerged as a promising bioprocess for nutrient removal from various organic-deficient water and wastewater, due to its specific advantages including high denitrification capacity, simultaneous nitrogen and phosphorus removal, self-buffering properties, and fewer by-products generation (sulphate, waste sludge, N2O, NH4+, etc.). This paper provides a critical overview of fundamental and engineering aspects of ISAD, including the theoretical knowledge (biochemistry, and microbial diversity), its natural occurrence and engineering applications. Its potential and limitations are elucidated by summarizing the key influencing factors including availability of iron sulphides, low denitrification rates, sulphate emission and leaching heavy metals. This review also put forward two key questions in the mechanism of anoxic iron sulphides oxidation, i.e. dissolution of iron sulphides and direct substrates for denitrifiers. Finally, its prospects for future sustainable wastewater treatment are highlighted. An iron sulphides-based biotechnology towards next-generation wastewater treatment (NEO-GREEN) is proposed, which can potentially harness bioenergy in wastewater, incorporate resources (P and Fe) recovery, achieve simultaneous nutrient and emerging contaminants removal, and minimize waste sludge production.
Collapse
Affiliation(s)
- Yuansheng Hu
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guangxue Wu
- Institute of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing, 210023, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Centre for Marine and Renewable Energy, Ireland.
| |
Collapse
|
40
|
Vittoni C, Gatti G, Braschi I, Buscaroli E, Golemme G, Marchese L, Bisio C. Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2690. [PMID: 32545646 PMCID: PMC7344446 DOI: 10.3390/ma13122690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022]
Abstract
In this work, different mesoporous silicas were studied as potential sorbents for toluene, selected as a model molecule of aromatic organic fuel-based pollutants. Three siliceous materials with different textural and surface properties (i.e., fumed silica and mesoporous Santa Barbara Amorphous (SBA)-15 and Mobil Composition of matter (MCM)-41 materials) were considered and the effect of their physico-chemical properties on the toluene adsorption process was studied. In particular, FT-IR spectroscopy was used to qualitatively study the interactions between the toluene molecule and the surface of silicas, while volumetric adsorption analysis allowed the quantitative determination of the toluene adsorption capacity. The combined use of these techniques revealed that textural properties of the sorbents, primarily porosity, are the driving forces that control the adsorption process. Considering that, under real conditions of usage, the sorbents are soaked in water, their hydrothermal stability was also investigated and toluene adsorption by both the gas and aqueous phase on hydrothermally pre-treated samples was studied. The presence of ordered porosity, together with the different pore size distribution and the amount of silanol groups, strongly affected the adsorption process. In toluene adsorption from water, SBA-15 performed better than MCM-41.
Collapse
Affiliation(s)
- Chiara Vittoni
- Department of Sciences and Technological Innovation and Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, Viale T. Michel 11, 15121 Alessandria, Italy; (C.V.); (G.G.); (L.M.)
| | - Giorgio Gatti
- Department of Sciences and Technological Innovation and Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, Viale T. Michel 11, 15121 Alessandria, Italy; (C.V.); (G.G.); (L.M.)
| | - Ilaria Braschi
- Department of Sciences and Technological Innovation and Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, Viale T. Michel 11, 15121 Alessandria, Italy; (C.V.); (G.G.); (L.M.)
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy;
| | - Enrico Buscaroli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy;
| | - Giovanni Golemme
- Department of Environmental Engineering, University of Calabria, Via P. Bucci 45A, 87036 Rende, Italy;
| | - Leonardo Marchese
- Department of Sciences and Technological Innovation and Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, Viale T. Michel 11, 15121 Alessandria, Italy; (C.V.); (G.G.); (L.M.)
| | - Chiara Bisio
- Department of Sciences and Technological Innovation and Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, Viale T. Michel 11, 15121 Alessandria, Italy; (C.V.); (G.G.); (L.M.)
