1
|
Yi PC, Zhuo L, Lin J, Chang C, Goddard A, Yoon OK. Impact of delayed PBMC processing on functional and genomic assays. J Immunol Methods 2023:113514. [PMID: 37353001 DOI: 10.1016/j.jim.2023.113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are commonly isolated from whole blood samples in clinical trials. Isolated PBMCs can be cryopreserved for use in downstream assays such as flow cytometry, single-cell RNA sequencing (scRNA-seq) and enzyme-linked immunosorbent spot (ELISpot) assays to aid understanding of disease biology and treatment effects, and biomarker identification. However, due to logistical practicalities, delays from blood collection to PBMC processing may exceed 24 h, which can potentially affect PBMC function and, ultimately, downstream assay results. Whole blood samples from 20 healthy adults were collected and incubated at 20-25 °C for 2-48 h before PBMC processing. PBMC viability was measured, and flow cytometry immunophenotyping, scRNA-seq and ELISpot were performed following increasing PBMC processing delays. The RosetteSep™ granulocyte depletion kit was used to evaluate the impact of granulocyte contamination following processing delay. Processed scRNA-seq reads were used to identify cell clusters based on marker genes. scRNA-seq data was further used to determine gene expression correlation and pathway activity score in major PBMC cell types (T cells, B cells, natural killer cells, monocytes and dendritic cells) between PBMC preparations subjected to shorter (2-4 h) and longer (8-48 h) processing delays. ELISpot assays evaluated the impact of processing delays on the number of interferon-γ (IFN-γ) secreting cells from ex vivo stimulated PBMCs. PBMC viability was reduced after a 48-h processing delay. Flow cytometry showed that granulocyte contamination of PBMCs increased after 24 h. Cluster analysis of scRNA-seq data identified 23 immune cell type gene expression clusters that were not significantly changed upon granulocyte depletion. Gene expression correlations across the major PBMC cell types were < 0.8 after 24 h of delay compared with 2 or 4 h of delay. Inflammatory, proliferation and signaling pathway activities increased, whereas IFN-γ and metabolic pathway activities decreased with increasing PBMC processing delays. The number of IFN-γ secreting cells trended towards a reduction as PBMC processing delays increased. PBMC processing delays should be minimised when designing clinical trials to reduce outcome variability in downstream assays. Ideally clinical trial sites should have on-site PBMC processing capabilities or be located close to such facilities.
Collapse
Affiliation(s)
- Ping-Cheng Yi
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Luting Zhuo
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc., Foster City, CA, USA
| | - Julie Lin
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Calvin Chang
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Audrey Goddard
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Oh Kyu Yoon
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc., Foster City, CA, USA.
| |
Collapse
|
2
|
Lundberg M, Bohman H, Curbo S, Mansouri S, Agartz I, Areström I, Ahlborg N. Development of an ELISA displaying similar reactivity with reduced and oxidized human Thioredoxin-1 (Trx1): The plasma level of Trx1 in early onset psychosis disorders. J Immunol Methods 2022; 510:113347. [PMID: 36058259 DOI: 10.1016/j.jim.2022.113347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 12/31/2022]
Abstract
The plasma level of human thioredoxin-1 (Trx1) has been shown to be increased in various somatic diseases and psychiatric disorders. However, when comparing the reported plasma levels of Trx1, a great inter-study variability, as well as variability in study outcomes of differences between patients and control subjects has been observed, ultimately limiting the possibility to make comparative analyses. Trx1 is a highly redox active protein prone to form various redox forms, e.g. dimers, oligomers or Trx1-protein complexes. We have recently shown that ELISA systems may vary in reactivity to various Trx1 redox forms. The primary aim of the present study was to develop an ELISA system with similar reactivity to various Trx1 redox forms. By evaluating a panel of novel monoclonal antibodies (mAbs), in various paired combinations, three ELISA systems were generated, with observed large variability in reactivity to various Trx1 redox forms. Importantly, an ELISA system (capture mAb MT17R6 and detection mAb MT13X3-biotin), was identified that displayed similar reactivity to oxidized and DTT reduced Trx1. The ELISA system (MT17R6/MT13X3-biotin), was subsequently used to analyze the level of Trx1 in plasma from patients (<18 years) with early onset psychosis disorders (EOP). However, no significant (p > 0.7) difference in plasma Trx1 levels between patients with EOP (n = 23) and healthy age matched controls (HC) (n = 20) were observed. Furthermore, reliable measurement was shown to be dependent on the establishment of platelet poor plasma samples, enabled by rigorous blood sample centrifugation and by efficient blocking of potentially interfering heterophilic antibodies. In conclusion, we report the design and characterization of a Trx1 ELISA system with similar reactivity to various Trx1 redox forms. Importantly, data indicated that generated ELISA systems show large variability in reactivity to various redox forms with ultimate impact on measured levels of Trx1. Overall, results from this study suggests that future studies may be strongly improved by the use of Trx1 ELISA systems with characterized specificity to various redox forms.
