1
|
Yu J, Li X, Wu M, Lin K, Xu L, Zeng T, Shi H, Zhang M. Synergistic role of inherent calcium and iron minerals in paper mill sludge biochar for phosphate adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155193. [PMID: 35421460 DOI: 10.1016/j.scitotenv.2022.155193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Phosphate adsorption using metal-based biochar has awakened much attention and triggered extensive research. In this study, novel Ca/Fe-rich biochars were prepared via a one-step process of pyrolyzing paper mill sludge (PMS) at various temperatures (300, 500, 700, and 800 °C) under a CO2 atmosphere for phosphate removal. Batch adsorption experiments showed that the biochar obtained at 800 °C (PB-800), which could be easily separated magnetically, exhibited the best phosphate adsorption capacity in a wide range of solution pH (5-11). Based on the Langmuir model, the maximum phosphate adsorption capacity for PB-800 was 17.33 mg/g. Besides, the effects of ambient temperature as well as coexisting ions on phosphate removal were also investigated. Kinetic and thermodynamic analysis revealed that chemisorption dominated the adsorption process. The calcium carbonate and ferric salts in the sludge were converted into CaO and Fe3O4 through pyrolysis at 800 °C. The CaO inherent in PB-800 was proved to serve as active sites for the chemical precipitation, showing its synergistic effect with iron oxide compounds (i.e., Fe3O4, α-Fe2O3) on phosphate removal through chemical precipitation, ligand exchange, and complexation. This study not only provides a feasible waste-to-wealth strategy for converting PMS into a Ca/Fe-rich magnetic biochar that can be used as an effective phosphate adsorbent, but also offers new insights into the synergistic effect of calcium and iron species for the adsorption of phosphate using biochar.
Collapse
Affiliation(s)
- Jie Yu
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Xiaodian Li
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Ming Wu
- Shaoxing Solid Waste Management Center, Shaoxing 312000, PR China
| | - Kun Lin
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Liheng Xu
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Huixiang Shi
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ming Zhang
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Li Y, Huang S, Song Y, Zhang X, Liu S, Du Q. Effect of Spatial Distribution of nZVI on the Corrosion of nZVI Composites and Its Subsequent Cr(VI) Removal from Water. NANOMATERIALS 2022; 12:nano12030494. [PMID: 35159839 PMCID: PMC8840039 DOI: 10.3390/nano12030494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
There have been many studies on contaminant removal by fresh and aged nanoscale zero-valent iron (nZVI), but the effect of spatial distribution of nZVI on the corrosion behavior of the composite materials and its subsequent Cr(VI) removal remains unclear. In this study, four types of D201-nZVI composites with different nZVI distributions (named D1, D2, D3, and D4) were fabricated and pre-corroded in varying coexisting solutions. Their effectiveness in the removal of Cr(VI) were systematically investigated. The results showed acidic or alkaline conditions, and all coexisting ions studied except for H2PO4− and SiO32− enhanced the corrosion of nZVI. Additionally, the Cr(VI) removal efficiency was observed to decrease with increasing nZVI distribution uniformity. The corrosion products derived from nZVI, including magnetite, hematite, lepidocrcite, and goethite, were identified by XRD. The XPS results suggested that the Cr(VI) and Cr(III) species coexisted and the Cr(III) species gradually increased on the surface of the pre-corroded D201-nZVI with increasing iron distribution uniformity, proving Cr(VI) removal via a comprehensive process including adsorption/coprecipitation and reduction. The results will help to guide the selection for nZVI nanocomposites aged under different conditions for environmental decontamination.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Du
- Correspondence: ; Tel.: +86-25-8618-5190
| |
Collapse
|
3
|
Abbas T, Wadhawan T, Khan A, McEvoy J, Khan E. Iron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117825. [PMID: 34330012 DOI: 10.1016/j.envpol.2021.117825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/25/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The feasibility and effectiveness of iron turning waste as low cost and sustainable permeable reactive barrier (PRB) media for remediating dieldrin, endrin, dichlorodiphenyltrichloroethane (DDT), and lindane individually (batch system) and combined (continuous flow column) in water were investigated. After 10 min of reaction in a batch system, removal of endrin, dieldrin, and DDT was higher (86-91 %) than lindane (41 %) using 1 g of iron turning waste in 200 mL of pesticide solution (20 μg/L for each pesticide). Among the studied pesticides, only lindane removal decreased substantially in the presence of nitrate (37 %) and magnesium (18 %). Acidic water environment (pH = 4) favored the pesticide removal than neutral and basic environments. For the column experiments, sand alone as PRB media was ineffective for remediating the pesticides in water. When only iron turning was used, the removal efficiencies of lindane, endrin, and dieldrin were 83-88 % and remained stable during 60 min of the experiments. DDT removal was less than other pesticides (58 %). Sandwiching the iron turning waste media between two sand layers improved DDT removal (79 %) as well as limited the iron content below a permissible level in product water. In a long-term PRB column performance evaluation, iron turning waste (150 g) removed all pesticides in water (initial concentration of each pesticide = 2 μg/L) effectively (≥94 %) at a hydraulic retention time of 1.6 h. Iron turning waste, which was mainly in the form of zerovalent iron (Fe0), was oxidized to ferrous (Fe2+) and ferric (Fe3+) iron during its reaction with pesticides, and electrons donated by Fe0 and Fe2+ were responsible for complete dechlorination of all the pesticides. Therefore, it can be used as inexpensive and sustainable PRB media for groundwater remediation especially in developing countries where groundwater contamination with pesticides is more prevalent.
