1
|
Abhishek S, Ghosh A, Pandey B. A comprehensive review on phytoremediation of fly ash and red mud: exploring environmental impacts and biotechnological innovations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35217-2. [PMID: 39382806 DOI: 10.1007/s11356-024-35217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Fly ash (FA) and red mud (RM) are industrial byproducts generated by thermal power plants and the aluminum industry, respectively. The huge generation of FA and RM is a significant global issue, and finding a safe and sustainable disposal method remains a challenge. These dumps contain harmful trace elements that have a significant impact on the environment and human health. It contributes to air, water, and soil pollution, disrupting the delicate balance of the ecosystems. It also introduces toxins into the food chain through biomagnification. Utilizing a vegetation cover can assist in addressing environmental health concerns associated with FA and RM dumps. Nevertheless, the presence of alkaline pH, toxic metals, the absence of soil microbes, and the pozzolanic properties of both FA and RM pose challenges to plant growth. Taking a comprehensive approach to the ecological restoration of these dumps through phytoremediation is crucial. This review examines the role of various factors in the ecological restoration of FA and RM dumps, specifically the use of naturally occurring plants. However, the issue of slow plant growth due to a lack of nutrients and microbial activities is being resolved through various advances, such as amendments in conjunction with organic matter, microbial inoculants, and the use of genetically modified plants. Research has demonstrated the benefits of using amendments to stimulate vegetation growth on FA and RM dumps. In this review, we explore various approaches to restoring FA and RM dumps and transforming them into productive sites that enhance the ecosystem services.
Collapse
Affiliation(s)
- Shubham Abhishek
- CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand, 826001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Annesha Ghosh
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Bhanu Pandey
- CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand, 826001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Nadeem H, Jamil F, Iqbal MA, Nee TW, Kashif M, Ibrahim AH, Al-Rawi SS, Zia SU, Shoukat US, Kanwal R, Ahmad F, Khalid S, Rehman MT. Comparative study on efficiency of surface enhanced coal fly ash and raw coal fly ash for the removal of hazardous dyes in wastewater: optimization through response surface methodology. RSC Adv 2024; 14:22312-22325. [PMID: 39010920 PMCID: PMC11247386 DOI: 10.1039/d4ra04075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Crystal violet (CV) dye, because of its non-biodegradability and harmful effects, poses a significant challenge for wastewater treatment. This study addresses the efficiency of easily accessible coal fly ash (CFA)-based adsorbents such as raw coal fly ash (RCFA) and surface enhanced coal fly ash (SECFA), in removing CV dye from waste effluents. Various analytical techniques such as FTIR, XRD, SEM, TEM, BET, zeta sizer and zeta potential were employed for the characterization of the adsorbents and dye-loaded samples. BET revealed that RCFA possesses a surface area of 19.370 m2 g-1 and SECFA of 27.391 m2 g-1, exhibiting pore volumes of 0.1365 cm3 g-1 and 0.1919 cm3 g-1 respectively. Zeta-sizer and potential analysis showed the static charges of RCFA as -27.3 mV and SECFA as -28.2 mV, with average particle sizes of 346.6 and 315.3 nm, respectively. Langmuir and Freundlich adsorption isotherms were also employed for adsorption studies. Employing central composite design (CCD) of response surface methodology (RSM), the maximum CV removal was 81.52% for RCFA and 97.52% for SECFA, providing one minute contact time, 0.0125 g adsorbent dose and 10 ppm dye concentration. From the thermodynamic studies, all the negative values of ΔG° showed that all the adsorption processes of both adsorbents were spontaneous in nature.