Collapse
Affiliation(s)
- Mathias Lundberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Child and Adolescent Psychiatry and Psychiatry Unit, Uppsala University, Uppsala, Sweden.
| | - Hannes Bohman
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Child and Adolescent Psychiatry and Psychiatry Unit, Uppsala University, Uppsala, Sweden
| | - Sophie Curbo
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Shiva Mansouri
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Agartz
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Niklas Ahlborg
- Mabtech, Nacka Strand, Sweden; Department of Molecular Biosciences, The Wennergren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Gao FS, Zhai XX, Jiang P, Zhang Q, Gao H, Li ZB, Han Y, Yang J, Zhang ZH. Identification of two novel foot-and-mouth disease virus cytotoxic T lymphocyte epitopes that can bind six SLA-I proteins. Gene 2018; 653:91-101. [PMID: 29432828 DOI: 10.1016/j.gene.2018.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
Currently available vaccines from inactivated foot-and-mouth disease virus (FMDV) only protect animals by inducing neutralizing antibodies. A vaccine that contains cytotoxic T lymphocytes (CTL) epitopes to induce strong CTL responses might protect animals more effectively. Herein, we used swine leukocyte antigen class I (SLAI) proteins derived from six different strains of domestic pigs to screen and identify shared FMDV CTL epitopes. Four potential FMDV CTL epitopes (Q01, Q02, AS3, and QA4) were confirmed by mass spectrometry. We also determined the antigenicity of these epitopes to elicit cell-mediated immunoresponse by the ELISPOT and CTL assays. Among the four peptides, Q01 and QA4 were found to bind all six SLA-I proteins with strong affinity and elicit significant activity of CTL (P < 0.01). We conclude that Q01 and QA4 peptides are novel shared epitopes that can be recognized by all six SLA-I molecules on representative CTLs.
Collapse
Affiliation(s)
- Feng-Shan Gao
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China.
| | - Xiao-Xin Zhai
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Ping Jiang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Qiang Zhang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzou, Gansu 730046, PR China
| | - Hua Gao
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Zi-Bin Li
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China; Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China
| | - Yong Han
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Zong-Hui Zhang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| |
Collapse
|
4
|
Korrelate für Infektionsschutz nach Impfung. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-017-0313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Patlaka C, Mira Pascual L, Paulie S, Henriksson AF, Arner P, Lång P, Andersson G. The adipokine tartrate-resistant acid phosphatase 5a in serum correlates to adipose tissue expansion in obesity. Biomarkers 2017; 22:764-774. [DOI: 10.1080/1354750x.2017.1334155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christina Patlaka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Laia Mira Pascual
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Anni-Frid Henriksson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
6
|
Höglind A, Areström I, Ehrnfelt C, Masjedi K, Zuber B, Giavedoni L, Ahlborg N. Systematic evaluation of monoclonal antibodies and immunoassays for the detection of Interferon-γ and Interleukin-2 in old and new world non-human primates. J Immunol Methods 2016; 441:39-48. [PMID: 27889562 PMCID: PMC5563966 DOI: 10.1016/j.jim.2016.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 11/03/2022]
Abstract
Non-human primates (NHP) provide important animal models for studies on immune responses to infections and vaccines. When assessing cellular immunity in NHP, cytokines are almost exclusively analyzed utilizing cross-reactive anti-human antibodies. The functionality of antibodies has to be empirically established for each assay/application as well as NHP species. A rational approach was employed to identify monoclonal antibodies (mAb) cross-reactive with many NHP species. Panels of new and established mAbs against human Interferon (IFN)-γ and Interleukin (IL)-2 were assessed for reactivity with eukaryotically expressed recombinant IFN-γ and IL-2, respectively, from Old (rhesus, cynomolgus and pigtail macaques, African green monkey, sooty mangabey and baboon) and New World NHP (Ma's night monkey, squirrel monkey and common marmoset). Pan-reactive mAbs, recognizing cytokines from all NHP species, were further analyzed in capture assays and flow cytometry with NHP peripheral blood mononuclear cells (PBMC). Pan-reactive mAb pairs for IFN-γ well as IL-2 were identified and used in ELISA to measure IFN-γ and IL-2, respectively, in Old and New World NHP PBMC supernatants. The same mAb pairs displayed high functionality in ELISpot and FluoroSpot for the measurement of antigen-specific IFN-γ and IL-2 responses using cynomolgus PBMC. Functionality of pan-reactive mAbs in flow cytometry was also verified with cynomolgus PBMC. The development of well-defined immunoassays functional with a panel of NHP species facilitates improved analyses of cellular immunity and enables inclusion in multiplex cytokine assays intended for a variety of NHP.
