1
|
Agyeman-Prempeh NO, Maas H, Burchell GL, Millar NL, Moen MH, Smit TH. Treatment options for Achilles tendinopathy: a scoping review of preclinical studies. PeerJ 2025; 13:e18143. [PMID: 39807157 PMCID: PMC11727660 DOI: 10.7717/peerj.18143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 01/16/2025] Open
Abstract
Background Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity. Despite the publication of many preclinical studies, a comprehensive, quality-assessed review of the basic molecular mechanisms in Achilles tendinopathy is lacking. Objectives This scoping review aims to summarize the literature regarding in vitro and in vivo animal studies examining AT treatments and evaluate their effect on tendon properties. Also, a quality assessment of the included animal studies is done. We provide a comprehensive insight into the current state of preclinical AT treatment research which may guide preclinical researchers in future research. Eligibility criteria Treatment options of Achilles tendinopathy in chemically or mechanically induced in vivo or in vitro Achilles tendinopathy models, reporting biomechanical, histological, and/or biochemical outcomes were included. Sources of evidence A systematically conducted scoping review was performed in PubMed, Embase.com, Clarivate Analytics/Web of Science, and the Wiley/Cochrane Library. Studies up to May 4, 2023 were included. Charting Methods Data from the included articles were extracted and categorized inductively in tables by one reviewer. The risk-of-bias quality assessment of the included animal studies is done with Systematic Review Centre for Laboratory Animal Experimentation risk-of-bias tool. Results A total of 98 studies is included, which investigated 65 different treatment options. 80% of studies reported significant improvement in the Achilles tendon characteristics after treatment. The main results were; maximum load and stiffness improvement; fibre structure recovered and less inflammation was observed; collagen I fibrils increased, collagen III fibrils decreased, and fewer inflammatory cells were observed after treatment. However, 65.4% to 92.5% of the studies had an uncertain to high risk of bias according to the risk-of-bias tool of the Systematic Review Centre for Laboratory Animal Experimentation. Conclusions Despite promising preclinical treatment outcomes, translation to clinical practice lags behind. This may be due to the poor face validity of animal models, heterogeneity in Achilles tendinopathy induction, and low quality of the included studies. Preclinical treatments that improved the biomechanical, histological, and biochemical tendon properties may be interesting for clinical trial investigation. Future efforts should focus on developing standardized preclinical Achilles tendinopathy models, improving reporting standards to minimize risk of bias, and facilitating translation to clinical practice.
Collapse
Affiliation(s)
- Nathanael Opoku Agyeman-Prempeh
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Huub Maas
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| | | | - Neal L. Millar
- University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maarten H. Moen
- Department of Sports Medicine, Bergman Clinics, Naarden, the Netherlands, Unaffliated, Naarden, Netherlands
- High-Performance Team, Dutch National Olympic Committee & National Sports Federation, Arnhem, Netherlands
| | - Theodoor Henri Smit
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| |
Collapse
|
2
|
Yang Q, Li J, Meng H, Wang Y, Hu L, Su W, Xu J, Hou J, Zhao R, Wang Z, Zhang K, Wu Y, Wang L. Coaxial Electrospun Nanofibrous Membranes as Dual-Functional Biomimetic Tendon Sheath for Tendon Repair and Anti-Peritendinous Adhesion. Adv Healthc Mater 2025; 14:e2402074. [PMID: 39600050 DOI: 10.1002/adhm.202402074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Tendon injuries often exhibit limited healing capacity, frequently complicated by peritendinous adhesion, posing a substantial challenge in clinical tendon repair. Although present biomaterial-based membranes offer a promising strategy for tendon treatment, their clinical application is hindered by inflammation-induced adhesion. Herein, this study presents a dual-functional biomimetic tendon sheath based on a coaxial electrospun nanofibrous membrane for enhancing tendon repair and simultaneously preventing peritendinous adhesion. This nanofibrous membrane is fabricated using a coaxial electrospinning method, encapsulating celecoxib-loaded polycaprolactone (PCL) within gelatin methacryloyl (GelMA) shell. Both in vitro and in vivo analysis results demonstrated that such coaxial biomimetic tendon sheath enhanced tenogenic differentiation of tendon stem/progenitor cells (TSPCs) due to nanofibrous GelMA shell providing a suitable microenvironment surface. Simultaneously, the sustained release of celecoxib (CEL) from the core is able to significantly decrease the expression of inflammatory cytokines. Notably, in vivo assessments in animal models with patellar tendon defects revealed significant reductions in peritendinous adhesion, leading to further enhancement in tendon repair. These results underscore the potential of the coaxial nanofibrous membrane as a dual-functional biomimetic tendon sheath, offering a promising avenue for the long-term management of tendon injuries.