Collapse
Affiliation(s)
- Haris Nadeem
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Faisal Jamil
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
- Department of Chemistry, Synthetic Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad 38000 Pakistan
| | - Tan Wen Nee
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia 11800 Penang Malaysia
| | - Muhammad Kashif
- Department of Mathematics and Statistics, University of Agriculture Faisalabad 38000 Pakistan
| | - Ahmad Hamdy Ibrahim
- Pharmacy Department, Faculty of Pharmacy, Tishk International University 100mt. St, Near Baz Intersection Erbil KRG Iraq
| | - Sawsan S Al-Rawi
- Biology Education Department, Faculty of Education, Tishk International University 100mt. St, Near Baz Intersection Erbil KRG Iraq
| | - Sami Ullah Zia
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Umar Sohail Shoukat
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rimsha Kanwal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Farhan Ahmad
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Sabha Khalid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | | |
Collapse
|
3
|
Fang Y, Yang L, Rao F, Zhang K, Qin Z, Song Z, Na Z. Behaviors and Mechanisms of Adsorption of MB and Cr(VI) by Geopolymer Microspheres under Single and Binary Systems. Molecules 2024; 29:1560. [PMID: 38611839 PMCID: PMC11013745 DOI: 10.3390/molecules29071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Geopolymers show great potential in complex wastewater treatment to improve water quality. In this work, general geopolymers, porous geopolymers and geopolymer microspheres were prepared by the suspension curing method using three solid waste products, coal gangue, fly ash and blast furnace slag. The microstructure, morphology and surface functional groups of the geopolymers were studied by SEM, XRD, XRF, MIP, FTIR and XPS. It was found that the geopolymers possess good adsorption capacities for both organic and inorganic pollutants. With methylene blue and potassium dichromate as the representative pollutants, in order to obtain the best removal rate, the effects of the adsorbent type, dosage of adsorbent, concentration of methylene blue and potassium dichromate and pH on the adsorption process were studied in detail. The results showed that the adsorption efficiency of the geopolymers for methylene blue and potassium dichromate was in the order of general geopolymers < porous geopolymers < geopolymer microspheres, and the removal rates were up to 94.56% and 79.46%, respectively. Additionally, the competitive adsorption of methylene blue and potassium dichromate in a binary system was also studied. The mechanism study showed that the adsorption of methylene blue was mainly through pore diffusion, hydrogen bond formation and electrostatic adsorption, and the adsorption of potassium dichromate was mainly through pore diffusion and redox reaction. These findings demonstrate the potential of geopolymer microspheres in adsorbing organic and inorganic pollutants, and, through five cycles of experiments, it is demonstrated that MGP exhibits excellent recyclability.
Collapse
Affiliation(s)
- Yi Fang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Lang Yang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
- State Key Laboratory of Mineral Processing, Beijing 102628, China
| | - Feng Rao
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Kaiming Zhang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Zhuolin Qin
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Zhenguo Song
- State Key Laboratory of Mineral Processing, Beijing 102628, China
| | - Zhihui Na
- Yunnan Phosphate Haikou Co., Ltd., Kunming 650114, China
| |
Collapse
|
4
|
Lu G, Han J, Chen Y, Xue H, Qiu R, Zhou X, Ma Z. Synthesis of Porous Materials Using Magnesium Slag and Their Adsorption Performance for Lead Ions in Aqueous Solution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7083. [PMID: 38005013 PMCID: PMC10672025 DOI: 10.3390/ma16227083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were studied, and the micromorphology and porosity of the MSBPM were observed using microscopy. The influence of pH value, initial concentration, and adsorbent dosage on the Pb2+ adsorption was investigated. The results showed that a porous material (MSBPM-H2O2) with high compressive strength (8.46 MPa) and excellent Pb2+ adsorption capacity (396.11 mg·g-1) was obtained under the optimal conditions: a H2O2 dosage of 3%, an alkali dosage of 9%, a water glass modulus of 1.3, and a liquid-solid ratio of 0.5. Another porous material (MSBPM-Al) with a compressive strength of 5.27 MPa and the Pb2+ adsorption capacity of 424.89 mg·g-1 was obtained under the optimal conditions: an aluminum powder dosage of 1.5‱, an alkali dosage of 8%, a water glass modulus of 1.0, and a liquid-solid ratio of 0.5. When the pH of the aqueous solution is 6 and the initial Pb2+ concentrations are 200~500 mg·L-1, the MSBPM-H2O2 and MSBPM-Al can remove more than 99% of Pb2+ in the solution. The adsorption process of both materials followed the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process was a single-molecule layer chemical adsorption.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhibin Ma
- State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (G.L.); (J.H.); (Y.C.); (H.X.); (R.Q.); (X.Z.)