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via G. Venezian 21, 20133 Milano, Italy
| |
Collapse
|
41
|
Huang Y, Wang M, Gong Y, Zeng EY. Efficient removal of mercury from simulated groundwater using thiol-modified graphene oxide/Fe-Mn composite in fixed-bed columns: Experimental performance and mathematical modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136636. [PMID: 31991272 DOI: 10.1016/j.scitotenv.2020.136636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Mercury contamination in groundwater has been considered as an environmental and public health issue all over the world. Yet, effective in situ remediation techniques have been lacking. A thiol-modified graphene oxide/Fe-Mn composite (SGO/Fe-Mn) was employed as a reactive sorbent of permeable reactive barrier (PRB) for in situ remediation of mercury contaminated groundwater using fixed-bed columns. Mercury existed as HgCl2, Hg(OH)2, and HgClOH, and was mainly removed through surface complexation. The Brunauer-Emmett-Teller sorption isotherm model provided adequate fitting of the sorption isotherm data with a maximum monolayer sorption capacity of 112.03 ± 16.59 mg g-1. Breakthrough time, the time when 5% of initial Hg concentration is measured in the effluent, increased with the decrease of influent mercury concentration, pore velocity, dissolved oxygen (DO), and dissolved organic matter (DOM). The resultant column sorption capacity was enhanced at higher influent mercury concentration, lower groundwater pore velocity, lower DOM and DO. Moreover, when the SGO/Fe-Mn was thoroughly mixed with quartz sand in the column, the breakthrough time was increased and the resultant sorption capacity was improved compared to the case that SGO/Fe-Mn was packed between two layers of quartz sand. Mathematically, the Adams-Bohart model satisfactorily reproduced the initial behavior of mercury breakthrough curves (<40 pore volumes). Yan model adequately simulated the breakthrough curves. The results reveal the potential of SGO/Fe-Mn as an efficient PRB reactive material for in situ remediation of mercury in contaminated groundwater.
Collapse
Affiliation(s)
- Yao Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Mengxia Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yanyan Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
42
|
Cj S, T S. Enhanced biogeogenic controls on dichromate speciation in subsoil containment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110327. [PMID: 32092580 DOI: 10.1016/j.ecoenv.2020.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In general, lab-based Cr (VI) reduction studies do not often corroborate the prevailing biogeochemical controls for on-site pollution abatement. To promulgate its importance, herein, we investigate the existing biogeogenic parameters of a contaminated site to attenuate the underground Cr (VI) toxicity. This study significantly assesses the speciation of dichromate by biogenic agents that are inherent and self-sustaining to treat the contaminated soil. Herein, a group of bacteria exposed to high concentrations of chromium (≥3500 mg/L) plays a vital role as an enhanced biogeogenic control for the detoxification of toxic Cr (VI). All identified bacteria were screened based on their ability to differentiate from extracellular speciation and harvested in a Cr (VI)-enriched molasses to achieve dichromate concentrations as low as 0.05 mg/L in 168 h. Under low O2 condition, the bacterial growth rate and doubling time were monitored to establish the half-life period of Cr (VI) for adequate containment treatment. Furthermore, to understand the soil decontamination, Cr (VI) reactive transport was demonstrated to facilitate the contaminant reduction under both saturated and unsaturated groundwater conditions. Herein, Cr (VI) speciation to Cr (III) by the influence of abiogenic factors are unlikely or less probable as studied in existing geogenic conditions. Moreover, the evidence of biogenic reduction of Cr (VI) in microcosm suggests its effectiveness in enhanced detoxification of Cr (VI) up to ≤ 0.1 mg/L, within the reaction period of 144 h and 192 h, for saturated and unsaturated flow conditions, respectively.
Collapse
Affiliation(s)
- Sangeetha Cj
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Shashidhar T
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India.
| |
Collapse
|
43
|
Falciglia PP, Gagliano E, Brancato V, Finocchiaro G, Catalfo A, De Guidi G, Romano S, Roccaro P, Vagliasindi FGA. Field technical applicability and cost analysis for microwave based regenerating permeable reactive barriers (MW-PRBs) operating in Cs-contaminated groundwater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110064. [PMID: 32090811 DOI: 10.1016/j.jenvman.2020.110064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The present study tests the potentiality of a novel microwave based regenerating permeable reactive barrier (MW-PRB) system as combined treatment for Cs-contaminated groundwater. Granular activated carbon (GAC) was selected as adsorptive materials in batch and column MW-regeneration experiments. Experimental and modeling data were elaborated for technical and economic considerations in order to assess the MW-PRB feasibility jointly with essential information regarding its real field applicability. Batch experiments investigated the effects of 10 adsorption-MW regeneration cycles under different MW irradiation conditions (applied electric field = 200-460 V m-1; irradiation times = 1-15 min) by assessing GAC variation properties in term of regeneration yield (δ), specific area and weight loss (WL) variation. Column tests were carried using a dedicated setup essentially including a column filled with GAC implanted in a MW oven cavity (MW electric field of 385 V m-1, irradiation times 5-15 min). Lab-scale results shown the ability of MW in Cs removal from GAC as demonstrated by regeneration yield (δ = 79-110%) and WL (6.78% for 10 cycles) values. This was confirmed in dynamic conditions by data from MW-column tests highlighting the highest Cs removal of ~80% when the maximum regeneration time was applied. Residual Cs concentration in breakthrough curves fitted well with the proposed Yoon and Nelson model (R2 = ~0.97). Results from techno-economic analysis revealed the MW-PRB viability and its advantages also in comparison with conventional PRB systems, demonstrating the concept of combined MW-PRB treatment. Saved cost obtained demonstrated in fact the potential cost effectiveness of MW-PRB system and, consequently, the implementation of novel approach is encouraged. Calculated PRB longevity vs groundwater velocity curves are useful in order to predict long-term PRB performance and the response of the remediation activities, as well as for guiding the design and the scaling-up of MW-PRB treatment.
