1
|
Rahim HU, Allevato E, Stazi SR. Sulfur-functionalized biochar: Synthesis, characterization, and utilization for contaminated soil and water remediation-a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122670. [PMID: 39366224 DOI: 10.1016/j.jenvman.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The development of innovative, eco-friendly, and cost-effective adsorbents is crucial for addressing the widespread issue of organic and inorganic pollutants in soil and water. Recent advancements in sulfur reagents-based materials, such as FeS, MoS2, MnS, S0, CS2, Na2S, Na2S2O32-, H2S, S-nZVI, and sulfidated Fe0, have shown potential in enhancing the functional properties and elemental composition of biochar for pollutant removal. This review explores the synthesis and characterization of sulfur reagents/species functionalized biochar (S-biochar), focusing on factors like waste biomass attributes, pyrolysis conditions, reagent adjustments, and experimental parameters. S-biochar is enriched with unique sulfur functional groups (e.g., C-S, -C-S-C, C=S, thiophene, sulfone, sulfate, sulfide, sulfite, elemental S) and various active sites (Fe, Mn, Mo, C, OH, H), which significantly enhance its adsorption efficiency for both organic pollutants (e.g., dyes, antibiotics) and inorganic pollutants (e.g., metal and metalloid ions). The literature analysis reveals that the choice of feedstock, influenced by its lignocellulosic content and xylem structure, critically impacts the effectiveness of pollutant removal in soil and water. Pyrolysis parameters, including temperature (200-600 °C), duration (2-10 h), carbon-to-hydrogen (C:H) and oxygen-to-hydrogen (O:H) ratios in biochar, as well as the biochar-to-sulfur reagent modification ratio, play key roles in determining adsorption performance. Additionally, solution pH (2-8) and temperature (288, 298, and 308 K) affect the efficiency of pollutant removal, though optimal dosages for adsorbents remain inconsistent. The primary removal mechanisms involve physisorption and chemisorption, encompassing adsorption, reduction, degradation, surface complexation, ion exchange, electrostatic interactions, π-π interactions, and hydrogen bonding. This review highlights the need for further research to optimize synthesis protocols and to better understand the long-term stability and optimal dosage of S-biochar for practical environmental applications.
Collapse
Affiliation(s)
- Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
2
|
Mubarak AA, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM. Recent developments in sugarcane bagasse fibre-based adsorbent and their potential industrial applications: A review. Int J Biol Macromol 2024; 277:134165. [PMID: 39059537 DOI: 10.1016/j.ijbiomac.2024.134165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In recent years, there has been an increase in research devoted to the advancement of cellulose and nanocellulose-based materials, which are advantageous due to their renewable nature, strength, rigidity, and environmental friendliness. This exploration complies with the fundamental tenets of environmental stewardship and sustainability. An area of industrial biotechnology where cellulosic agricultural residues have the potential to be economically utilized is through the conversion of such residues; sugarcane bagasse is currently leading this charge. SCB, a plentiful fibrous byproduct produced during the sugarcane industry's operations, has historically been utilized in various sectors, including producing paper, animal feed, enzymes, biofuel conversion, and biomedical applications. Significantly, SCB comprises a considerable amount of cellulose, approximately 40 % to 50 %, rendering it a valuable source of cellulose fibre for fabricating cellulose nanocrystals. This review sheds light on the significant advances in surface modification techniques, encompassing physical, chemical, and biological treatments, that enhance sugarcane bagasse fibres' adsorption capacity and selectivity. Furthermore, the paper investigates the specific advancements related to the augmentation of sugarcane bagasse fibres' efficacy in adsorbing a wide range of pollutants. These pollutants span a spectrum that includes heavy metals, dyes, organic pollutants, and emerging contaminants. The discussion provides a comprehensive overview of the targeted removal processes facilitated by applying modified fibres. The unique structural and chemical properties inherent in sugarcane bagasse fibres and their widespread availability position them as highly suitable adsorbents for various pollutants. This convergence of attributes underscores the potential of sugarcane bagasse fibres in addressing environmental challenges and promoting sustainable solutions across multiple industries.
Collapse
Affiliation(s)
- Asmaa Ali Mubarak
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Faculty of Science and Arts, Badr, University Zintan, Libya
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia.
| | - M F M Alkbir
- Advanced Facilities Engineering Technology Research Cluster, Malaysian Institute of Industrial Technology (MITEC), University Kuala Lumpur, Malaysia; Plant Engineering Technology (PETech), UniKL Malaysian Institute of Industrial Technology (MITEC), Persiaran Sinaran Ilmu, Johor Darul Takzim, Malaysia
| |
Collapse
|
3
|
Kumar Mondal A, Hinkley C, Kondaveeti S, Vo PHN, Ralph P, Kuzhiumparambil U. Influence of pyrolysis time on removal of heavy metals using biochar derived from macroalgal biomass (Oedogonium sp.). BIORESOURCE TECHNOLOGY 2024; 414:131562. [PMID: 39357609 DOI: 10.1016/j.biortech.2024.131562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
In this study, pyrolysis was performed at different times to convert Oedogonium biomass into biochar. The physicochemical properties show that the pyrolysis time significantly impacts structural and morphological changes in biochar samples. The influence of pyrolysis time on the removal of multiple heavy metals was investigated. Owing to the presence of abundant functional groups, inorganic minerals and porous nature, biochar obtained from a 40 min pyrolysis time showed higher removal efficiency of heavy metals compared to biochars pyrolyzed at 20 mins and 60 mins even with higher concentrations of metal ions. The maximum adsorption capacity was observed 9.33, 10.74, 322.58, 13.70 and 9.11 mg/g with the biochar prepared at the pyrolysis time of 40 mins for Co, Ni, Cu, Zn and Cd, respectively. The adsorption isotherm is well fitted with the Langmuir adsorption model for heavy metals adsorption, and the kinetic study is well-defined by a pseudo second-order model.
Collapse
Affiliation(s)
- Anjon Kumar Mondal
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Cora Hinkley
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Stalin Kondaveeti
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Phong H N Vo
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | |
Collapse
|
4
|
Zhao X, Yang M, Shi Y, Sun L, Zheng H, Wu M, Gao G, Ma T, Li G. Multifunctional bacterial cellulose-bentonite@polyethylenimine composite membranes for enhanced water treatment: Sustainable dyes and metal ions adsorption and antibacterial properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135267. [PMID: 39047552 DOI: 10.1016/j.jhazmat.2024.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Developing multifunctional materials for water treatment remains a significant challenge. Bacterial cellulose (BC) holds immense potential as an adsorbent with high pollutant-binding capacity, hydrophilicity, and biosafety. In this study, N-acetylglucosamine was used as a carbon source to ferment BC, incorporating amide bonds in situ. Bentonite, renowned for its adsorption properties, was added to the culture medium, resulting in BC-bentonite composite membranes via a one-step fermentation process. Polyethyleneimine (PEI) was crosslinked with amide bonds on the membrane via glutaraldehyde through Schiff base reactions to enhance the performance of the composite membrane. The obtained membrane exhibited increased hydrophilicity, enhanced active adsorption sites, and enlarged specific surface area. It not only physically adsorbed contaminants through its unique structure but also effectively captured dye molecules (Congo red, Methylene blue, Malachite green) via electrostatic interactions. Additionally, it formed stable complexes with metal ions (Cd²⁺, Pb²⁺, Cu²⁺) through coordination and effectively adsorbed their mixtures. Moreover, the composite membrane demonstrated the broad-spectrum antibacterial activity, effectively inhibiting the growth of tested bacteria. This study introduces an innovative method for fabricating composite membranes as adsorbents for complex water pollutants, showing significant potential for long-term wastewater treatment of organic dyes, heavy metal ions, and pathogens.
Collapse
Affiliation(s)
- Xueqing Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingbo Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yucheng Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liyuan Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haolong Zheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
5
|
Nie W, Che Q, Chen D, Cao H, Deng Y. Comparative Study for Propranolol Adsorption on the Biochars from Different Agricultural Solid Wastes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2793. [PMID: 38930162 PMCID: PMC11204899 DOI: 10.3390/ma17122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Currently, large amounts of agricultural solid wastes have caused serious environmental problems. Agricultural solid waste is made into biochar by pyrolysis, which is an effective means of its disposal. As the prepared biochar has a good adsorption capacity, it is often used to treat pollutants in water, such as heavy metals and pharmaceuticals. PRO is an emerging contaminant in the environment today. However, there are limited studies on the interaction between biochars with PRO. Thus, in this study, we investigate the adsorption of PRO onto the biochars derived from three different feedstocks. The order of adsorption capacity was corn stalk biochar (CS, 10.97 mg/g) > apple wood biochar (AW, 10.09 mg/g) > rice husk biochar (RH, 8.78 mg/g). When 2 < pH < 9, the adsorption capacity of all the biochars increased as the pH increased, while the adsorption decreased when pH > 9, 10 and 10.33 for AW, CS and RH, respectively. The adsorption of PRO on biochars was reduced with increasing Na+ and Ca2+ concentrations from 0 to 200 mg·L-1. The effects of pH and coexisting ions illustrated that there exist electrostatic interaction and cation exchange in the process. In addition, when HA concentration was less than 20 mg/L, it promoted the adsorption of PRO on the biochars; however, when the concentration was more than 20 mg/L, its promoting effect was weakened and gradually changed into an inhibitory effect. The adsorption isotherm data of PRO by biochars were best fitted with the Freundlich model, indicating that the adsorption process is heterogeneous adsorption. The adsorption kinetics were fitted well with the pseudo-second-order model. All the results can provide new information into the adsorption behavior of PRO and the biochars in the aquatic environment and a theoretical basis for the large-scale application of biochar from agricultural solid wastes.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| | - Qianqian Che
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Danni Chen
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Hongyu Cao
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Yuehua Deng
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| |
Collapse
|
6
|
Liu Y, Bao H, Chen C, Cao W, Zhang X, Xu Y, Ngo HH, Liu Q. Recovery of biochar particles laden with lead in saturated porous media by DC electric field. CHEMOSPHERE 2024; 355:141890. [PMID: 38575085 DOI: 10.1016/j.chemosphere.2024.141890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The co-transport behavior of environmental pollutants with biochar particles has aroused great interests from researchers due to the concerns about pollutant diffusion and environmental exposure after biochar is applied to soil. In this work, the recovery and co-transport behavior of biochar micron-/nano-particles (BCMP and BCNP) and lead (Pb2+) in saturated porous media were investigated under different ionic strength conditions (IS = 1, 5 and 10 mM) under a direct current electric field. The results showed that the electric field could significantly enhance the mobility of Pb adsorbed biochar particles, particularly BCNP. The recovery of Pb laden biochar particles was improved by 1.8 folds, reaching 78.8% at maximum under favorable condition at +0.5 V cm-1. According to the CDE (Convection-Dispersion-Equation) model and DLVO (Derjaguin-Landau-Verwey-Overbeek) theory analysis, the electric field facilitated the transport of Pb carried biochar mainly by increasing the negative charges on biochar surface and improving the repulsive force between biochar and porous media. High IS was favorable for biochar transport under the electric field, but inhibited desorbing Pb2+ from biochar (18% by maximum at IS = 10 mM). By switching the electric field power, a two-stage strategy was established to maximize the recovery of both biochar particles and Pb, where BCNP and Pb recovery were higher than electric field free case by 90% and 35%, respectively. The findings of this study can help build a biochar recovery approach to prevent potential risks from biochar application in heavy metal contaminated soil remediation.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Hongjia Bao
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Chen Chen
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Weimin Cao
- College of Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China.