Collapse
Affiliation(s)
- Qiao Yang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jianfeng Li
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongfang Meng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yongdi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lanlan Hu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weiwei Su
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Juedong Hou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rui Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zihan Wang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kairui Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaobin Wu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
3
|
Morya VK, Shahid H, Lang J, Kwak MK, Park SH, Noh KC. Advancements in Therapeutic Approaches for Degenerative Tendinopathy: Evaluating Efficacy and Challenges. Int J Mol Sci 2024; 25:11846. [PMID: 39519397 PMCID: PMC11545934 DOI: 10.3390/ijms252111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Degenerative tendinopathy results from the accumulation of minor injuries following unsuccessful tendon repair during acute tendon injuries. The process of tendon repair is prolonged and varies between individuals, making it susceptible to reinjury. Moreover, treating chronic tendinopathy often requires expensive and extensive rehabilitation, along with a variety of combined therapies to facilitate recovery. This condition significantly affects the quality of life of affected individuals, underscoring the urgent need for more efficient and cost-effective treatment options. Although traditional treatments have improved significantly and are being used as substitutes for surgical interventions, the findings have been inconsistent and conflicting. This review aims to clarify these issues by exploring the strengths and limitations of current treatments as well as recent innovations in managing various forms of degenerative tendinopathy.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hamzah Shahid
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Lang
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sin-Hye Park
- Department of Food Science & Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu-Cheol Noh
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Hallym University Sacred Heart Hospital, Anyang-si 14068, Republic of Korea
| |
Collapse
|
4
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024; 38:802-841. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Zhu Z, Gao R, Ye T, Feng K, Zhang J, Chen Y, Xie Z, Wang Y. The Therapeutic Effect of iMSC-Derived Small Extracellular Vesicles on Tendinopathy Related Pain Through Alleviating Inflammation: An in vivo and in vitro Study. J Inflamm Res 2022; 15:1421-1436. [PMID: 35256850 PMCID: PMC8898180 DOI: 10.2147/jir.s345517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Background Tendinopathy is a common cause of tendon pain. However, there is a lack of effective therapies for managing tendinopathy pain, despite the pain being the most common complaint of patients. This study aimed to evaluate the therapeutic effect of small extracellular vesicles released from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on tendinopathy pain and explore the underlying mechanisms. Methods Rat tendinopathy model was established and underwent the injection of iMSC-sEVs to the quadriceps tendon one week after modeling. Pain-related behaviors were measured for the following four weeks. Tendon histology was assessed four weeks after the injection. To further investigate the potential mechanism, tenocytes were stimulated with IL-1β to mimic tendinopathy in vitro. The effect of iMSC-sEVs on tenocyte proliferation and the expression of proinflammatory cytokines were measured by CCK-8, RT-qPCR, and ELISA. RNA-seq was further performed to systematically analyze the related global changes and underlying mechanisms. Results Local injection of iMSC-sEVs was effective in alleviating pain in the tendinopathy rats compared with the vehicle group. Tendon histology showed ameliorated tendinopathy characteristics. Upon iMSC-sEVs treatment, significantly increased tenocyte proliferation and less expression of proinflammatory cytokines were observed. Transcriptome analysis revealed that iMSC-sEVs treatment upregulated the expression of genes involved in cell proliferation and downregulated the expression of genes involved in inflammation and collagen degeneration. Conclusion Collectively, this study demonstrated iMSC-sEVs protect tenocytes from inflammatory stimulation and promote cell proliferation as well as collagen synthesis, thereby relieving pain derived from tendinopathy. As a cell-free regenerative treatment, iMSC-sEVs might be a promising therapeutic candidate for tendinopathy.