Collapse
Affiliation(s)
- Tauqeer Abbas
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108-6050, USA; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| | | | - Asad Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| |
Collapse
|
4
|
Oh WD, Ho YC, Mohamad M, Ho CD, Ravi R, Lim JW. Systematic Performance Comparison of Fe 3+/Fe 0/Peroxymonosulfate and Fe 3+/Fe 0/Peroxydisulfate Systems for Organics Removal. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5284. [PMID: 34576510 PMCID: PMC8468805 DOI: 10.3390/ma14185284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Activated zero-valent iron (Ac-ZVI) coupled with Fe3+ was employed to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) for acid orange 7 (AO7) removal. Fe3+ was used to promote Fe2+ liberation from Ac-ZVI as an active species for reactive oxygen species (ROS) generation. The factors affecting AO7 degradation, namely, the Ac-ZVI:Fe3+ ratio, PMS/PDS dosage, and pH, were compared. In both PMS and PDS systems, the AO7 degradation rate increased gradually with increasing Fe3+ concentration at fixed Ac-ZVI loading due to the Fe3+-promoted liberation of Fe2+ from Ac-ZVI. The AO7 degradation rate increased with increasing PMS/PDS dosage due to the greater amount of ROS generated. The degradation rate in the PDS system decreased while the degradation rate in the PMS system increased with increasing pH due to the difference in the PDS and PMS activation mechanisms. On the basis of the radical scavenging study, sulfate radical was identified as the dominant ROS in both systems. The physicochemical properties of pristine and used Ac-ZVI were characterized, indicating that the used Ac-ZVI had an increased BET specific surface area due to the formation of Fe2O3 nanoparticles during PMS/PDS activation. Nevertheless, both systems displayed good reusability and stability for at least three cycles, indicating that the systems are promising for pollutant removal.
Collapse
Affiliation(s)
- Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Kelantan, Malaysia;
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan;
| | - Rajiv Ravi
- School of Applied Sciences, Faculty of Integrated Life Science, Quest International University, Ipoh 30250, Perak, Malaysia;
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| |
Collapse
|
5
|
Ashraf M, Khan I, Usman M, Khan A, Shah SS, Khan AZ, Saeed K, Yaseen M, Ehsan MF, Tahir MN, Ullah N. Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chem Res Toxicol 2020; 33:1292-1311. [PMID: 31884781 DOI: 10.1021/acs.chemrestox.9b00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The optoelectrical and magnetic characteristics of naturally existing iron-based nanostructures, especially hematite and magnetite nanoparticles (H-NPs and M-NPs), gained significant research interest in various applications, recently. The main purpose of this Review is to provide an overview of the utilization of H-NPs and M-NPs in various environmental remediation. Iron-based NPs are extensively explored to generate green energy from environmental friendly processes such as water splitting and CO2 conversion to hydrogen and low molecular weight hydrocarbons, respectively. The latter part of the Review provided a critical overview to use H-NPs and M-NPs for the detection and decontamination of inorganic and organic contaminants to counter the environmental pollution and toxicity challenge, which could ensure environmental sustainability and hygiene. Some of the future perspectives are comprehensively presented in the final portion of the script, optimiztically, and it is supported by some relevant literature surveys to predict the possible routes of H-NPs and M-NPs modifications that could enable researchers to use these NPs in more advanced environmental applications. The literature collection and discussion on the critical assessment of reserving the environmental sustainability challenges provided in this Review will be useful not only for experienced researchers but also for novices in the field.