| |
Collapse
|
5
|
Ahmed DA, El-Apasery MA, Aly AA, Ragai SM. Green Synthesis of the Effectively Environmentally Safe Metakaolin-Based Geopolymer for the Removal of Hazardous Industrial Wastes Using Two Different Methods. Polymers (Basel) 2023; 15:2865. [PMID: 37447510 DOI: 10.3390/polym15132865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Untreated wastewater pollution causes environmental degradation, health issues, and ecosystem disruption. Geopolymers offer sustainable, eco-friendly alternatives to traditional cement-based materials for wastewater solidification and removal. In this study, we investigate how wastewater containing organic and inorganic pollutants can be removed using geopolymer mixes based on metakaolin incorporation with cement kiln dust as an eco-friendly material. The present investigation compares the efficacy of two different techniques (solidification and adsorption) for reducing dye contaminants and heavy metals from wastewater using a geopolymer based on metakaolin incorporation with cement kiln dust. This study investigated the adsorption capacity of a geopolymer based on metakaolin incorporating two different ratios (20% and 40% by weight) of cement kiln dust (MC1 and MC2) for the reactive black 5 dyeing bath effluent (RBD) only and in a combination of 1200 mg/L of Pb2+ and Cd2+, each separately, in aqueous solutions under different adsorption parameters. The results of the adsorption technique for the two prepared geopolymer mixes, MC1 and MC2, show that MC1 has a higher adsorption activity than MC2 toward the reactive black 5 dyeing bath effluent both alone and in combination with Pb2+ and Cd2+ ions separately. The study also looked at using MC1 mix to stabilize and solidify both the dyeing bath effluent alone and its combination with 1200 mg/L of each heavy metal individually inside the geopolymer matrix for different time intervals up to 60 days of water curing at room temperature. The geopolymer matrix formed during the process was analyzed using FTIR, SEM, and XRD techniques to examine the phases of hydration products formed. The results showed that MC1 effectively adsorbs, stabilizes, and solidifies the dying bath effluent for up to 60 days, even with high heavy metal concentrations. On the other hand, geopolymer mixes showed an increase in mechanical properties when hydration time was increased to 60 days. According to our findings, the type of geopolymer developed from metakaolin and 20 wt.% cement kiln dust has the potential to be employed in the treatment of wastewater because it has good adsorption and solidification activity for the reactive black 5 dye effluent alone and for a mixture of dye pollutants with both Pb2+ and Cd2+ ions separately. Our results have significant implications for wastewater treatment and environmental remediation efforts, as they offer a sustainable solution for managing hazardous waste materials.
Collapse
Affiliation(s)
- Doaa A Ahmed
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Morsy A El-Apasery
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute (TRT), National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Amal A Aly
- Pretreatment and Finishing of Cellulosic Based Textiles Department, Textile Research and Technology Institute (TRT), National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Shereen M Ragai
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| |
Collapse
|
6
|
Nguyen HHT, Nguyen HT, Ahmed SF, Rajamohan N, Yusuf M, Sharma A, Arunkumar P, Deepanraj B, Tran HT, Al-Gheethi A, Vo DVN. Emerging waste-to-wealth applications of fly ash for environmental remediation: A review. ENVIRONMENTAL RESEARCH 2023; 227:115800. [PMID: 37003549 DOI: 10.1016/j.envres.2023.115800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
The considerable increase in world energy consumption owing to rising global population, intercontinental transportation and industrialization has posed numerous environmental concerns. Particularly, in order to meet the required electricity supply, thermal power plants for electricity generation are widely used in many countries. However, an annually excessive quantity of waste fly ash up to 1 billion tones was globally discarded from the combustion of various carbon-containing feedstocks in thermoelectricity plants. About half of the industrially generated fly ash is dumped into landfills and hence causing soil and water contamination. Nonetheless, fly ash still contains many valuable components and possesses outstanding physicochemical properties. Utilizing waste fly ash for producing value-added products has gained significant interests. Therefore, in this work, we reviewed the current implementation of fly ash-derived materials, namely, zeolite and geopolymer as efficient adsorbents for the environmental treatment of flue gas and polluted water. Additionally, the usage of fly ash as a catalyst support for the photodegradation of organic pollutants and reforming processes for the corresponding wastewater remediation and H2 energy generation is thoroughly covered. In comparison with conventional carbon-based adsorbents, fly ash-derived geopolymer and zeolite materials reportedly exhibited greater heavy metal ions removal and reached the maximum adsorption capacity of about 150 mg g-1. As a support for biogas reforming process, fly ash could enhance the activity of Ni catalyst with 96% and 97% of CO2 and CH4 conversions, respectively.