Collapse
Affiliation(s)
- Zhaochen Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Renzhi Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Teng Ye
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Kai Feng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Yu Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Zongping Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
- Correspondence: Zongping Xie, Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai, 200233, People’s Republic of China Email
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| |
Collapse
|
6
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
7
|
Ebrahiminaseri A, Sadeghizadeh M, Moshaii A, Asgaritarghi G, Safari Z. Combination treatment of dendrosomal nanocurcumin and low-level laser therapy develops proliferation and migration of mouse embryonic fibroblasts and alter TGF-β, VEGF, TNF-α and IL-6 expressions involved in wound healing process. PLoS One 2021; 16:e0247098. [PMID: 33956815 PMCID: PMC8101758 DOI: 10.1371/journal.pone.0247098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Pressure ulcer (PU) is known as the third most costly disorder usually caused by prolonged pressure and stagnation in various parts of the body. Although several therapeutic approaches are employing, obstacles in appropriate healing for skin lesions still exist which necessitates new practical alternative or adjunctive treatments. Low level laser therapy (LLLT) as one of the mentioned new strategies have gained attention. Besides, curcumin is an herbal medicine extracted from turmeric with anti-inflammatory and antioxidative properties with promising beneficial therapeutic effects in wound healing. Employing dendrosomal nanoparticles, we overcome the hydrophobicity of curcumin in the present study. We hypothesized that combination treatment of DNC+LLLT (450 nm) simultaneously may promote the wound healing process. MATERIAL AND METHODS MTT assay, PI staining followed by flowcytometry, scratch assay and intracellular ROS measurement were used to investigate the effects caused by DNC and LLLT (450 nm) alone and in combination, on proliferation, cell cycle, migration and oxidative stress mouse embryonic fibroblast cells, respectively. The levels of growth factors and pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. RESULTS Our results indicated that combination exposure with DNC and LLLT leads to increased proliferation and migration of MEFs as well as being more efficient in significantly upregulating growth factors (TGF-β, VEGF) and decline in inflammatory cytokines (TNF-α, IL-6). Moreover, findings of this research provide persuasive support for the notion that DNC could reduce the LLLT-induced enhancement in intracellular ROS in mouse embryonic fibroblasts. CONCLUSION Concurrent exposure to anti-oxidant concentrations of DNC and LLLT enriched S phase entry and therefor increased proliferation as well as migration on MEFs through regulating the expression levels growth factors and shortening the inflammatory phase by modulating of cytokines. It should be noted that DNC were able to reduce the laser-induced oxidative stress, during wound healing, representing an informative accompaniment with LLLT.
Collapse
Affiliation(s)
- Afsaneh Ebrahiminaseri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, Tehran, Iran
| | - Golareh Asgaritarghi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Choi HJ, Choi S, Kim JG, Song MH, Shim KS, Lim YM, Kim HJ, Park K, Kim SE. Enhanced tendon restoration effects of anti-inflammatory, lactoferrin-immobilized, heparin-polymeric nanoparticles in an Achilles tendinitis rat model. Carbohydr Polym 2020; 241:116284. [PMID: 32507170 DOI: 10.1016/j.carbpol.2020.116284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
Gradual wear and tear can cause a local inflammatory response in tendons. The trauma and inflammatory reaction eventually impair the biomechanical properties of the tendon. In this study, we prepared lactoferrin-immobilized, heparin-anchored, poly(lactic-co-glycolic acid) nanoparticles (LF/Hep-PLGA NPs) and evaluated their in vitro anti-inflammatory effects on interleukin-1β (IL-1β)-treated tenocytes and in vivo tendon healing effects in a rat model of Achilles tendinitis. Long-term LF-deliverable NPs (LF/Hep-PLGA NPs) remarkably decreased mRNA levels of pro-inflammatory factors [cyclooxygenase-2 (COX-2), IL-1β, matrix metalloproteinase-3 (MMP-3), MMP-13, IL-6, and tumor necrosis factor-α (TNF-α)] and increased mRNA levels of anti-inflammatory cytokines (IL-4 and IL-10) in both IL-1β-treated tenocytes and the Achilles tendons of a collagenase-induced Achilles tendinitis rat model. Interestingly, anti-inflammatory LF/Hep-PLGA NPs greatly enhanced collagen content, mRNA levels of tenogenic markers [collagen type I (COL1A1), decorin (DCN), tenascin-C (TNC)], and biomechanical properties such as tendon stiffness and tensile strength. These results suggest that anti-inflammatory LF/Hep-PLGA NPs are effective at restoring tendons in Achilles tendinitis.
Collapse
Affiliation(s)
- Hong Joon Choi
- Department of Orthopedic Surgery, College of Medicine Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea; Yonsei gunwoo Hospital, #1814, Nambusunhwan-ro, Gwanak-gu, Seoul, 08787, Republic of Korea
| | - Somang Choi
- Department of Biomedical Science, College of Medicine Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae Gyoon Kim
- Department of Orthopedic Surgery, Korea University, College of Medicine, Korea University Ansan Hospital 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea
| | - Mi Hyun Song
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, #80, Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kyu-Sik Shim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, #80, Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hak-Jun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, #80, Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea.