Collapse
Affiliation(s)
- Muhammad Ashraf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Khan
- Center of Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Usman
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abuzar Khan
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Zeeshan Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Saeed
- Department of Chemistry, Bacha Khan University, Charsadda, Pakhtunkhwa 24631, Pakistan
| | - Muhammad Yaseen
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Punjab 54590, Pakistan
| | - Muhammad Fahad Ehsan
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, 1250 Grand Lake Road, Sydney B1P 6L2, Nova Scotia, Canada
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Li J, Dou X, Qin H, Sun Y, Yin D, Guan X. Characterization methods of zerovalent iron for water treatment and remediation. WATER RESEARCH 2019; 148:70-85. [PMID: 30347277 DOI: 10.1016/j.watres.2018.10.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Appropriately selecting methods for characterizing the reaction system of zerovalent iron (ZVI) favors its application for water treatment and remediation. Hence, a survey of the available ZVI characterization techniques used in laboratory and field studies are presented in this review for clarifying the characteristic properties, (in-situ) corrosion processes, and corrosion products of ZVI system. The methods are generally classified into four broad categories: morphology characterization techniques, (sub-)surface and bulk analysis mainly via the spectral protocols, along with the (physio)electrochemical alternatives. Moreover, this paper provides a critical review on the scopes and applications of ZVI characterization methodologies from several perspectives including their suitable occasions, availability, (semi-)quantitative/qualitative evaluations, in/ex-situ reaction information, advantages, limitations and challenges, as well as economic and technical remarks. In particular, the characteristic spectroscopic peak locations of typical iron (oxyhydr)oxides are also systematically summarized. In view of the complexity and variety of ZVI system, this review further addresses that different characterization methods should be employed together for better assessing the performance and mechanisms of ZVI-involved systems and thereby facilitating the deployment of ZVI-based installations in real practice.
Collapse
Affiliation(s)
- Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Xiaomin Dou
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, PR China
| | - Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Daqiang Yin
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Yangtze Water Environment of Ministry of the State Education, Tongji University, Shanghai, 200092, PR China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
7
|
Rezaei F, Vione D. Effect of pH on Zero Valent Iron Performance in Heterogeneous Fenton and Fenton-Like Processes: A Review. Molecules 2018; 23:E3127. [PMID: 30501042 PMCID: PMC6320765 DOI: 10.3390/molecules23123127] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/07/2022] Open
Abstract
Heterogeneous Fenton processes with solid catalysts have gained much attention for water and wastewater treatment in recent years. In the field of solid catalysts, zero valent iron (ZVI) is among the most applicable due to its stability, activity, pollutant degradation properties and environmental friendliness. The main limitation in the use of ZVI in heterogeneous Fenton systems is due to its deactivation in neutral and alkaline conditions, and Fenton-like processes have been developed to overcome this difficulty. In this review, the effect of solution pH on the ZVI-Fenton performance is discussed. In addition, the pH trend of ZVI efficiency towards contaminants removal is also considered in oxic solutions (i.e., in the presence of dissolved O₂ but without H₂O₂), as well as in magnetic-field assisted Fenton, sono-Fenton, photo-Fenton and microwave-Fenton processes at different pH values. The comparison of the effect of pH on ZVI performance, taking into account both heterogeneous Fenton and different Fenton-like processes, can guide future studies for developing ZVI applications in water and wastewater treatment.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 46414356, Iran.
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, I-10125 Turin, Italy.