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
7
|
Faheem M, Hassan MA, Mehmood T, Al-Misned F, Niazi NK, Bao J, Du J. Super capacity of ligand-engineered biochar for sorption of malachite green dye: key role of functional moieties and mesoporous structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26019-26035. [PMID: 38492145 DOI: 10.1007/s11356-024-32897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
This study synthesized a new thiomalic acid-modified rice husk biochar (TMA-BC) as a versatile and eco-friendly sorbent. After undergoing chemical treatments, the mercerized rice husk biochar (NaOH-BC) and TMA-BC samples showed higher BET surface area values of 277.1 m2/g and 305.8 m2/g, respectively, compared to the pristine biochar (BC) sample, which had a surface area of 234.2 m2/g. In batch adsorption experiments, it was found that the highest removal efficiency for malachite green (MG) was achieved with TMA-BC, reaching 96.4%, while NaOH-BC and BC exhibited removal efficiencies of 38.6% and 27.9%, respectively, at pH 8. The engineered TMA-BC exhibited a super adsorption capacity of 104.17 mg/g for MG dye at pH 8.0 and 25 °C with a dosage of 2 g/L. The SEM, TEM, XPS, and FTIR spectroscopy analyses were performed to examine mesoporous features and successful TMA-BC carboxylic and thiol functional groups grafting on biochar. Electrostatic forces, such as π - π interactions, hydrogen bonding, and pore intrusion, were identified as key factors in the sorption of MG dye. As compared to single-solution adsorption experiments, the binary solution experiments performed at optimized dosages of undesired ions, such as humic acid, sodium dodecyl sulfate surfactant, NaCl, and NaSCN, reflected an increase in MG dye removal of 2.8%, 8.7%, 5.4%, and 12.7%, respectively, which was attributed to unique mesoporous features and grafted functional groups of TMA-BC. Furthermore, the TMA-BC showed promising reusability up to three cycles. Our study indicates that mediocre biochar modified with TMA can provide an eco-friendly and cost-effective alternative to commercially accessible adsorbents.
Collapse
Affiliation(s)
- Muhammad Faheem
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Muhammad Azher Hassan
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tariq Mehmood
- Department of Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Jianguo Bao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Jiangkun Du
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
8
|
Fauzia S, Aziz H, Dahlan D, Dahnum D, Zein R. A facile-treated sago bark ( Metroxylon sagu) as a biosorbent for Cd(II) ions removal in aqueous solution by using the batch method. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:393-404. [PMID: 37567862 DOI: 10.1080/15226514.2023.2245053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The performance of sago bark for Cd(II) ions removal in the aqueous solution has been investigated using the batch method. The sago bark was facile-treated using HNO3 0.01 M and its ability on Cd(II) removal was evaluated under specific parameters such as pH, contact time, agitation speed, temperature, initial concentration, and adsorbent mass. The adsorption capacity of sago bark was found to be 2.473 mg/g. The Langmuir isotherm model corresponding to the monolayer adsorption process described the adsorption data well. The kinetic and thermodynamic evaluation confirmed that the Cd(II) ion sorption followed a pseudo-second-order model and endothermic. The adsorption capacity decreased after three times adsorption-desorption cycles. This result showed that the treated sago bark could be a good candidate as an adsorbent for Cd(II) removal.
Collapse
Affiliation(s)
- Syiffa Fauzia
- Research Centre for Chemistry, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia
| | - Hermansyah Aziz
- Laboratory of Physical Chemistry, Department of Chemistry, Andalas University, Padang, Indonesia
| | - Dahyunir Dahlan
- Laboratory of Material and Structure, Department of Physics, Andalas University, Padang, Indonesia
| | - Deliana Dahnum
- Research Centre for Chemistry, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia
| | - Rahmiana Zein
- Laboratory of Analytical Environmental Chemistry, Department of Chemistry, Andalas University, Padang, Indonesia
| |
Collapse
|
9
|
Chormare R, Moradeeya PG, Sahoo TP, Seenuvasan M, Baskar G, Saravaia HT, Kumar MA. Conversion of solid wastes and natural biomass for deciphering the valorization of biochar in pollution abatement: A review on the thermo-chemical processes. CHEMOSPHERE 2023; 339:139760. [PMID: 37567272 DOI: 10.1016/j.chemosphere.2023.139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
This overview addresses the formation of solid trash and the various forms of waste from a variety of industries, which environmentalists have embraced. The paper investigates the negative effects on the environment caused by unsustainable management of municipal solid trash as well as the opportunities presented by the formal system. This examination looks at the origins of solid waste as well as the typical treatment methods. Pyrolysis methods, feedstock pyrolysis, and lignocellulosic biomass pyrolysis were highlighted. Explain in detail the various thermochemical processes that take place during the pyrolysis of biomass. Due to its carbon content, low cost, accessibility, ubiquitousness, renewable nature, and environmental friendliness, biomass waste is a unique biochar precursor. This study looks at the different types of biomass waste that are available for treating wastewater. This study discussed a wide variety of reactors. Adsorption is the standard method that is used the most frequently to remove hazardous organic, dye, and inorganic pollutants from wastewater. These pollutants cause damage to the environment and water supplies, thus it is important to remove them. Adsorption is both simple and inexpensive to utilize. Temperature-dependent conversions explain the kinetic theories of biomaterial biochemical degradation. This article presents a review that explains how pyrolytic breakdown char materials can be used to reduce pollution and improve environmental management.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Tarini Prasad Sahoo
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641 032, Tamil Nadu, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600 119, Tamil Nadu, India
| | - Hitesh T Saravaia
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| | - Madhava Anil Kumar
- Centre for Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
10
|
Jiang W, Li D, Yang J, Ye Y, Luo J, Zhou X, Yang L, Liu Z. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: Passivation behavior and mechanism for Cd (II) in composting. ENVIRONMENTAL RESEARCH 2023; 231:116306. [PMID: 37268202 DOI: 10.1016/j.envres.2023.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Passivation of heavy metals is one of the most efficient techniques to improve the quality of compost. Many studies confirmed the passivation effect of passivators (e.g., zeolite and calcium magnesium phosphate fertilizer) on cadmium (Cd), but passivators with single component could not effectively passivate Cd in the long-term operation of composting. In the present study, a combined passivator of zeolite and calcium magnesium phosphate fertilizer (ZCP) was used to explore its impacts of adding at different composting periods (heating period, thermophilic period, cooling period) on the Cd control, compost quality (e.g., temperature, moisture content and humification), microbial community structure as well as the compost available forms of Cd and addition strategy of ZCP. Results showed that Cd passivation rate could be increased by 35.70-47.92% under all treatments in comparison to the control treatment. By altering bacterial community structure, reducing Cd bioavailability and improving the chemical properties of the compost, the combined inorganic passivator could achieve high efficiency for Cd passivation. To sum up, the addition of ZCP at different composting periods has effects on the process and quality of composting, which could provide ideas for the optimization of the passivators addition strategy.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Junlin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Jiwu Luo
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Xiaojuan Zhou
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Lin Yang
- Wuhan Huantou Solid Waste Operation Co., Ltd, No. 37 Xinye Road, Wuhan, 430024, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8 Donghu South Road, Wuhan, 430072, China
| |
Collapse
|
11
|
Qi WY, Chen H, Wang Z, Xing SF, Song C, Yan Z, Wang SG. Biochar-immobilized Bacillus megaterium enhances Cd immobilization in soil and promotes Brassica chinensis growth. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131921. [PMID: 37406520 DOI: 10.1016/j.jhazmat.2023.131921] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Phosphate solubilizing bacteria (PSB) has been considered an environmental-friendly phosphate fertilizer without cadmium (Cd) input into soils, but its possibility of Cd fixation in soil needs to be explored. Since direct inoculation results in a rapid decline of the population and activity, we immobilized Bacillus megaterium with maize straw biochar (B-PSB) and investigated its feasibility in remediating Cd-contaminated soil. Pot experiments showed that the application of B-PSB significantly ameliorated the growth of Brassica chinensis under Cd stress, with a fresh weight increased by 59.08% compared to the Cd-control. B-PSB reduced Cd accumulation in Brassica chinensis by 61.69%, and promoted the uptake of P and N by 134.97% and 98.71% respectively. Microbial community analysis showed B-PSB recruited more plant growth-promoting bacteria in near-rhizosphere soil, which provides a favorable microenvironment for both PSB and crops. Column leaching experiments verified that B-PSB achieved the dissolution of stable P while fixing Cd. Batch tests further revealed that biochar served as a successful carrier facilitating the growth of B. megaterium and Cd immobilization. Given the widespread Cd contamination in agricultural soils, our results indicate that B-PSB is a promising soil amendment to secure food safety.