Collapse
Affiliation(s)
- Hong-Ha T Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Ha Tran Nguyen
- National Key Laboratory of Polymer and Composite Materials, Ho Chi Minh City University of Technology, Vietnam National University-Ho Chi Minh City (VNU-HCM), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Viet Nam
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Priya Arunkumar
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India
| | - Balakrishnan Deepanraj
- College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 700000, Vietnam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 700000, Vietnam.
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
7
|
Maged A, El-Fattah HA, Kamel RM, Kharbish S, Elgarahy AM. A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: circular economy and future outlook. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:693. [PMID: 37204517 DOI: 10.1007/s10661-023-11303-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
In the present era of significant industrial development, the presence and dispersal of countless water contaminants in water bodies worldwide have rendered them unsuitable for various forms of life. Recently, the awareness of environmental sustainability for wastewater treatment has increased rapidly in quest of meeting the global water demand. Despite numerous conventional adsorbents on deck, exploring low-cost and efficient adsorbents is interesting. Clays and clays-based geopolymers are intensively used as natural, alternative, and promising adsorbents to meet the goals for combating climate change and providing low carbon, heat, and power. In this narrative work, the present review highlights the persistence of some inorganic/organic water pollutants in aquatic bodies. Moreover, it comprehensively summarizes the advancement in the strategies associated with synthesizing clays and their based geopolymers, characterization techniques, and applications in water treatment. Furthermore, the critical challenges, opportunities, and future prospective regarding the circular economy are additionally outlined. This review expounded on the ongoing research studies for leveraging these eco-friendly materials to address water decontamination. The adsorption mechanisms of clays-based geopolymers are successfully presented. Therefore, the present review is believed to deepen insights into wastewater treatment using clays and clays-based geopolymers as a groundbreaking aspect in accord with the waste-to-wealth concept toward broader sustainable development goals.
Collapse
Affiliation(s)
- Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Hadeer Abd El-Fattah
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Rasha M Kamel
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Sherif Kharbish
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
8
|
Zhao W, Feng K, Zhang H, Han L, He Q, Huang F, Yu W, Guo F, Wang W. Sustainable green conversion of coal gangue waste into cost-effective porous multimetallic silicate adsorbent enables superefficient removal of Cd(II) and dye. CHEMOSPHERE 2023; 324:138287. [PMID: 36871800 DOI: 10.1016/j.chemosphere.2023.138287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Converting solid wastes into new materials for wastewater decontamination is a feasible "one stone, three birds" strategy to achieve sustainable value-added utilization of resources and minimize waste emissions, but significant challenges remain. In response to this, we proposed an efficient "mineral gene reconstruction" method to synchronously transform coal gangue (CG) into a green porous silicate adsorbent without using any harmful chemicals (i.e., surfactants, organic solvents). The one of the synthesized adsorbents with a high specific surface area (582.28 m2/g) and multimetallic active centres shows outstanding adsorption performance (adsorption capacities: 168.92 mg/g for Cd(II), 234.19 mg/g for methylene blue (MB); removal rate: 99.04% for Cd(II) and 99.9% for MB). The adsorbent can also reach a high removal rate of 99.05%∼99.46% and 89.23%∼99.32% for MB and Cd(II) in real water samples (i.e., Yangtze River, Yellow River, seawater and tap water), respectively. After 5 adsorption-desorption cycles, the adsorption efficiency remained above 90%. The adsorbents mainly adsorbed Cd(II) by electrostatic attraction, surface complexation and partial ion exchange and MB by electrostatic and hydrogen bonding interactions. This study provides a sustainable and promising platform for developing a new-generation cost-efficient adsorbent from waste for clean water production.