| |
Collapse
|
8
|
Ourique MF, Sousa PVF, Oliveira AF, Lopes RP. Comparative study of the direct black removal by Fe, Cu, and Fe/Cu nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28928-28941. [PMID: 30109676 DOI: 10.1007/s11356-018-2842-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/08/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, direct black dye removal was investigated using iron nanoparticles (Fe NPs), copper (Cu NPs), and Fe/Cu (Fe/Cu NPs). NPs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Using a dose of 0.25 g L-1 of Fe, Cu, and Fe/Cu NPs, a degradation efficiency of 13, 26, and 43% respectively was obtained. For the 1.00 g L-1 dose, the efficiency increased to 100, 43, and 100%, respectively. Studies in anoxic and oxic conditions presented degradation rates, respectively, of 100 and 30% for Fe NPs, 90 and 50% for Fe/Cu NPs, and 40% in both reactions for Cu NPs, indicating that the mechanism of dye degradation by NPs is predominantly reducing under the conditions studied. The addition of EDTA decreased the dye removal rate for Fe, Cu, and Fe/Cu NPs at 27, 10, and 35%, respectively. In addition to the degradation, the adsorption phenomena of the by-products formed during the reaction were confirmed by the Fourier transform infrared (FTIR) analysis and verified by the desorption tests. Fe and Fe/Cu NPs showed the highest efficiency in direct black dye reductive degradation and adsorption of by-products, removing 100% of the dye at a dose of 1 g L-1 within 10 min of reaction. Graphical abstracts ᅟ.
Collapse
Affiliation(s)
- Mariane F Ourique
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Paloma V F Sousa
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - André F Oliveira
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Renata P Lopes
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
9
|
|
10
|
Hamdy A, Mostafa MK, Nasr M. Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:367-378. [PMID: 30101772 DOI: 10.2166/wst.2018.306] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/28/2023]
Abstract
Nanoscale zero-valent iron (nZVI) particles were investigated for the removal of methylene blue (MB) from aqueous solutions and the treatment of textile industry effluents. The nZVI material was characterized by XRD, TEM, EDS, FTIR, and SEM. It was demonstrated that several functional groups such as C-H, C = C, C-C, and C-O contributed to MB reduction. At initial MB concentration of 70 mg/L, the optimum pH was 6, achieving a removal efficiency of 72.1% using an nZVI dosage of 10 g/L, stirring rate of 150 rpm, and temperature of 30 °C within 30 min. The adsorption isotherm was described by the Langmuir model with monolayer coverage of 5.53 mg/g, and the Freundlich equation with multilayer adsorption capacity of 1.59 (mg/g)·(L/mg)1/n. The removal mechanisms of MB included reduction into colorless leuco-MB, precipitation as Fe(II)-MB, adsorption as ZVI-MB or FeOOH-MB, and/or degradation using •OH radicals. The synthesized nZVI particles were applied to reduce various organic and inorganic compounds, as well as heavy metal ions from real textile wastewater samples. The removal efficiencies of COD, BOD, TN, TP, Cu2+, Zn2+, and Pb2+ reached up to 91.9%, 87.5%, 65.2%, 78.1%, 100.0%, 29.6%, and 99.0%, respectively. The treatment cost of 1 m3 of textile wastewater was estimated as 1.66 $USD.
Collapse
Affiliation(s)
- Ahmed Hamdy
- Sanitary and Environmental Engineering Research Institute, Housing and Building National Research Center, Giza, Egypt
| | - Mohamed K Mostafa
- Environmental Engineering Program, Zewail City of Science and Technology, 6th October City, Giza, Egypt E-mail:
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt
| |
Collapse
|
11
|
Yu L, Qiu Y, Yu Y, Wang S. Reductive decolorization of azo dyes via in situ generation of green tea extract-iron chelate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17300-17309. [PMID: 29651730 DOI: 10.1007/s11356-018-1907-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/01/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
In this study, rapid decolorization of azo dyes was achieved by in situ-generated green tea extract-iron (GTE-Fe) chelate for the first time. When changing reaction conditions from the aerobic condition to the anaerobic condition, the decolorization efficiencies of two azo dyes, i.e., acid orange 7 (AO7) and acid black 1 (AB1), increased from 46.38 and 83.17 to 90.13 and 95.37%, respectively. The recalcitrant AO7 was then selected as the targeting pollutant in subsequent optimization and mechanism studies. Experimental evidences showed that the initial concentrations of AO7, Fe(III), and GTE are the key factors to optimize the decolorization efficiency. Further characterization studies by spectroscopic analysis, including FESEM, FTIR, and XPS, suggested that the major mechanism of AO7 decolorization is the nucleophilic attack of the oxygen in green tea polyphenols (GTP), and this attack could be facilitated by the organometal chelation. This study provided an efficient and environmental friendly strategy to decolorize azo dyes via in situ generation of the GTE-Fe chelate, as well as its mechanistic insights, shedding lights on in situ remediation of azo dye pollution. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Yewen Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
- Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Reactivity of carbonized fungi supported nanoscale zero-valent iron toward U(VI) influenced by naturally occurring ions. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|