Collapse
Affiliation(s)
- Wen-Yu Qi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hui Chen
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Zhe Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1B 3×5, NL, Canada
| | - Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Simsek EB, Saloglu D, Aydın AA. Investigation of adsorption and biosorption features of bio-functionalized poly(GMA-Co-EGDMA) polymer beads in the treatment of nicotine from tobacco industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65801-65821. [PMID: 37093383 DOI: 10.1007/s11356-023-26938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The investigation of multifunctional materials for modern enzyme immobilization is an attractive subject in advanced adsorption and biosorption applications. In the present study, the feasibility of immobilization of Lipozyme TL 100L (LPZM) on 3-aminopropyltriethoxysilane (APTES) modified poly-(GMA-co-EGDMA) (PEGDMA) was investigated for adsorption and biosorption of nicotine from aqueous solution. Characterization tests confirmed successful immobilization of lipozyme which significantly altered thermal behavior, surface characteristics, and surface morphology of PEGDMA and PEGDMA/APTES. In addition, the immobilization yields were calculated as 85.0% and 72.0% onto PEGDMA/APTES using physical adsorption and covalent immobilization methods, respectively. The nicotine removal efficiencies were calculated to be 66.4%, 79.0%, 98.9%, and 85.7%, using raw PEGDMA, PEGDMA/APTES, PEGDMA/APTES@LPZM, and PEGDMA/APTES/GU@LPZM, respectively. For the raw PEGDMA, the Langmuir isotherm was best fitted to the adsorption data, while Langmuir-Freundich model described well the adsorption process on PEGDMA/APTES and PEGDMA/APTES@LPZM. The maximum adsorption capacities of Langmuir-Freundlich model increased from 8.118 to 17.32 mg/g after enzyme immobilization. The negative enthalpy value, ΔH° (- 10.37 kJ/mol), revealed that the nicotine adsorption on PEGDMA/APTES@LPZM was exothermic in nature, which was corroborated by the decrease observed in the number of adsorbed molecules with increasing temperature. In the kinetic experiments, the adsorption on PEGDMA and PEGDMA/APTES@LPZM reached equilibrium with the removal percentages as 66.4% and 98.9% at the end of 3 h, respectively. The nicotine adsorption performances in real water matrices were also investigated, and PEGDMA/APTES@LPZM showed satisfactory reusability with removal percentage decreased from 98.9% (1st cycle) to 83.0% (6th cycle).
Collapse
Affiliation(s)
- Esra Bilgin Simsek
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Didem Saloglu
- Disaster and Emergency Management Department, Disaster Management Institute, Istanbul Technical University, Istanbul, Turkey.
| | - Ahmet Alper Aydın
- Chemical Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
13
|
Zia-Ur-Rehman M, Bani Mfarrej MF, Usman M, Azhar M, Rizwan M, Alharby HF, Bamagoos AA, Alshamrani R, Ahmad Z. Exogenous application of low and high molecular weight organic acids differentially affected the uptake of cadmium in wheat-rice cropping system in alkaline calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121682. [PMID: 37094734 DOI: 10.1016/j.envpol.2023.121682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Anthropogenic cadmium (Cd) in arable soils is becoming a global concern due to its harmful effects on crop yield and quality. The current study examined the role of exogenously applied low molecular weight organic acids (LMWOAs) including oxalic acid (OxA), tartaric acid (TA) and high molecular weight organic acids (HMWOAs) like citric acid (CA) and humic acid (HA) for the bioavailability of Cd in wheat-rice cropping system. Maximum increase in root dry-weight, shoot dry-weight, and grain/paddy yields was recorded with HA for both crops. The HA significantly decreased AB-DTPA Cd in contaminated soils which remained 41% for wheat and 48% for rice compared with their respective controls. The minimum concentration of Cd in roots, shoots and grain/paddy was observed in HA treatment in both crops. The organic acids significantly increased the growth parameters, photosynthetic activity, and relative leaf moisture contents for both wheat and rice crops compared to that with the contaminated control. Application of OxA and TA increased the bioavailability of Cd in soils and plant tissues while CA and HA decreased the bioavailability of Cd in soils and plants. The highest decrease in Cd uptake, bioaccumulation, translocation factor, immobilization, translocation, harvest, and health risk indices were observed with HA while maximum increase was recorded with OxA for both wheat and rice. The results concluded that use of HMWOAs is effective in soil Cd immobilization being maximum with HA. While LMWOAs can be used for the phytoextraction of Cd in contaminated soils having maximum potential with OxA.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Azhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan; Engro Fertilizers Limited 19-a, 4th Floor, Ali Block, New Garden Town, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Punjab, Pakistan.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Zahoor Ahmad
- University of Central Punjab, Constituent College, Yazman Road, Bahawalpur, 63100, Pakistan
| |
Collapse
|
14
|
Abolfazli Behrooz B, Oustan S, Mirseyed Hosseini H, Etesami H, Padoan E, Magnacca G, Marsan FA. The importance of presoaking to improve the efficiency of MgCl 2-modified and non-modified biochar in the adsorption of cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114932. [PMID: 37080130 DOI: 10.1016/j.ecoenv.2023.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Investigating the effect of presoaking, as one of the most important physical factors affecting the adsorption behavior of biochar, on the adsorption of heavy metals by modified or non-modified biochar and presoaking mechanism is still an open issue. In this study, the water presoaking effect on the kinetics of cadmium (Cd) adsorption by rice husk biochar (produced at 450 °C, B1, and at 600 °C, B2) and the rice husk biochar modified with magnesium chloride (B1 modified with MgCl2, MB1, and B2 modified with MgCl2, MB2) was investigated. Furthermore, the effect of pH (2, 5, and 6), temperature (15, 25, and 35 °C), and biochar particle size (100 and 500 µm) on the kinetics of Cd adsorption was also investigated. Results revealed that the content of Cd adsorbed by the presoaked biochar was significantly higher than that by the non-presoaked biochar. The highest Cd adsorption capacity of MB2 and MB1 was 98.4 and 97.6 mg g-1, respectively, which was much better than that of B1 (7.6 mg g-1) and B2 (7.5 mg g-1). The modeling of kinetics results showed that in all cases pseudo-second-order model was well-fitted (R2>0.99) with Cd adsorption data. The results also indicated that the highest Cd adsorption values were observed at pH 6 in presoaked MB1 with size of 100 µm as well as at the temperature of 35 °C in presoaked MB2, indicating the optimum conditions for this process. The presoaking process was not affected by biochar size and pH, and the difference in adsorbed Cd content between presoaked biochars and non-presoaked ones was also similar. However, the temperature had a negative effect on presoaking. The presoaking process decreased micropores (<10 µm) in the biochars but had no effect on biochar hydrophobicity. Therefore, presoaking, which could significantly increase Cd adsorption and reduce equilibrium time by reducing the micropores of biochars, is suggested as an effective strategy for improving the efficiency of modified biochars or non-modified ones in the adsorption of contaminants (Cd) from aquatic media.
Collapse
Affiliation(s)
- Bahram Abolfazli Behrooz
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Shahin Oustan
- Soil Science Department, Agricultural Faculty, University of Tabriz, Iran
| | - Hossein Mirseyed Hosseini
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Elio Padoan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, TO, Italy
| | - Giuliana Magnacca
- Dipartimento di chimica, Università degli Studi di Torino, Torino, Italy
| | - Franco Ajmone Marsan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, TO, Italy
| |
Collapse
|
15
|
Zong Y, Wang X, Zhang H, Li Y, Yu J, Wang C, Cai Z, Wei J, Ding L. Preparation of a ternary composite based on water caltrop shell derived biochar and gelatin/alginate for cadmium removal from contaminated water: Performances assessment and mechanism insight. Int J Biol Macromol 2023; 234:123637. [PMID: 36775227 DOI: 10.1016/j.ijbiomac.2023.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
A ternary composite (SA/GE@BC) for cadmium removal from wastewater was successfully prepared. The alginate and gelatin were successfully impregnated with biochar (derived from water caltrop shell) to improve the recyclability and adsorption capacity. The prepared SA/GE@BC demonstrated a good removal for cadmium at pH 4.0-7.0 conditions. The cadmium removal increased with increasing SA/GE@BC dosage. The adsorption kinetics process was well consistent with the pseudo-second order model. And the Langmuir model (R2 > 0.99) best described the isotherm data. The calculated adsorption capacity reached a maximum of 86.25 mg/g. The adsorption was a spontaneous and endothermic process, and elevating temperature favored the removal of cadmium. The alginate-gelatin composition enhanced the number of oxygenated functional groups and exchangeable ions. This enhanced the removal of cadmium by complexation and cation ion exchange. Also, the removal mechanism of cadmium on SA/GE@BC involved electrostatic attraction and π-bond coordination. The saturated SA/GE@BC could be well regenerated by 0.1 M HNO3. All these results suggested the preparation of SA/GE@BC could effectively use waste resources to produce highly effective adsorbents for removing cadmium from contaminated water.