Collapse
Affiliation(s)
- Wenting Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ke Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Lei Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Fei Huang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Wenmeng Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
9
|
Ahmed DA, El-Apasery MA, Ragai SM. Immobilization Approach as a Creative Strategy to Remove Reactive Dye Red 195 and Cu2+ Ions from Wastewater Using Environmentally Benign Geopolymer Cement. Polymers (Basel) 2023; 15:polym15071797. [PMID: 37050411 PMCID: PMC10098900 DOI: 10.3390/polym15071797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Water is a resource that is essential to almost all phases of industrial and manufacturing operations globally. It is important to handle the wastewater generated professionally. The textile industry is one of the major global polluters, with textile producers responsible for one-fifth of all industrial water pollution worldwide. In contrast, heavy metal contamination has developed into a critical, expanding global environmental problem. Geopolymer is a cementitious constituent of amorphous aluminosilicates derived from natural or industrial wastes. It is produced using the polymerization of aluminosilicate raw ingredients in an alkaline atmosphere. The aim of this study is to evaluate the application of eco-friendly geopolymer cement in the immobilization technique for the treatment of wastewater including heavy metals and dyes. Geopolymer cement pastes were organized using slag and fly ash as an aluminosilicate source, (1:1) sodium silicate and sodium hydroxide 15 wt.% as an alkali activator in the presence of organic dye pollutant reactive red 195, and Cu2+ ions (700 ppm) at different hydration times for up to 28 days. The physicochemical and mechanical properties of the prepared geopolymer cement mixes were further examined in relation to reactive dye pollutant and Cu2+ ions. The hydration characteristic was examined using the compressive strength and % of total porosity tests, as well as FTIR and XRD studies. Our findings support the 100% immobilization of both Cu2+ ions and organic dye pollutants in prepared geopolymer pastes for up to 28 days of hydration. Additionally, adding both Cu2+ ions and dye pollutants to the prepared geopolymer paste improves its mechanical properties, which is also supported by FTIR data. XRD and FTIR studies showed that the Cu2+ ions and dying bath effluent addition have no influence on the kind of hydration products that are produced. On the other hand, the geopolymerization process is negatively impacted by the presence of Cu2+ ions alone in the geopolymer paste.
Collapse
Affiliation(s)
- Doaa A. Ahmed
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Morsy A. El-Apasery
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Shereen M. Ragai
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| |
Collapse
|
10
|
Zhang X, Zhang X, Li X, Liu Y, Yu H, Ma M. Porous geopolymer with controllable interconnected pores-a viable permeable reactive barrier filler for lead pollutant removal. CHEMOSPHERE 2022; 307:136128. [PMID: 35995199 DOI: 10.1016/j.chemosphere.2022.136128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Most of the commonly used traditional permeable reactive barrier (PRB) fillers have many drawbacks, such as poor retention of hydraulic conductivity, high cost, and a complex preparation process. Porous geopolymers (PGPs) with controllable pore structures could circumvent these drawbacks owing to their high adsorption capacity, cost-effective synthesis, and good chemical stability. In this study, based on our previous research, the "foaming-liquid film" balance control method was proposed and used to fabricate three PGPs with gradient pore connectivity. The influence of pore structure on the Pb2+ removal performance and migration mechanism were investigated by conducting both batch and column experiments. Closed, dead-end, capillary, and interconnected pores exist in the PGPs, and results indicated that interconnected pores effectively promote the migration of solute in the main flow channels to the deeper matrix, thereby enhancing the long-term dynamic removal efficiency. At breakthrough, the Pb2+ uptake of PGP-3 reached 146 mg g-1. Further, the proposed "foaming-liquid film" balance control method is effective to prepare PGPs with controllable connectivity, and the PGP-PRBs with a high proportion of interconnected pores exhibit excellent performance for the removal of heavy metals, which is advantageous for their future applications in groundwater decontamination.
Collapse
Affiliation(s)
- Xuhao Zhang
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Xiao Zhang
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China.