| | - Sung Eun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, #80, Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
9
|
Therapeutic Efficacy of Intratendinous Delivery of Dexamethasone Using Porous Microspheres for Amelioration of Inflammation and Tendon Degeneration on Achilles Tendinitis in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5052028. [PMID: 32090096 PMCID: PMC6996678 DOI: 10.1155/2020/5052028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022]
Abstract
Achilles tendinitis caused by overuse, aging, or gradual wear induces pain, swelling, and stiffness of Achilles tendon and leads to tendon rupture. This study was performed to investigate the suppression of inflammation responses in interleukin-1β- (IL-1β-) stimulated tenocytes in vitro and the suppression of the progression of Achilles tendinitis-induced rat models in vivo using dexamethasone-containing porous microspheres (DEX/PMSs) for a sustained intratendinous DEX delivery. DEX from DEX/PMSs showed the sustained release of DEX. Treatment of IL-1β-stimulated tenocytes with DEX/PMSs suppressed the mRNA levels for COX-2, IL-1β, IL-6, and TNF-α. The intratendinous injection of DEX/PMSs into Achilles tendinitis rats both decreased the mRNA levels for these cytokines and increased mRNA levels for anti-inflammatory cytokines IL-4 and IL-10 in tendon tissues. Furthermore, DEX/PMSs effectively prevented tendon degeneration by enhancing the collagen content and biomechanical properties. Our findings suggest that DEX/PMSs show great potential as a sustained intratendinous delivery system for ameliorating inflammation responses as well as tendon degeneration in Achilles tendinitis.
Collapse
|
10
|
Accelerated Osteogenic Differentiation of MC3T3-E1 Cells by Lactoferrin-Conjugated Nanodiamonds through Enhanced Anti-Oxidant and Anti-Inflammatory Effects. NANOMATERIALS 2019; 10:nano10010050. [PMID: 31878270 PMCID: PMC7022293 DOI: 10.3390/nano10010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to investigate the effects of lactoferrin (LF)-conjugated nanodiamonds (NDs) in vitro on both anti-oxidant and anti-inflammation activity as well as osteogenic promotion. The application of LF-NDs resulted in sustained release of LF for up to 7 days. In vitro anti-oxidant analyses performed using Dichlorofluorescin diacetate (DCF-DA) assay and cell proliferation studies showed that LF (50 μg)-NDs effectively scavenged the reactive oxygen species (ROS) in MC3T3-E1 cells (osteoblast-like cells) after H2O2 treatment and increased proliferation of cells after H2O2 treatment. Treatment of lipopolysaccharide (LPS)-induced MC3T3-E1 cells with LF-NDs suppressed levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In addition, LF-NDs were associated with outstanding enhancement of osteogenic activity of MC3T3-E1 cells due to increased alkaline phosphatase (ALP) and calcium deposition. Our findings suggest that LF-NDs are an important substrate for alleviating ROS effects and inflammation, as well as promoting osteogenic differentiation of cells.
Collapse
|
11
|
Kim SE, Kim JG, Park K. Biomaterials for the Treatment of Tendon Injury. Tissue Eng Regen Med 2019; 16:467-477. [PMID: 31624702 DOI: 10.1007/s13770-019-00217-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022] Open
Abstract
Background Most tendon injuries are occurring from a gradual wearing and tearing of the tendon tissues from overuse. Such injuries are usually seen in sports, exercising, or daily activities that involve a high mechanical load and weight bearing. However, owing to the lack of both cellularity and blood vessels in tendons, the process of tendon repair is slow and inefficient. Although various conservative (non-surgical) and surgical management options are conducted by the clinicians, a gold standard of these approaches does not exist. In this regard, the treatment of tendon injuries is challenging. Method Here, we describe the recent advances of biomaterial-based approaches for the treatment of injured tendons. Results Regenerative medicine is an emerging multidisciplinary research that specializes in the repair of damaged tendon tissues through the delivery of regenerative factors by biomaterials. Conclusion Although current biomaterial-based treatment strategies have shown their potential for tendon healing, future research and clinical applications should focused on finding the optimum combinations of regenerative factors with ideal biomaterials for the repair of tendons.