Collapse
Affiliation(s)
- Yiming Zong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Xinxiang Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Hao Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Jian Yu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Chen Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Zhantao Cai
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Jincheng Wei
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
16
|
Liu Y, Wang L, Liu C, Ma J, Ouyang X, Weng L, Chen Y, Li Y. Enhanced cadmium removal by biochar and iron oxides composite: Material interactions and pore structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117136. [PMID: 36584474 DOI: 10.1016/j.jenvman.2022.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored. The synergistic effect of the BC-FH composite significantly improved its Cd adsorption capacity. The adsorption efficiencies of BC-FH and BC-GT increased by 15.0% and 10.8%, respectively, compared with that of uncombined BC, FH, and GT. The strong Cd adsorption by BC-FH was attributed to stable interactions and stereoscopic pore filling between BC and FH. The scanning electron microscopy results showed that FH particles entered the BC pores, whereas GT particles were loaded onto the BC surface. FTIR spectroscopy showed that GT covered a larger area of the BC surface than FH. After loading FH and GT, BC porosities decreased by 9.3% and 4.1%, respectively. Quantum chemical calculations and independent gradient mode analysis showed that van der Waals interactions, H-bonds, and covalent-like interactions maintained stability between iron minerals and BC. Additionally, humic acid increased the agglomeration of iron oxides and formed larger particles, causing additional aggregates to load onto the BC surface instead of entering the BC pores. Our results provide theoretical support to reveal the interfacial behavior of BC-iron mineral composites in soil and provide a reference for field applications of these materials for pollution control and environmental remediation.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Long Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Chang Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi, 341000, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
17
|
Moon S, Ryu J, Hwang J, Lee CG. Efficient removal of dyes from aqueous solutions using short-length bimodal mesoporous carbon adsorbents. CHEMOSPHERE 2023; 313:137448. [PMID: 36462564 DOI: 10.1016/j.chemosphere.2022.137448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Ordered mesoporous carbons (OMCs) with controlled mesopore lengths and volumes were synthesized and investigated to remove the model dye methylene blue (MB) from aqueous solutions. The pore size, specific surface area, pore volume, and pore length of OMCs (CMK-3, sCMK-3, and sCMK-5) were analyzed and benchmarked against commercial activated carbon (AC). CMK-3 and sCMK-3 had narrow pore size distributions (PSDs) centered at ∼4.4 nm, whereas the PSD of sCMK-5 was bimodal, derived from the same pores as CMK-3 (∼4.4 nm) and the inner diameter of the carbon nanotubes (∼5.8 nm). The pore length decreased from 743 nm for CMK-3 to 173 nm for sCMK-3 and 169 nm for sCMK-5, facilitating the MB accessibility and efficient utilization of internal mesopores. The MB adsorption on the prepared adsorbents was well described by a pseudo-second-order kinetic model (R2 > 0.999), and the initial adsorption rate (h) on sCMK-5 was 34.07-fold faster than that on commercial AC. The Langmuir model adequately explained the equilibrium adsorption data, and the increase in the Langmuir maximal adsorption capacity (qm) of the OMCs was proportional to the specific surface area. The MB adsorption on sCMK-5 was endothermic and spontaneous, and proceeded primarily through physical adsorption as well as chemisorption reacting with oxygen atoms in hydroxyl groups. The prepared adsorbents were also suitable for polishing textile wastewater containing color-causing substances along with the background organic matter. These OMCs are promising for treating wastewater as efficient adsorbents for large molecular pollutants such as dyes.
Collapse
Affiliation(s)
- Soeun Moon
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin Ryu
- Department of Chemical Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jongkook Hwang
- Department of Chemical Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea; Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
18
|
Ali A, Ajaz Hussain M, Abbas A, Tahir Haseeb M, Azhar I, Muhammad G, Hussain SZ, Hussain I, Alotaibi NF. Succinylated Salvia spinosa hydrogel: Modification, characterization, cadmium-uptake from spiked high-hardness groundwater and statistical analysis of sorption data. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
19
|
Chen C, Yang F, Beesley L, Trakal L, Ma Y, Sun Y, Zhang Z, Ding Y. Removal of cadmium in aqueous solutions using a ball milling-assisted one-pot pyrolyzed iron-biochar composite derived from cotton husk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12571-12583. [PMID: 36112289 DOI: 10.1007/s11356-022-22828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
A novel iron-biochar composite adsorbent was produced via ball milling-assisted one-pot pyrolyzed BM-nZVI-BC 800. Characterization proved that nano zero valent iron was successfully embedded in the newly produced biochar, and the nZVI payload was higher than that of traditional one-pot pyrolyzed methods. BM-nZVI-BC 800 provided a high adsorption performance of cadmium reaching 96.40 mg·g-1 during batch testing. Alkaline conditions were beneficial for cadmium removal of BM-nZVI-BC 800. The pseudo-second-order kinetic model and Langmuir isotherm fitted better, demonstrating that the Cd adsorption on the BM-nZVI-BC 800 was a chemical and surface process. The intraparticle diffusion controlled the adsorption of BM-nZVI-BC 800. The physisorption dominated by high specific surface area and mesoporous structure was the primary mechanism in the removal of cadmium, though electrostatic attraction and complexation also played a secondary role in cadmium adsorption. Compared to adsorbents prepared by more traditional methods, the efficiencies of the ball milling-assisted one-pot pyrolyzed method appears superior.
Collapse
Affiliation(s)
- Chen Chen
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Luke Beesley
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Yongfei Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuebing Sun
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongzhen Ding
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
20
|
Minaei S, Benis KZ, McPhedran KN, Soltan J. Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Du T, Bogush A, Mašek O, Purton S, Campos LC. Algae, biochar and bacteria for acid mine drainage (AMD) remediation: A review. CHEMOSPHERE 2022; 304:135284. [PMID: 35691393 DOI: 10.1016/j.chemosphere.2022.135284] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) is a global issue and causes harmful environmental impacts. AMD has high acidity and contains a high concentration of heavy metals and metalloids, making it toxic to plants, animals, and humans. Traditional treatments for AMD have been widely used for a long time. Nevertheless, some limitations, such as low efficacy and secondary contamination, have led them to be replaced by other methods such as bio-based AMD treatments. This study reviewed three bio-based treatment methods using algae, biochar, and bacteria that can be used separately and potentially in combination for effective and sustainable AMD treatment to identify the removal mechanisms and essential parameters affecting AMD treatment. All bio-based methods, when applied as a single process and in combination (e.g. algae-biochar and algae-bacteria), were identified as effective treatments for AMD. Also, all these bio-based methods were found to be affected by some parameters (e.g. pH, temperature, biomass concentration and initial metal concentration) when removing heavy metals from AMD. However, we did not identify any research focusing on the combination of algae-biochar-bacteria as a consortium for AMD treatment. Therefore, due to the excellent performance in AMD treatment of algae, biochar and bacteria and the potential synergism among them, this review provides new insight and discusses the feasibility of a combination of algae-biochar-bacteria for AMD treatment.
Collapse
Affiliation(s)
- Tianhao Du
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London, WC1E 6BT, United Kingdom
| | - Anna Bogush
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, CV8 3LG, United Kingdom
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geoscience, The University of Edinburgh, Edinburgh, EH8 9YL, United Kingdom
| | - Saul Purton
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
22
|
Memetova A, Tyagi I, Singh L, Karri RR, Tyagi K, Kumar V, Memetov N, Zelenin A, Tkachev A, Bogoslovskiy V, Shigabaeva G, Galunin E, Mubarak NM, Agarwal S. Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155943. [PMID: 35577088 DOI: 10.1016/j.scitotenv.2022.155943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Due to rapidly deteriorating water resources, the world is looking forward to a sustainable alternative for the remediation of noxious pollutants such as heavy metals and organic and gaseous contaminants. To address this global issue of environmental pollution, nanoporous carbon materials (NPCMs) can be used as a one-stop solution. They are widely applied as adsorbents for many toxic impurities and environmental contaminants. The present review provides a detailed overview of the role of different synthesis factors on the porous characteristics of carbon materials, activating agents, reagent-precursor ratio and their potential application in the remediation. Findings revealed that synthetic parameters result in the formation of microporous NPCMs (SBET: >4000 m3/g; VTotal (cm3/g) ≥ 2; VMicro (cm3/g) ≥ 1), micromesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.7) and mesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.5) NPCMs. Moreover, it was observed that a narrow pore size distribution (0.5-2.0 nm) yields excellent results in the remediation of noxious contaminants. Further, chemical activating agents such as NaOH, KOH, ZnCl2, and H3PO4 were compared. It was observed that activating agents KОН, H3PO4, and ZnCl2 were generally used and played a significant role in the possible large-scale production and commercialization of NPCMs. Thus, it can be interpreted that with a well-planned strategy for the synthesis, NPCMs with a "tuned" porosity for a specific application, in particular, microporosity for the accumulation and adsorption of energetically important gases (CO2, CH4, H2), micro-mesoporosity and mesoporosity for high adsorption capacity for towards metal ions and a large number of dyes, respectively.