| | - Xianghui Li
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Yanshun Liu
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Hao Yu
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Minghui Ma
- Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| |
Collapse
|
11
|
Açışlı Ö, Acar İ, Khataee A. Preparation of a surface modified fly ash-based geopolymer for removal of an anionic dye: Parameters and adsorption mechanism. CHEMOSPHERE 2022; 295:133870. [PMID: 35131269 DOI: 10.1016/j.chemosphere.2022.133870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 05/12/2023]
Abstract
Geopolymers have been recently studied as environmentally friendly and low-cost adsorbents especially for the removal of cationic species in wastewater treatment mainly because of their negative surface charge at spontaneous pH conditions. Although there are very few recent studies conducted with different geopolymer composites on anionic dyes, high cost, difficulty of the composite preparation and most importantly the necessity of very low pH values limit their usage. Hence, in this study, a simple and low-cost surface modification with CTAB was applied to a previously prepared fly ash-based geopolymer (GEO) for the removal of anionic Acid Blue 185 (AB185) without the need of strongly acidic conditions. Within this scope, the effects of CTAB dosage (1-5% by weight of GEO), adsorbent dosage (0.5-3.0 g L-1) and initial dye concentration (10-50 mg L-1) were studied as a function of retention time (5-300 min). For 40 min, the removal efficiency of AB185 substantially increased from 0.29 up to 79.36% for the respective GEO and its modified product with 4% CTAB (MGEO4). The efficiency increased with the adsorbent (MGEO4) dosage of up to 2.0 g L-1 at which 89.20% was obtained for 300 min. However, a little decrease was observed down to 81.10% for 3.0 g L-1. The efficiency values of 98.19 and 89.20% were obtained for the initial AB185 concentrations of 10 and 50 mg L-1, respectively. The Langmuir-Hinshelwood kinetic model is highly correlated with the experimental results. The high adsorption capacity attained in a very short time suggests that the main mechanism is based on physical adsorption via the electrostatic attraction between MGEO4 and AB185. Overall results have indicated that the CTAB-modified fly ash-based geopolymer can be effectively used for the adsorption of AB185.
Collapse
Affiliation(s)
- Özkan Açışlı
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - İlker Acar
- Department of Environmental Engineering, Faculty of Engineering, Atatürk University, 25240, Erzurum, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation.
| |
Collapse
|
12
|
Yan S, Ren X, Zhang F, Huang K, Feng X, Xing P. Comparative study of Pb2+, Ni2+, and methylene blue adsorption on spherical waste solid-based geopolymer adsorbents enhanced with carbon nanotubes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Rashtbari Y, Afshin S, Hamzezadeh A, Gholizadeh A, Ansari FJ, Poureshgh Y, Fazlzadeh M. Green synthesis of zinc oxide nanoparticles loaded on activated carbon prepared from walnut peel extract for the removal of Eosin Y and Erythrosine B dyes from aqueous solution: experimental approaches, kinetics models, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5194-5206. [PMID: 34417700 DOI: 10.1007/s11356-021-16006-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Water contamination due to release of dye containing effluents is one of the environmental problems of serious concern today. The present study investigate the green synthesis of zinc oxide nanoparticles (ZnO-NPs) doped on activated carbon (AC) prepared from walnut peel extract and to estimate its efficiency in the removal of Eosin Y (Eo-Y) and Erythrosine B (Er-B) from its aqueous solution. The synthesized AC-ZnO was identified by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and the Brunauer-Emmett-Teller. The influence of various parameters such as pH, dosage of AC-ZnO, contact time, and concentrations of Eo-Y and Er-B was also studied. The pH 3 was observed as the optimum pH while the equilibrium was noticed to reach in 30 min at dosage of 1 g/L and initial concentration 100 mg/L for Eo-Y and Er-B adsorption onto AC-ZnO. The maximum adsorption capacity of Eo-Y and Er-B onto AC-ZnO was found to be 163.9 and 144.92 mg/g (and removal efficiencies of 95.11 and 98.31 %), respectively. The process of Eo-Y and Er-B adsorption on AC-ZnO was observed to be depended on the pseudo-second-order kinetic model which indicates chemisorption processes. Langmuir adsorption isotherm model test described the removal of Eo-Y and Er-B on AC-ZnO. The thermodynamic data indicated that the adsorption was endothermic process. Also, the values, SBET and VTOTAL, for the AC-ZnO were equal to 725.65 m2/g and 0.6004 cm3/g, respectively. The results of this study exhibited that AC-ZnO was a very effective method that can be used for the removal of Eo-Y and Er-B from aqueous solutions.