Collapse
Affiliation(s)
- Pietro P Falciglia
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy; Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare, Via S. Sofia, 62 - 95125, Catania, Italy
| | - Erica Gagliano
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Vincenza Brancato
- CNR - ITAE - Istituto di Tecnologie Avanzate per l'Energia, "Nicola Giordano", Salita S. Lucia sopra Contesse 5, Messina, 98126, Italy
| | - Guglielmo Finocchiaro
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alfio Catalfo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Guido De Guidi
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy; Centro di ricerca per l'analisi, il monitoraggio e le metodologie di minimizzazione del rischio ambientale (CRAM3RA), Università di, Catania, Italy
| | - Stefano Romano
- Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare, Via S. Sofia, 62 - 95125, Catania, Italy; Dipartimento di Fisica e Astronomia, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Paolo Roccaro
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
44
|
Rambabu K, Banat F, Pham QM, Ho SH, Ren NQ, Show PL. Biological remediation of acid mine drainage: Review of past trends and current outlook. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100024. [PMID: 36160925 PMCID: PMC9488087 DOI: 10.1016/j.ese.2020.100024] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 05/20/2023]
Abstract
Formation of acid mine drainage (AMD) is a widespread environmental issue that has not subsided throughout decades of continuing research. Highly acidic and highly concentrated metallic streams are characteristics of such streams. Humans, plants and surrounding ecosystems that are in proximity to AMD producing sites face immediate threats. Remediation options include active and passive biological treatments which are markedly different in many aspects. Sulfate reducing bacteria (SRB) remove sulfate and heavy metals to generate non-toxic streams. Passive systems are inexpensive to operate but entail fundamental drawbacks such as large land requirements and prolonged treatment period. Active bioreactors offer greater operational predictability and quicker treatment time but require higher investment costs and wide scale usage is limited by lack of expertise. Recent advancements include the use of renewable raw materials for AMD clean up purposes, which will likely achieve much greener mitigation solutions.
Collapse
Affiliation(s)
- K. Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Quan Minh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 11307, Ha Noi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 11307, Ha Noi, Viet Nam
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
45
|
Fang Y, Yang Z, Li H, Liu X. MIL-100(Fe) and its derivatives: from synthesis to application for wastewater decontamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4703-4724. [PMID: 31919822 DOI: 10.1007/s11356-019-07318-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
MIL-100(Fe), an environmental-friendly and water-stable metal-organic framework (MOF), has caught increasing research and application attention in the recent decade. Thanks to its mesoporous structure and eximious surface area, MIL-100(Fe) has been utilized as precursors for synthesizing various porous materials under high thermolysis temperature, which makes the derivatives of MIL-100(Fe) pretty promising candidates for the decontamination of wastewater. Herein, this review systematically summarizes the versatile synthetic methods and conditions for optimizing the properties of MIL-100(Fe) and its derivatives. Then, diverse environmental applications (i.e., adsorption, photocatalysis, and Fenton-like reaction) of MIL-100(Fe) and its derivatives and the corresponding removal mechanisms are detailed in the discussion. Finally, existing knowledge gaps related to fabrications and applications are discussed to close and promote the future development of MIL-100(Fe) and its derivatives toward environmental applications. Graphical abstract.