Collapse
Affiliation(s)
- Anastasia Memetova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India.
| | - Lipi Singh
- Department of Environmental Engineering, Delhi Technological University, New Delhi 110042, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Nariman Memetov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Andrey Zelenin
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Alexey Tkachev
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Vladimir Bogoslovskiy
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenina Ave., Tomsk 634050, Russian Federation
| | - Gulnara Shigabaeva
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Evgeny Galunin
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Shilpi Agarwal
- Center for Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Montmorillonite-reduced graphene oxide composite aerogel (M−rGO): A green adsorbent for the dynamic removal of cadmium and methylene blue from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Li D, Wang J, Peng Z, Hu Z, Li W, Chen C, Li Y, Zhang Y. Adsorption of CdII by synthetic zeolite under multi-factor using response surface methodology. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Song F, Cao S, Liu Z, Su H, Chen Z. Different decorated ZIF-67 adsorption performance towards methamphetamine revealed by theoretical and experimental investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Wu Y, Yang M, Long D, Yang F, Luo S. Tetracycline Adsorption on Magnetic Sludge Biochar: Effects of pH, Humic Acid (HA), and Fulvic Acid (FA). MICROMACHINES 2022; 13:mi13071057. [PMID: 35888874 PMCID: PMC9318179 DOI: 10.3390/mi13071057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Natural organic matters (NOMs) are ubiquitous in the environment, but few systematic studies have examined the influence of NOMs on the sorption ability of magnetic sludge biochar. In this study, magnetic sludge biochar was synthesized, characterized, and used as a sorbent to remove tetracycline (TC) from aqueous solutions. The effects of pH, humic acid (HA), and fulvic acid (FA) on TC adsorption by magnetic sludge biochar were studied using batch experiments. Adding HA and FA can alter the adsorption behavior of TC, except for its pH dependency. The results of this study show that relatively low concentrations of dissolved HA (≤8 ppm) and FA (≤5 ppm) promote the adsorption capacity of TC, but higher concentrations compete against TC for sorption sites on the surface of magnetic sludge biochar. The results of this study promote a better understanding of the application of magnetic sludge biochar in real antibiotic wastewater.
Collapse
Affiliation(s)
- Yuanhui Wu
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China; (D.L.); (F.Y.)
- Special Key Laboratory of Electrochemistry for Materials of Guizhou Province, Zunyi 563006, China
- Correspondence: (Y.W.); (S.L.)
| | - Meizhi Yang
- Office of Academic Research, Guizhou Open University, Guiyang 550023, China;
| | - Dan Long
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China; (D.L.); (F.Y.)
- Special Key Laboratory of Electrochemistry for Materials of Guizhou Province, Zunyi 563006, China
| | - Fanian Yang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China; (D.L.); (F.Y.)
- Special Key Laboratory of Electrochemistry for Materials of Guizhou Province, Zunyi 563006, China
| | - Suxing Luo
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China; (D.L.); (F.Y.)
- Special Key Laboratory of Electrochemistry for Materials of Guizhou Province, Zunyi 563006, China
- Correspondence: (Y.W.); (S.L.)
| |
Collapse
|
27
|
|
28
|
Chen M, Wang D, Xu X, Zhang Y, Gui X, Song B, Xu N. Biochar nanoparticles with different pyrolysis temperatures mediate cadmium transport in water-saturated soils: Effects of ionic strength and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150668. [PMID: 34597543 DOI: 10.1016/j.scitotenv.2021.150668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/28/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Biochar is advocated as an environment-friendly and cost-effective material for removing both heavy metals and organic contaminants in soil remediation. However, our understandings on the cotransport potential of contaminants with the nanoscale biochar downward along soil profiles (e.g., potential environmental risks towards groundwater) remain largely unknown. This study investigated the effects of wheat straw-derived biochar nanoparticles pyrolyzed at 350 °C and 500 °C (BNP350 and BNP500) on the transport of cadmium (Cd(II)) in water-saturated soil packed columns. Different ionic strengths (ISs) without/with humic acid (HA) were tested to mimic the scenarios during soil remediation. BNPs could act as a vehicle mediating Cd(II) transport in soils. At a low IS (1.0 mM KCl), compared to the limited transport of individual Cd(II), BNP500 enhanced (69 times) Cd(II) transport (Cd(II) mass recovery (M) = 7.59%) in soils, which was greater than that by BNP350 (54 times, M = 5.92%), likely due to the higher adsorption of Cd(II) onto BNP500. HA further increased the Cd(II) transport by BNPs (M = 8.40% for BNP350 and M = 11.95% for BNP500), which was mainly due to the increased mobility of BNPs carrying more absorbed Cd(II). In contrast, at a high IS (10 mM KCl), BNP500 dramatically inhibited the transport of Cd(II) (M = 12.9%), decreasing by about 61.6%, compared to the BNPs absence (M = 33.6%). This is because a large amount of BNP500-Cd(II) was retained in soils at a high IS. This inhibition effect of Cd(II) transport by BNPs was reinforced with the presence of HA. Our findings suggest that the pyrolysis temperature of biochar should be carefully considered when applying biochar for in-situ remediation of soils contaminated by heavy metals such as Cd(II) under various organic matter and IS conditions.
Collapse
Affiliation(s)
- Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingqing Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
29
|
Liu S, Huang J, Zhang W, Shi L, Yi K, Yu H, Zhang C, Li S, Li J. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113995. [PMID: 34700080 DOI: 10.1016/j.jenvman.2021.113995] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) have recently attracted much attention due to their widespread distribution in the aquatic environment. Microplastics can act as a vector of heavy metals in the aquatic environment, causing a potential threat to aquatic organisms and human health. This review mainly summarized the occurrence of microplastics in the aquatic environment and their interaction with heavy metals. Then, we considered the adsorption mechanisms of MPs and heavy metals, and further critically discussed the effects of microplastics properties and environmental factors (e.g., pH, DOM, and salinity) on the adsorption of heavy metals. Finally, the potential risks of combined exposure of MPs and heavy metals to aquatic biota were briefly evaluated. This work aims to provide a theoretical summary of the interaction between MPs and heavy metals, and is expected to serve as a reference for the accurate assessment of their potential risks in future studies.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - JinHui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - LiXiu Shi
- College of Chemical and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - KaiXin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - HanBo Yu
- College of Chemical and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - ChenYu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - SuZhou Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - JiaoNi Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
30
|
Alves BSQ, Fernandes LA, Southard RJ. Biochar-cadmium retention and its effects after aging with Hydrogen Peroxide (H 2O 2). Heliyon 2021; 7:e08476. [PMID: 34926850 PMCID: PMC8649738 DOI: 10.1016/j.heliyon.2021.e08476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can become available to the environment from a variety of sources. The thermal transformation of organic residues into biochar can be a sustainable way to reduce cadmium environmental availability and, at the same time, a waste management solution. We studied sixteen biochars in two versions: unaged and aged with hydrogen peroxide (H2O2), regarding their Cd retention capacity. Feedstocks used included softwood biochar (SWB), almond shell (ASB), walnut shell (WSB), sewage sludge (SSB), and coconut shell (CSB); production temperatures varied from 450 to 900 °C. The objectives of this research were to understand the role of biochar properties on Cd adsorption rates and to evaluate how properties and adsorption rates vary as a function of H2O2 aging. Feedstock played a more important role than production temperature in determining biochar properties. Cd-adsorption capacity ranged from 0.67 to 415.67 mg/g, and the biochars that adsorbed the most Cd were SSB 700, SWB 800 - i, CSB 600 - m2, ASB 500-1, CSB 600 - m3, WSB 900, and CSB 600. The properties that best explained this variation in Cd retention were ash, sulfur, nitrogen and carbon content. Variation in oxygen content, cation exchange capacity and surface area had less impact of Cd adsorption. The H2O2 aging caused oxygen content to increase in all biochars, but the increase in Cd retention was not significant for the majority of the biochars and aging even reduced the Cd retention in some. Our results may help design biochars with maximized sites for Cd adsorption.
Collapse
Affiliation(s)
| | - Luiz Arnaldo Fernandes
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Montes Claros, MG 39404547, Brazil
| | - Randal J. Southard
- Department of Land, Air and Water Resources, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
31
|
Isaeva VI, Vedenyapina MD, Kurmysheva AY, Weichgrebe D, Nair RR, Nguyen NPT, Kustov LM. Modern Carbon-Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021; 26:6628. [PMID: 34771037 PMCID: PMC8587771 DOI: 10.3390/molecules26216628] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, a serious threat for living organisms and human life in particular, is water contamination with persistent organic and inorganic pollutants. To date, several techniques have been adopted to remove/treat organics and toxic contaminants. Adsorption is one of the most effective and economical methods for this purpose. Generally, porous materials are considered as appropriate adsorbents for water purification. Conventional adsorbents such as activated carbons have a limited possibility of surface modification (texture and functionality), and their adsorption capacity is difficult to control. Therefore, despite the significant progress achieved in the development of the systems for water remediation, there is still a need for novel adsorptive materials with tunable functional characteristics. This review addresses the new trends in the development of new adsorbent materials. Herein, modern carbon-based materials, such as graphene, oxidized carbon, carbon nanotubes, biomass-derived carbonaceous matrices-biochars as well as their composites with metal-organic frameworks (MOFs) and MOF-derived highly-ordered carbons are considered as advanced adsorbents for removal of hazardous organics from drinking water, process water, and leachate. The review is focused on the preparation and modification of these next-generation carbon-based adsorbents and analysis of their adsorption performance including possible adsorption mechanisms. Simultaneously, some weak points of modern carbon-based adsorbents are analyzed as well as the routes to conquer them. For instance, for removal of large quantities of pollutants, the combination of adsorption and other methods, like sedimentation may be recommended. A number of efficient strategies for further enhancing the adsorption performance of the carbon-based adsorbents, in particular, integrating approaches and further rational functionalization, including composing these adsorbents (of two or even three types) can be recommended. The cost reduction and efficient regeneration must also be in the focus of future research endeavors. The targeted optimization of the discussed carbon-based adsorbents associated with detailed studies of the adsorption process, especially, for multicomponent adsorbate solution, will pave a bright avenue for efficient water remediation.