Collapse
Affiliation(s)
- Yousef Rashtbari
- Students Research Committee, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shirin Afshin
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asghar Hamzezadeh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshid Jaberi Ansari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Poureshgh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
14
|
Luhar I, Luhar S, Abdullah MMAB, Razak RA, Vizureanu P, Sandu AV, Matasaru PD. A State-of-the-Art Review on Innovative Geopolymer Composites Designed for Water and Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7456. [PMID: 34885611 PMCID: PMC8658912 DOI: 10.3390/ma14237456] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
There is nothing more fundamental than clean potable water for living beings next to air. On the other hand, wastewater management is cropping up as a challenging task day-by-day due to lots of new additions of novel pollutants as well as the development of infrastructures and regulations that could not maintain its pace with the burgeoning escalation of populace and urbanizations. Therefore, momentous approaches must be sought-after to reclaim fresh water from wastewaters in order to address this great societal challenge. One of the routes is to clean wastewater through treatment processes using diverse adsorbents. However, most of them are unsustainable and quite costly e.g. activated carbon adsorbents, etc. Quite recently, innovative, sustainable, durable, affordable, user and eco-benevolent Geopolymer composites have been brought into play to serve the purpose as a pretty novel subject matter since they can be manufactured by a simple process of Geopolymerization at low temperature, lower energy with mitigated carbon footprints and marvellously, exhibit outstanding properties of physical and chemical stability, ion-exchange, dielectric characteristics, etc., with a porous structure and of course lucrative too because of the incorporation of wastes with them, which is in harmony with the goal to transit from linear to circular economy, i.e., "one's waste is the treasure for another". For these reasons, nowadays, this ground-breaking inorganic class of amorphous alumina-silicate materials are drawing the attention of the world researchers for designing them as adsorbents for water and wastewater treatment where the chemical nature and structure of the materials have a great impact on their adsorption competence. The aim of the current most recent state-of-the-art and scientometric review is to comprehend and assess thoroughly the advancements in geo-synthesis, properties and applications of geopolymer composites designed for the elimination of hazardous contaminants viz., heavy metal ions, dyes, etc. The adsorption mechanisms and effects of various environmental conditions on adsorption efficiency are also taken into account for review of the importance of Geopolymers as most recent adsorbents to get rid of the death-defying and toxic pollutants from wastewater with a view to obtaining reclaimed potable and sparkling water for reuse offering to trim down the massive crisis of scarcity of water promoting sustainable water and wastewater treatment for greener environments. The appraisal is made on the performance estimation of Geopolymers for water and wastewater treatment along with the three-dimensional printed components are characterized for mechanical, physical and chemical attributes, permeability and Ammonium (NH4+) ion removal competence of Geopolymer composites as alternative adsorbents for sequestration of an assortment of contaminants during wastewater treatment.
Collapse
Affiliation(s)
- Ismail Luhar
- Department of Civil Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan 333001, India;
| | - Salmabanu Luhar
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia;
- Frederick Research Center, P.O. Box 24729, Nicosia 1303, Cyprus
- Department of Civil Engineering, Frederick University, Nicosia 1036, Cyprus
| | - Mohd Mustafa Al Bakri Abdullah
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia;
| | - Rafiza Abdul Razak
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia;
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, D. Mangeron 41, 700050 Iasi, Romania
| | - Andrei Victor Sandu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, D. Mangeron 41, 700050 Iasi, Romania
- Romanian Inventors Forum, St. P. Movila 3, 700089 Iasi, Romania
- National Institute for Research and Development in Environmental Protection INCDPM, Splaiul Independentei 294, 060031 Bucuresti, Romania
| | - Petre-Daniel Matasaru
- Faculty of Electronics, Telecommunications and Information Technology, Technical University “Gheorghe Asachi”, Carol I Bvd, nr. 11 A, 700506 Iasi, Romania;
| |
Collapse
|
15
|
Behera U, Das SK, Mishra DP, Parhi PK, Das D. Sustainable Transportation, Leaching, Stabilization, and Disposal of Fly Ash Using a Mixture of Natural Surfactant and Sodium Silicate. ACS OMEGA 2021; 6:22820-22830. [PMID: 34514253 PMCID: PMC8427790 DOI: 10.1021/acsomega.1c03241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The present study evaluates the transportation, leaching, and stabilization ability of novel saponin extracted from the fruits of Acacia auriculiformis. To enhance the dispersing behavior of the fly ash slurry (FAS) at a lower dosage of sodium silicate, A. auriculiformis was incorporated in FAS. In addition to the rheological study, an attempt has been made to remove heavy metals through leaching for the safe disposal of FAS. Critical factors such as the fly ash (FA) concentration, saponin dosage, surface tension, ζ potential, temperature, and combination of saponin and sodium silicate, affecting the rheology of FAS, were extensively studied. The addition of a nonionic natural surfactant saponin has been proved to enhance the wettability of FA particles by decreasing the surface tension of FAS. The obtained rheology results were compared with the stabilization yield of the previously reported commercial surfactant cetyltrimethylammonium bromide. The incorporation of sodium silicate in the FAS system was found to be phenomenal in the settling and stabilization of FAS, thereby developing reaction products like sodium aluminum silicate (N-A-S). This facilitates the sustainable disposal of FA preventing air pollution after dewatering. The formation of N-A-S was further supported by scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies.