Collapse
Affiliation(s)
- Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| |
Collapse
|
46
|
Kumar R, Patel M, Singh P, Bundschuh J, Pittman CU, Trakal L, Mohan D. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133427. [PMID: 31756815 DOI: 10.1016/j.scitotenv.2019.07.233] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
Providing drinking water with safe arsenic levels in Latin American (LA) countries (a total of 22 countries) is a major current challenge. Arsenic's presence in water has been neglected for many decades since it was first reported ~100 years ago in Argentina. The major arsenic source in this region is geogenic. So far, arsenic has been reported in 15 LA countries. Arsenic concentrations in drinking water have been reported up to >200 fold (2000 μg/L) the WHO limit of 10 μg/L. About 14 million people in the arsenic affected LA countries depend on contaminated water characterized by >10 μg/L of arsenic. Low-cost, easy to use, efficient, and sustainable solutions are needed to supply arsenic safe water to the rural and peri-urban population in the affected areas. In the present study, >250 research articles published on various emerging technologies used for arsenic remediation in rural and peri-urban areas of LA countries are critically reviewed. Special attention has been given to arsenic adsorption methods. The manuscript focuses on providing insights into low cost emergent adsorbents with an implementation potential in Latin America. Natural, modified and synthetic adsorbents used for arsenic decontamination were reviewed and compared. Advantages and disadvantages of treatment methods are summarized. Adsorbent selection criteria are developed. Recommendations concerning emerging adsorbents for aqueous arsenic removal in LA countries have also been made.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prachi Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, 165 00 Suchdol , Czech Republic
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
47
|
Past, Present, and Future of Groundwater Remediation Research: A Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203975. [PMID: 31635235 PMCID: PMC6843360 DOI: 10.3390/ijerph16203975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
In this study, we characterize the body of knowledge of groundwater remediation from 1950 to 2018 by employing scientometric techniques and CiteSpace software, based on the Science Citation Index Expanded (SCI-E) databases. The results indicate that the United States and China contributed 56.4% of the total publications and were the major powers in groundwater remediation research. In addition, the United States, Canada, and China have considerable capabilities and expertise in groundwater remediation research. Groundwater remediation research is a multidisciplinary field, covering water resources, environmental sciences and ecology, environmental sciences, and engineering, among other fields. Journals such as Environmental Science and Technology, Journal of Contaminant Hydrology, and Water Research were the major sources of cited works. The research fronts of groundwater remediation were transitioning from the pump-and-treat method to permeable reactive barriers and nanoscale zero‑valent iron particles. The combination of new persulfate ion‑activation technology and nanotechnology is receiving much attention. Based on the visualized networks, the intelligence base was verified using a variety of metrics. Through landscape portrayal and developmental trajectory identification of groundwater remediation research, this study provides insight into the characteristics of, and global trends in, groundwater remediation, which will facilitate the identification of future research directions.
Collapse
|
48
|
Salamatpoor S, Salamatpoor S. Load-settlement mechanism of strip footings rested on saturated loose sand and improved by zeolite–cement pads. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
49
|
Bhat PA, Pandit SA, Rather MA, Bhat MA. Aqueous micellar solutions of surface active ionic liquids as eco-green solvents for electrodexoification of halocarbons: A case study of dodecylmethylimidazolium chloride micelle solubilized carbon tetrachloride. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Zawierucha I, Nowik-Zajac A. Evaluation of permeable sorption barriers for removal of Cd(II) and Zn(II) ions from contaminated groundwater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:448-457. [PMID: 31596256 DOI: 10.2166/wst.2019.288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, continuous-flow column experiments (using glass column, Tygon tubing, and peristaltic pump Manostat Carter) were conducted to investigate the performance of permeable sorption barriers for the removal of cadmium and zinc from synthetic groundwater. Zeolite, ion-exchange resin and granular activated carbon as reactive materials were used. The effectiveness and stability of reactive materials were studied by monitoring of changes of metal ions concentration and selected background anions and cations concentration in groundwater during its flow through columns. Results showed that ion exchange resin was the most effective material of permeable reactive barrier (PRB). Performance of resin barrier remained effective (>99.5% metal ions removal) for the time corresponding to on average of about 10,000 min. The high efficiency of ion-exchange resin in PRB for removal of heavy metals from groundwater was coupled with its reactivity and long barrier lifetime. The breakthroughs in the column tests on activated carbon and zeolite using synthetic groundwater occurred much earlier as compared to resin. Therefore, the system using resin requires smaller amount to treat a given volume of groundwater as compared to other materials. Moreover, the presence of other ions did not impact on activity and permeability of barrier filled with resin.
Collapse
Affiliation(s)
- Iwona Zawierucha
- Institute of Chemistry, Health and Food Sciences, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland E-mail:
| | - Anna Nowik-Zajac
- Institute of Chemistry, Health and Food Sciences, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland E-mail:
| |
Collapse
|