Collapse
Affiliation(s)
- Vera I. Isaeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Marina D. Vedenyapina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Alexandra Yu. Kurmysheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Dirk Weichgrebe
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Rahul Ramesh Nair
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Ngoc Phuong Thanh Nguyen
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Leonid M. Kustov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
- Chemistry Department, Moscow State University, Leninskie Gory 1, Bldg. 3, 119992 Moscow, Russia
| |
Collapse
|
32
|
Katibi KK, Yunos KF, Man HC, Aris AZ, Mohd Nor MZ, Azis RS. An Insight into a Sustainable Removal of Bisphenol A from Aqueous Solution by Novel Palm Kernel Shell Magnetically Induced Biochar: Synthesis, Characterization, Kinetic, and Thermodynamic Studies. Polymers (Basel) 2021; 13:3781. [PMID: 34771339 PMCID: PMC8588331 DOI: 10.3390/polym13213781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/07/2022] Open
Abstract
Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants in the environment, that can trigger a severe threat to humans and environment even at minuscule concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) as a sustainable and inexpensive adsorbent to remove BPA from aqueous environment. Novel magnetic biochar was efficiently synthesized by utilizing palm kernel shell, using ferric chloride and ferrous chloride as magnetic medium via chemical co-precipitation technique. In this experimental study, the influence of operating factors comprising contact time (20-240 min), pH (3.0-12.0), adsorbent dose (0.2-0.8 g), and starting concentrations of BPA (8.0-150 ppm) were studied in removing BPA during batch adsorption system using neat biochar and magnetic biochar. It was observed that the magnetically loaded BC demonstrates superior maximum removal efficiency of BPA with 94.2%, over the neat biochar. The functional groups (FTIR), Zeta potential, vibrating sample magnetometer (VSM), surface and textural properties (BET), surface morphology, and mineral constituents (FESEM/EDX), and chemical composition (XRD) of the adsorbents were examined. The experimental results demonstrated that the sorption isotherm and kinetics were suitably described by pseudo-second-order model and Freundlich model, respectively. By studying the adsorption mechanism, it was concluded that π-π electron acceptor-donor interaction (EAD), hydrophobic interaction, and hydrogen bond were the principal drives for the adsorption of BPA onto the neat BC and magnetic BC.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah Azis
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
33
|
Karthikeyan P, Elanchezhiyan SSD, Banu HAT, Hasmath Farzana M, Park CM. Hydrothermal synthesis of hydroxyapatite-reduced graphene oxide (1D-2D) hybrids with enhanced selective adsorption properties for methyl orange and hexavalent chromium from aqueous solutions. CHEMOSPHERE 2021; 276:130200. [PMID: 34088090 DOI: 10.1016/j.chemosphere.2021.130200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 05/17/2023]
Abstract
The presence of organic dye molecules and heavy metal ions in water causes ecological and public health problems. Therefore, remediation of water/wastewater contaminated with organic dye molecules and toxic metal ions is of importance. Herein, a reduced graphene oxide (RGO)-hydroxyapatite (Hat) (1D-2D) hybrid composite was fabricated through a hydrothermal process and applied for the adsorption of methyl orange (MO) and hexavalent chromium (Cr(VI)) from water. The as-fabricated RGO-Hat hybrids were characterized using FTIR, XRD, HR-TEM, SEM, XPS, EDAX, and TGA-DSC analytical techniques. The influencing parameters of adsorption performance, namely solution pH, contact time, and co-interfering ions, were explored to obtain the maximum adsorption capacity of contaminants from the solid-liquid interface. Batch studies revealed that MO and Cr(VI) adsorption followed the pseudo-second-order kinetic and the Langmuir isotherm models. The adsorption capacity was 49.14 and 45.24 mg g-1 for MO and Cr(VI), respectively. The adsorption of such ions over RGO-Hat hybrids was mainly driven by several uptake mechanisms viz, electrostatic force of attraction, π-π interactions, and hydrogen bonding. Thus, this study demonstrated that the RGO-Hat hybrid is a potential candidate for the treatment of MO and Cr(VI) from water.
Collapse
Affiliation(s)
- Perumal Karthikeyan
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to Be University, Gandhigram, 624 302, Dindigul, Tamil Nadu, India.
| | - S S D Elanchezhiyan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Hyder Ali Thagira Banu
- Department of Chemistry, Secours Arts & Science College for Women, Dindigul, 624 002, Tamil Nadu, India.
| | - M Hasmath Farzana
- Department of Chemistry, The Madura College, Madurai, 625 011, Tamil Nadu, India.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
34
|
A Novel Manganese-Rich Pokeweed Biochar for Highly Efficient Adsorption of Heavy Metals from Wastewater: Performance, Mechanisms, and Potential Risk Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9071209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A novel manganese-rich pokeweed biochar was prepared at different temperatures from manganese-rich pokeweed plants collected at manganese tailings, resulting in materials identified as BC300, BC400, and BC500. The synthetized biochar materials were investigated as regards their potential for removing Cu2+, Pb2+, and Cd2+, specifically in terms of adsorption performances, adsorption kinetics, adsorption isotherms, and potential environmental pollution risk. The results showed that the sorption process fitted well to the pseudo-second-order kinetic and Langmuir models, and the maximum adsorption capacities of BC500 were 246, 326, and 310 mg·g−1 for Cu2+, Pb2+, and Cd2+ respectively. The physicochemical characteristics of the biochars, and the adsorption mechanisms, were revealed by using scanning electron microscopy-energy spectrometer, elemental analysis, Brunauer–Emmett–Teller techniques, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The sorption mechanism of these three heavy metal ions onto biochars included ion exchange, electrostatic adsorption, chemical adsorption, and precipitation. Besides, the potential pollution risk of manganese-rich pokeweed biochars was significantly reduced after pyrolysis. Therefore, it is feasible to transform manganese-rich pokeweed biomass into manganese-rich pokeweed biochar with potential for heavy metals removal, showing high adsorption capacity, recyclability, and low environmental pollution.
Collapse
|
35
|
Singh RJ, Martin CE, Barr D, Rosengren RJ. Cucumber peel bead biosorbent for multi-ion decontamination of drinking water collected from a mine region in New Zealand. ENVIRONMENTAL TECHNOLOGY 2021; 42:2461-2477. [PMID: 31825744 DOI: 10.1080/09593330.2019.1703824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Cucumber peel as a bead was examined for its ability to remove heavy metals from drinking water. Deionised laboratory water was spiked with seven toxic ions namely, arsenic, cadmium, chromium, copper, mercury, lead and nickel at 0.1 mg L-1 and kinetic studies were performed over 72 h. Kinetic data were modelled using film diffusion, pore diffusion, Weber-Morris, pseudo-first-order, pseudo-second-order and Elovich equation. The bead surface was imaged before and after biosorption using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS). Results indicated that different ions contained in a multi-ion solution were biosorbed by different mechanisms and at different rates. Equilibrium biosorption for Cd, Hg and Ni was ∼91, 90 and 67%, respectively, at 24 h. These ions diffused through the pores of the bead, as they were not identified by EDS, and their biosorption increased with an increase in temperature. The least biosorbed ions were As and Cr with ∼21 and 17% equilibrium biosorption, respectively. The removal of only Cu, Hg, Pb and Ni was pH-dependent. Cucumber peel beads removed all spiked ions from real drinking water collected near the Macraes gold mine in New Zealand, but the biosorption percentage was lower for Cd, Cu, Pb and Ni compared to spiked deionised laboratory water. The results of this study suggest that cucumber peel when immobilised on a sodium alginate bead can be used as a potential biosorbent for the removal of multiple toxic ions from drinking water and their use warrants further examination in contaminated drinking water.
Collapse
Affiliation(s)
- Risha Jasmine Singh
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
- Geology Department, University of Otago, Dunedin, New Zealand
| | | | - Dave Barr
- Centre for Trace Element Analysis, Chemistry Department, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Jaiswal KK, Kumar V, Verma R, Verma M, Kumar A, Vlaskin MS, Nanda M, Kim H. Graphitic bio-char and bio-oil synthesis via hydrothermal carbonization-co-liquefaction of microalgae biomass (oiled/de-oiled) and multiple heavy metals remediations. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124987. [PMID: 33450509 DOI: 10.1016/j.jhazmat.2020.124987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 05/27/2023]
Abstract
Thermochemical transformation of microalgae biomass into graphitic bio-chars entices as proficient bio-adsorbents for heavy metal contaminants. This study explores the synergistic impact of Chlorella sorokiniana on biomass generation and wastewater remediation in high rate algae pond (HRAP). Biomass produced was applied for hydrothermal carbonization-co-liquefaction (HTCL). The structural and morphological characteristics of HTCL products (i.e. bio-chars and bio-oils) have been systematically studied by XRD, Raman, FTIR, elemental analyzer, SEM, BET, and 1H NMR spectroscopy. The crystallite size of the graphite 2H indexing planes was to be 4.65 nm and 14.07 nm in the bio-chars of oiled biomass (MB-OB) and de-oiled biomass (MB-DOB), respectively. The increase in the ID/IG ratio of MB-DOB indicated the highly disordered graphitic structure due to the appearance of carbonyl, hydroxyl, and epoxy functionalities in the line of high C/N and low C/H ratio. Also, the multiple heavy metals remediation of MB-DOB revealed better efficiency as ~100% in 720 min. The kinetics analysis shows the correlation coefficient of pseudo-second-order is well fitted compared to the pseudo-first-order. The Langmuir adsorption model signifies the adsorption of heavy metal ions in a monolayer adsorption manner. The study proposes the microalgae bio-char potential for multiple heavy metals remediation alongside bio-oils.
Collapse
Affiliation(s)
- Krishna Kumar Jaiswal
- Algae Research & Bio-Energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| | - Vinod Kumar
- Algae Research & Bio-Energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ravikant Verma
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul 130743, South Korea
| | - Arvind Kumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russia.