Collapse
Affiliation(s)
- Umakanta Behera
- Department
of Mining Engineering, Government College
of Engineering, Keonjhar 758002, Odisha, India
- Department
of Mining Engineering, Indian Institute
of Technology (Indian school of Mines), Dhanbad 826004, Jharkhand, India
| | - Shaswat Kumar Das
- Department
of Civil Engineering, Government College
of Engineering, Keonjhar, 758002, Odisha, India
| | - Devi Prasad Mishra
- Department
of Mining Engineering, Indian Institute
of Technology (Indian school of Mines), Dhanbad 826004, Jharkhand, India
| | - Pankaj Kumar Parhi
- Department
of Chemistry, Fakir Mohan (F.M.) University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Debadutta Das
- Department
of Chemistry, Sukanti Degree College, Subarnapur 767017, Odisha, India
| |
Collapse
|
16
|
Wan J, Zhang F, Han Z, Song L, Zhang C, Zhang J. Adsorption of Cd2+ and Pb2+ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Dinh NT, Vo LNH, Tran NTT, Phan TD, Nguyen DB. Enhancing the removal efficiency of methylene blue in water by fly ash via a modified adsorbent with alkaline thermal hydrolysis treatment. RSC Adv 2021; 11:20292-20302. [PMID: 35479923 PMCID: PMC9033996 DOI: 10.1039/d1ra02637b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
High efficiency of methylene blue adsorbent from waste coal fly ash by treatment with alkaline thermal hydrolysis.
Collapse
Affiliation(s)
- Nga Thi Dinh
- Research Institute for Sustainable Development
- Hochiminh City University of Natural Resources and Environment
- Hochiminh City
- Vietnam
| | - Linh Ngoc Hoang Vo
- Research Institute for Sustainable Development
- Hochiminh City University of Natural Resources and Environment
- Hochiminh City
- Vietnam
| | - Ngoc Thi Thanh Tran
- Research Institute for Sustainable Development
- Hochiminh City University of Natural Resources and Environment
- Hochiminh City
- Vietnam
| | - Tuan Dinh Phan
- Research Institute for Sustainable Development
- Hochiminh City University of Natural Resources and Environment
- Hochiminh City
- Vietnam
| | - Duc Ba Nguyen
- Institute of Research and Development
- Duy Tan University
- Danang 550000
- Vietnam
| |
Collapse
|
18
|
Preparation and Performance of a Low-Carbon Foam Material of Fly-Ash-Based Foamed Geopolymer for the Goaf Filling. MATERIALS 2020; 13:ma13040841. [PMID: 32059604 PMCID: PMC7078911 DOI: 10.3390/ma13040841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
The treatment of goaf subsidence is important for sustainable development. Geopolymer is a new type of cementing material with excellent mechanical properties, durability, corrosion resistance, and other advantages owing to its unique three-dimensional spatial aggregation structure. Herein, a type of preparation technology of fly-ash-based foamed geopolymer suitable for goaf filling was developed by adding a chemical foaming agent to the matrix of fly-ash-based geopolymer. The mechanical properties, chemical composition, and pore structure characteristics of the samples were discussed. When the samples with different contents of fly ash, sodium metasilicate, sodium stearate, H2O2, and NaOH were prepared, a uniaxial compression test was performed to analyze the uniaxial compression failure characteristics and compression strength of the samples. The mineralogical composition of each sample was analyzed by X-ray diffraction (XRD) test, and the microstructure images of different samples were observed using scanning electron microscopy (SEM). The effects of the content of each component on the properties of the samples were discussed. Finally, the CO2 emission, energy consumption, and cost of producing fly-ash-based foamed geopolymer were analyzed. Overall, the material had the advantages of low energy consumption, low CO2 emission, environmental-protection ability, and waste utilization and thus has a broad application prospect in treating subsidence.
Collapse
|