Collapse
Affiliation(s)
- Sung Eun Kim
- 1Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308 Republic of Korea
| | - Jae Gyoon Kim
- Department of Orthopedic Surgery, College of Medicine, Korea University Ansan Hospital, Korea University, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355 Republic of Korea
| | - Kyeongsoon Park
- 3Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546 Republic of Korea
| |
Collapse
|
12
|
Lee TH, Kim SE, Lee JY, Kim JG, Park K, Kim HJ. Wrapping of tendon tissues with diclofenac-immobilized polycaprolactone fibrous sheet improves tendon healing in a rabbit model of collagenase-induced Achilles tendinitis. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Ahangari N, Kargozar S, Ghayour-Mobarhan M, Baino F, Pasdar A, Sahebkar A, Ferns GAA, Kim HW, Mozafari M. Curcumin in tissue engineering: A traditional remedy for modern medicine. Biofactors 2019; 45:135-151. [PMID: 30537039 DOI: 10.1002/biof.1474] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
Curcumin is the principal polyphenolic compound present in turmeric with broad applications in tissue engineering and regenerative medicine. It has some important inherent properties with the potential to facilitate tissue healing, including anti-inflammatory, anti-oxidant, and antibacterial activities. Therefore, curcumin has been used for the treatment of various damaged tissues, especially wound injuries. There are different forms of curcumin, among which nano-formulations are of a great importance in regenerative medicine. It is also important to design sophisticated delivery systems for controlled/localized delivery of curcumin to the target tissues and organs. Although there are many reports on the advantages of this compound, further research is required to fully explore its clinical usage. The review describes the physicochemical and biological properties of curcumin and the current state of the evidence on its applications in tissue engineering. © 2018 BioFactors, 45(2):135-151, 2019.
Collapse
Affiliation(s)
- Najmeh Ahangari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, Brighton, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, South Korea
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kang S, Yoon JS, Lee JY, Kim HJ, Park K, Kim SE. Long-term local PDGF delivery using porous microspheres modified with heparin for tendon healing of rotator cuff tendinitis in a rabbit model. Carbohydr Polym 2019; 209:372-381. [PMID: 30732820 DOI: 10.1016/j.carbpol.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
Abstract
In this study, we prepared the platelet-derived growth factor-containing porous microspheres modified with heparin (PDGF/Hep-PMSs) and investigated their anti-inflammatory and tendon healing effects on rotator cuff (RC) tendinitis rabbit model. PDGF/Hep-PMSs suppressed the mRNA levels of six pro-inflammatory cytokines (i.e., MMP-3, MMP-13, COX-2, ADAMTS-5, IL-6, and TNF-α) in inflamed tenocytes. Long-term local delivery of PDGF/Hep-PMSs into tendon tissues of RC tendinitis decreased the mRNA levels of six pro-inflammatory cytokines and increased the mRNA levels of anti-inflammatory cytokines including IL-4, IL-10, and IL-13. Anti-inflammatory effects of PDGF/Hep-PMSs might have contributed to enhance the collagen content, tenogenic markers, stiffness, and tensile strength of tendons, eventually leading to tendon restoration. Our findings suggest that the long-term local PDGF delivery of PDGF/Hep-PMSs have a great potential to enhance tendon healing of RC tendinitis by suppressing inflammation responses.
Collapse
Affiliation(s)
- Seok Kang
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Joon Shik Yoon
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Jae Yong Lee
- Department of Biomedical Science, Korea University Medical College, Korea University, Anam-dong, Seongbuk-gu, 02841, South Korea
| | - Hak-Jun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, South Korea.
| | - Sung Eun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| |
Collapse
|
15
|
Exploring the In Vivo Anti-Inflammatory Actions of Simvastatin-Loaded Porous Microspheres on Inflamed Tenocytes in a Collagenase-Induced Animal Model of Achilles Tendinitis. Int J Mol Sci 2018. [PMID: 29534523 PMCID: PMC5877681 DOI: 10.3390/ijms19030820] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tendon rupture induces an inflammatory response characterized by release of pro-inflammatory cytokines and impaired tendon performance. This study sought to investigate the therapeutic effects of simvastatin-loaded porous microspheres (SIM/PMSs) on inflamed tenocytes in vitro and collagenase-induced Achilles tendinitis in vivo. The treatment of SIM/PMSs in lipopolysaccharide (LPS)-treated tenocytes reduced the mRNA expressions of pro-inflammatory cytokines (Matrix metalloproteinase-3 (MMP-3), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)). In addition, the local injection of SIM/PMSs into the tendons of collagenase-induced Achilles tendinitis rat models suppressed pro-inflammatory cytokines (MMP-3, COX-2, IL-6, TNF-α, and MMP-13). This local treatment also upregulated anti-inflammatory cytokines (IL-4, IL-10, and IL-13). Furthermore, treatment with SIM/PMSs also improved the alignment of collagen fibrils and effectively prevented collagen disruption in a dose-dependent manner. Therefore, SIM/PMSs treatment resulted in an incremental increase in the collagen content, stiffness, and tensile strength in tendons. This study suggests that SIM/PMSs have great potential for tendon healing and restoration in Achilles tendinitis.
Collapse
|