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (P.G.) Institute of Biomedical and Natural Sciences, Dehradun 248001, India
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 130743, South Korea
| |
Collapse
|
37
|
Ramu AG, Yang DJ, Al Olayan EM, AlAmri OD, Aloufi AS, Almushawwah JO, Choi D. Synthesis of hierarchically structured T-ZnO-rGO-PEI composite and their catalytic removal of colour and colourless phenolic compounds. CHEMOSPHERE 2021; 267:129245. [PMID: 33321274 DOI: 10.1016/j.chemosphere.2020.129245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Phenolic compounds bisphenol A (BPA) and 4-nitrophenol (4-NP) are the prime water contaminants. As reported, these compounds are some of the highly hazardous ones to the human and living species. In this study, T-ZnO-rGO-PEI composite was synthesized employing hydrothermal method and the obtained composite samples were systematically characterized by FTIR, XPS, FE-SEM and HR-TEM studies. The FTIR, XPS analysis confirmed the successful surface modification of T-ZnO-rGO-PEI composite. The FE-SEM morphology confirmed the formation of ZnO (arm length about 2.5 μm) tetrapod structured in synthesized T-ZnO-rGO-PEI composite. The thickness of formed ZnO arm (0.44 μm) was increased after the polymer coating which confirmed the successful surface modification by PEI polymer. The HR-TEM images confirm the uniform coating of PEI polymer on T-ZnO-rGO surface. The catalytic activity and adsorption capacity of the synthesized T-ZnO-rGO-PEI composite was successfully explored using 4-nitrophenol and bisphenol-A as model pollutants .T-ZnO-rGO-PEI composite and found that 4-NP reduction reaction was completed within 10 min with the rate of 0.224 min-1. The BPA adsorption over T-ZnO-rGO-PEI exhibited high adsorption rate of 0.0210 min-1. In addition, the detailed 4-NP reduction and BPA adsorption mechanism was demonstrated. Hence the synthesized T-ZnO-rGO-PEI composite is a promising catalyst for the removal of micropollutants in aqueous medium.
Collapse
Affiliation(s)
- A G Ramu
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- Ro, Jochiwon- Eup, Sejong-city, 30016, Republic of Korea
| | - D J Yang
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- Ro, Jochiwon- Eup, Sejong-city, 30016, Republic of Korea
| | - Ebtesam M Al Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud D AlAmri
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abeer S Aloufi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia; The Research Chair of Vaccines for Infectious Disease - Deanship of Scientific Research - King Saud University, Riyadh, Saudi Arabia
| | - Jory Omer Almushawwah
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- Ro, Jochiwon- Eup, Sejong-city, 30016, Republic of Korea.
| |
Collapse
|
38
|
Ali EAM, Sayed MA, Abdel-Rahman TMA, Hussein R. Fungal remediation of Cd(ii) from wastewater using immobilization techniques. RSC Adv 2021; 11:4853-4863. [PMID: 35424383 PMCID: PMC8694543 DOI: 10.1039/d0ra08578b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 01/06/2023] Open
Abstract
The pollution of wastewater by heavy metal ions is hazardous to the environment and human health. Cd(ii) has been recognized as one of the heavy metals that causes severe toxic effects. The present study is aimed at removing Cd(ii) from wastewater using fungal biomass either immobilized on loofa sponges or in Ca-alginate beads. Two fungal species were isolated from pools of Cd(ii)-polluted wastewater obtained from some Egyptian industrial plants, and using internal transcribed spacer (ITS) primers, they were molecularly identified as Penicillium chrysogenum and Cephalotheca foveolata with accession numbers MT664773 and MT664745, respectively. The sorbents used in this study were heat-inactivated mycelia of P. chrysogenum (PEN), heat-inactivated mycelia of C. foveolata (CEP), P. chrysogenum immobilized on loofa sponge (PEN-ILS), C. foveolata immobilized on loofa sponge (CEP-ILS), P. chrysogenum immobilized in Ca-alginate beads (PEN-IA), and C. foveolata immobilized in Ca-alginate beads (CEP-IA). The effects of pH, contact time, initial Cd(ii) concentration, and interfering ions on Cd(ii) removal from aqueous solution were tested. Maximum Cd(ii) sorption capacity was obtained at pH 7.0, with thirty minutes contact time and 0.5 mol l−1 initial Cd(ii) concentration for all sorbents used. However, Ca2+ displayed synergistic interference with Cd(ii) that was greater than that from Na+ and K+, with decreasing sorption capacity for all sorbents. Optimum conditions were applied to real wastewater samples collected from two Egyptian industrial plants. All sorbents had the ability to remove Cd(ii) from wastewater samples, and enhanced removal occurred when fungal cells were immobilized as compared to free cells. The pollution of wastewater by heavy metal ions is hazardous to the environment and human health.![]()
Collapse
Affiliation(s)
- Eman Abdullah M Ali
- Botany and Microbiology Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Mohsen A Sayed
- Botany and Microbiology Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | | | - Rabab Hussein
- Basic Science Department, Faculty of Engineering, Misr University for Science and Technology Egypt
| |
Collapse
|
39
|
Ye T, Huang B, Wang Y, Zhou L, Liu Z. Rapid removal of uranium(Ⅵ) using functionalized luffa rattan biochar from aqueous solution. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125480] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Humic Acid Mitigates the Negative Effects of High Rates of Biochar Application on Microbial Activity. SUSTAINABILITY 2020. [DOI: 10.3390/su12229524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Biochar and a commercial humic acid-rich product, Humac (modified leonardite), represent soil amendments with the broad and beneficial effects on various soil properties. Their combination has been scarcely tested so far, although the positive impact of their interaction might be desirable. Materials and Methods: The dehydrogenase activity (DHA), microbial biomass carbon (Cmic), soil respiration (basal and substrate-induced), enzyme activities, total carbon (Ctot), and both shoot and root biomass yield were measured and compared in the short-term pot experiment with the lettuce seedlings. The following treatments were tested: the unamended soil (control), the Humac-amended soil (0.8 g·kg−1), the biochar-amended soil (low biochar 32 g·kg−1, high biochar 80 g·kg−1), and the soil-amended with biochar + Humac. Results: The effect of both amendments on the soil pH was insignificant. The highest average values of Ctot and Cmic were detected in high biochar treatment and the highest average values of basal and substrate-induced respiration (glucose, glucosamine, alanine) were detected in the low biochar treatment. The phosphatase activity and fresh and dry lettuce aboveground biomass were the highest in the low biochar + Humac treatment. Conclusions: Even though the combination of both biochar + Humac decreased the microbial activities in the amended soil (Cmic, DHA, enzymes, substrate-induced respiration) at the low biochar dose, they mitigated the detrimental effect of the high biochar dose on respiration (all the types) and the enzyme (phosphatase, arylsulphatase) activities. In contrast to the previously published research in this issue, the effects could not be attributed to the change of the soil pH.
Collapse
|
41
|
Hong J, Ko D, Hwang Y. Disulfide polymer grafted polypropylene/polyethylene filter media for selective cadmium removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123060. [PMID: 32937714 DOI: 10.1016/j.jhazmat.2020.123060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution caused by stormwater runoff has triggered a demand for effective heavy metal sorbents. Effective heavy metal removal using conventional stormwater runoff treatment processes that employ filtration mechanisms as primary removal mechanisms is difficult. Therefore, we attempt to improve cadmium removal performance by attaching disulfide polymer (DiS-COP) containing soft bases, thiols, onto the surface of polypropylene/polyethylene (PP/PE) fiber media, which is widely used for stormwater runoff treatment. Material characterization demonstrated that DiS-COP was successfully grafted and grown on the surface of PP/PE (Dis-PP/PE). The batch and continuous flow adsorption capacities of Dis-PP/PE were 81.1 mg/g and 2.33 mg/g, respectively, which is 40 times higher than those of pristine PP/PE. Applicability of DiS-PP/PE at pH 6-8 was demonstrated, and effects of calcium and humic acid on cadmium adsorption were investigated. Calcium marginally affected cadmium adsorption, which can be explained using the Hard and soft (Lewis) acids and bases theory (HSAB), but cadmium removal efficiency decreased owing to humic acid (HA)-Cd complex formation and agglomeration in the presence of organic material. In a breakthrough test, the adsorption column exhibited complete cadmium uptake over 24 h until it reached the breakthrough point. Therefore, heavy metal adsorption performance of PP/PE was successfully enhanced by grafting DiS-COP on its surface.
Collapse
Affiliation(s)
- Jeongmin Hong
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Dongah Ko
- Innovation Centre Denmark, Seoul 04637, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
42
|
Zhou Y, Yang Y, Liu G, He G, Liu W. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. WATER RESEARCH 2020; 184:116209. [PMID: 32721765 DOI: 10.1016/j.watres.2020.116209] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) in aquatic systems can act as a vector for various toxic contaminants, such as metal ions. Although some studies have investigated the adsorption characteristics of metal ions on MPs, the desorption behaviors of metal ions from MPs in different environments are largely unknown. Here, the adsorption of cadmium (Cd(II)) onto five different types of MPs were compared to examine the relationship between the surface characteristics and the adsorption properties of MPs. Our results showed that polyamide had the highest Cd(II) adsorption capability with a value of 1.70 ± 0.04 mg/g, followed by polyvinyl chloride (1.04 ± 0.03 mg/g), polystyrene (0.76 ± 0.02 mg/g), acrylonitrile butadiene styrene (0.65 ± 0.02 mg/g) and polyethylene terephthalate (0.25 ± 0.01 mg/g). The specific surface area and total pore volume were closely correlated with the adsorption capacity of the MPs, and the π-π interaction, electrostatic interaction and oxygen-containing functional groups played crucial roles in the adsorption of Cd(II) onto the MPs. The sorption capabilities of Cd(II) onto the MPs first increased and then decreased with increasing solution pH from 2.0 to 9.0. In addition, the adsorption capacities were suppressed with the presence of lead ions (20-80 mg/L), while the coexistence of phenanthrene had a minor impact. Interestingly, the presence of humic acid promoted the desorption of Cd(II) from the MPs both in the synthetic earthworm gut and in the sediment system. A higher desorption rate was observed in the simulated gut environment, suggesting that metal-contaminated MPs would pose higher ecological risks to macroinvertebrates. Overall, our findings provide a better understanding of the sorption mechanism of Cd(II) onto MPs and the desorption behavior under different environmental conditions in aquatic ecosystems.
Collapse
Affiliation(s)
- Yanfei Zhou
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
43
|
Islam MA, Morton DW, Johnson BB, Angove MJ. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116949] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Khan ZH, Gao M, Qiu W, Song Z. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution. CHEMOSPHERE 2020; 255:126995. [PMID: 32416394 DOI: 10.1016/j.chemosphere.2020.126995] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we present the preparation of MoS2-modified magnetic biochar (MoS2@MBC) as a novel adsorbent by a simple hydrothermal method. MoS2@MBC contains abundant S-containing functional groups that facilitate efficient Cd(II) removal from aqueous systems. We employed various characterization techniques to explore the morphology, surface area, and chemical composition of MoS2@MBC; these included Brunauer-Emmett-Teller analysis scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction,. The results indicated the successful decoration of the surface of MoS2@MBC with iron and MoS2, and a higher surface area of MoS2@MBC than that of unmodified biochar. Moreover, adsorption properties including thermodynamics and kinetics were investigated along with the effects of pH, humic acid, and ionic strength on the Cd(II) adsorption onto MoS2@MBC. The O-, C-, S-, and Fe-containing functional groups on the surface of MoS2@MBC led to an electrostatic attraction of Cd(II) and strong Cd-S complexation. The Langmuir and pseudo second-order models fitted best for the batch adsorption experiments results. The adsorption capacity of MoS2@MBC (139 mg g-1 on the basis of the Langmuir model) was 7.81 times higher than that of pristine biochar. The adsorption process was found to be pH-dependent. The experimental results indicated that MoS2@MBC is an effective adsorbent for removing Cd(II) from water solutions. Further, the adsorption process involved the complexation of Cd(II) with oxygen-based functional groups, ion exchange, electrostatic attraction, Cd(II)-π interactions, metal-sulfur complexation, and inner-surface complexation. This work provides new insights into the Cd(II) ions removal from water via adsorption. It also demonstrates that MoS2@MBC is an efficient and economic adsorbent to treat Cd(II)-contaminated water.
Collapse
Affiliation(s)
- Zulqarnain Haider Khan
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China; Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
45
|
Tao HY, Ge H, Shi J, Liu X, Guo W, Zhang M, Meng Y, Li XY. The characteristics of oestrone mobility in water and soil by the addition of Ca-biochar and Fe-Mn-biochar derived from Litchi chinensis Sonn. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1601-1615. [PMID: 31760543 DOI: 10.1007/s10653-019-00477-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of biochar (BC) derived from Litchi chinensis Sonn. and its modification, including Ca-biochar (Ca-BC) and Fe-Mn-biochar (Fe-Mn-BC), on the transportation of oestrone (E1) in water and soil was investigated. Fe-Mn-BC showed better adsorption ability than other types of biochar (BC, Ca-BC) under different conditions (humic acid, pH, ionic strength) in an aqueous environment. The maximum mass of sorbent at 298 K increased from 1.12 mg g-1 (BC) to 4.18 mg g-1 (Fe-Mn-BC). Humic acid had a greater impact on aqueous E1 adsorption on these biochars than did the pH and ionic strength. Fe-Mn-BC as a soil amendment had a great control of E1 transport in soil, and no leachate of E1 was observed in the column experiment. E1 mobility showed strong retardation in amended soil with Ca-BC (Rf = 11.2) compared with raw soil (Rf = 7.1). These results suggested that Fe-Mn-BC was more effective in controlling E1 transportation, and Fe-Mn-BC could be used as an alternative and inexpensive adsorbent to reduce E1 contaminants from water and soil.
Collapse
Affiliation(s)
- Huan-Yu Tao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Ge
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianghong Shi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Xiaowei Liu
- Hefei University of Technology (Xuancheng Campus), Xuancheng, China
| | - Wei Guo
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Mengtao Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yaobin Meng
- Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
46
|
Alqadami AA, Naushad M, ALOthman ZA, Alsuhybani M, Algamdi M. Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment: Adsorption mechanism and modeling analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121896. [PMID: 31879118 DOI: 10.1016/j.jhazmat.2019.121896] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Herein, a novel nanocomposite (Fe3O4@TATS@ATA) was prepared and used for adsorptive removal of Pb(II) ions from aqueous environment. The magnetic nanocomposite (Fe3O4@TATS@ATA) was characterized using FTIR, TEM, SEM, EDX, element mapping analysis (EMA), TGA analysis, XRD patterns, VSM, BET analysis, XPS spectrum, and zeta potential. The FTIR study confirmed the modification of Fe3O4 nanoparticles with triaminetriethoxysilane and 2-aminoterephthalic acid while XPS analysis (with peaks at 283.6, 285.1, 286.3, 284.5.0, 288.4 eV) displayed the presence of CSi, CN, OCNH, CC/CC and OCO functional groups, respectively on Fe3O4@TATS@ATA. The BET surface area, average pore size, pore volume and magnetization saturation for Fe3O4@TATS@ATA were found to be 114 m2/g, 6.4 nm, 0.054 cm-3/g, and 22 emu/g, respectively. The adsorption isotherm data showed that Pb(II) adsorption onto Fe3O4@TATS@ATA fitted to Langmuir and Dubinin-Raduskevich isotherm model due to better R2 value which was greater than 0.9 and qm of Pb(II) was 205.2 mg/g at pH 5.7 in 150 min. Adsorption kinetics data displayed that Pb(II) adsorption onto Fe3O4@TATS@ATA was fitted to the pseudo-second-order and Elovich kinetic models. Thermodynamic outcomes exhibited the exothermic and spontaneous nature of adsorption. Results showed that Fe3O4@TATS@ATA nanocomposite was promising material for efficient removal of toxic Pb(II) from aqueous environment.
Collapse
Affiliation(s)
- Ayoub Abdullah Alqadami
- Department of Chemistry, College of Science, King Saud University, Bld#5, Riyadh, KSA, Saudi Arabia.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Bld#5, Riyadh, KSA, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Bld#5, Riyadh, KSA, Saudi Arabia
| | | | - Mohammad Algamdi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Removal Efficiencies of Manganese and Iron Using Pristine and Phosphoric Acid Pre-Treated Biochars Made from Banana Peels. WATER 2020. [DOI: 10.3390/w12041173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to compare the removal efficiencies of manganese (Mn) and iron (Fe) using pristine banana peel biochar (BPB) and phosphoric acid pre-treated biochars (PBPB) derived from banana peels. The removal efficiencies of Mn and Fe were investigated under different adsorbent dosages (0.4–2 g L−1), temperatures (15–45 °C), and ionic strengths (0–0.1 M), and were directly correlated to the differences in physicochemical properties of BPB and PBPB, to identify the removal mechanisms of heavy metals by adsorption processes. The removal of Mn by PBPB obeyed the Freundlich isotherm model while the removal of Mn and Fe by BPB followed the Langmuir isotherm model. However, the removal of Fe by PBPB followed both Freundlich and Langmuir isotherm models. The removal efficiencies of Mn and Fe by BPB and PBPB increased with increasing temperatures and decreased with increasing ionic strengths. PBPB more effectively removed Mn and Fe compared to BPB due to its higher content of oxygen-containing functional groups (O/C ratio of PBPB = 0.45; O/C ratio of BPB = 0.01), higher surface area (PBPB = 27.41 m2 g−1; BPB = 11.32 m2 g−1), and slightly greater pore volume (PBPB = 0.03 cm3 g−1; BPB = 0.027 cm3 g−1). These observations clearly show that phosphoric acid pre-treatment can improve the physicochemical properties of biochar prepared from banana peels, which is closely related to the removal of heavy metals by adsorption processes.
Collapse
|
48
|
Khownpurk P, Chandra-Ambhorn W. As(III) removal under the presence of competitive anions using the calcined ground oyster shell as the adsorbent. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1577269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- P. Khownpurk
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Thailand
| | - W. Chandra-Ambhorn
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Thailand
| |
Collapse
|
49
|
Wang F, Hao M, Liang J, Gao P, Zhu M, Fang B, Zhang H, Shang Z. A facile fabrication of sepiolite mineral nanofibers with excellent adsorption performance for Cd 2+ ions. RSC Adv 2019; 9:40184-40189. [PMID: 35542660 PMCID: PMC9076242 DOI: 10.1039/c9ra07836c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, sepiolite mineral nanofibers are facilely prepared by a microwave-hydrogen peroxide method, and the bulk densities of the samples are adopted to evaluate the defibering effect. The samples are systematically characterized through X-ray diffraction, scanning electron microscopy, specific surface area measurement and zeta potential determination, and the adsorptive performance for heavy metal ions in aqueous solution is studied using cadmium ions as the representative. It is found that the specific surface area and cumulative pore volume increase respectively up to 109.21 m2 g-1 and 0.234 cm3 g-1 under the microwave power of 400 W, while the zeta potential reaches a maximum when the pH is 5.0. The adsorption efficiency of sepiolite mineral nanofibers for cadmium ions can reach 68.6% as the optimal value. The as-fabricated sepiolite nanofibers can be regarded as a low-cost and environmentally friendly material which is a promising candidate for heavy metal ion removal from industrial wastewater.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - Ming Hao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - Peizhang Gao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - Maomao Zhu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - Baizeng Fang
- Department of Chemical & Biological Engineering, University of British Columbia 2360 East Mall Vancouver B.C. V6T 1Z3 Canada
| | - Hui Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| | - Zengyao Shang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education Tianjin 300130 China
- Institute of Power Source and Ecomaterials Science, Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
50
|
Lee HW, Lee H, Kim YM, Park RS, Park YK. Recent application of biochar on the catalytic biorefinery and environmental processes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|