Collapse
Affiliation(s)
| | | | | | | | - Bartek Zuber
- Swedish Orphan Biovitrum AB, SE-112 76 Stockholm, Sweden
| | - Luis Giavedoni
- Departments of Virology and Immunology and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA
| | - Niklas Ahlborg
- Mabtech, Box 1233, SE-131 28, Nacka Strand, Sweden; Department of Immunology, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Zuber B, Rudström K, Ehrnfelt C, Ahlborg N. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras. J Interferon Cytokine Res 2016; 36:542-51. [PMID: 27336613 PMCID: PMC5011633 DOI: 10.1089/jir.2016.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022] Open
Abstract
Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes.
Collapse
Affiliation(s)
| | | | | | - Niklas Ahlborg
- Mabtech, Nacka Strand, Sweden
- Department of Immunology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Jahnmatz P, Bengtsson T, Zuber B, Färnert A, Ahlborg N. An antigen-specific, four-color, B-cell FluoroSpot assay utilizing tagged antigens for detection. J Immunol Methods 2016; 433:23-30. [PMID: 26930550 DOI: 10.1016/j.jim.2016.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/01/2022]
Abstract
The FluoroSpot assay, a variant of ELISpot utilizing fluorescent detection, has so far been used primarily for assessment of T cells, where simultaneous detection of several cytokines has allowed a more qualitative analysis of functionally distinct T cells. The potential to measure multiple analytes also presents several advantages when analyzing B cells. Our aim was to develop a B-cell FluoroSpot assay adaptable to studies of a variety of antigens. The assay utilizes anti-IgG antibodies immobilized in 96-well filter membrane plates. During cell culture, IgG antibodies secreted by antibody-secreting cells (ASCs) are captured in the vicinity of each of these cells and the specificity of single ASCs is defined using antigens for detection. The antigens were labeled with biotin or peptide tags enabling secondary detection with fluorophore-conjugated streptavidin or tag-specific antibodies. The assay, utilizing up to four different tag systems and fluorophores simultaneously, was evaluated using hybridomas and immunized splenocytes as ASCs. Assay variants were developed that could: i) identify multiple ASCs with different antigen specificities; ii) detect ASCs showing cross-reactivity with different but related antigens; and iii) define the antigen-specificity and, by including anti-IgG subclass detection reagents, simultaneously determine the IgG subclass of antibodies secreted by ASCs. As demonstrated here, the B-cell FluoroSpot assay using tag-based detection systems provides a versatile and powerful tool to investigate antibody responses by individual cells that can be readily adapted to studies of a variety of antigen-specific ASCs.
Collapse
Affiliation(s)
- Peter Jahnmatz
- Karolinska Institutet, Department of Medicine Solna, SE-171 76 Stockholm, Sweden; Mabtech AB, Box 1233, SE-131 28 Nacka Strand, Sweden.
| | | | - Bartek Zuber
- Swedish Orphan Biovitrum AB, Tomtebodavägen 23A, SE-112 76 Stockholm, Sweden
| | - Anna Färnert
- Karolinska Institutet, Department of Medicine Solna, SE-171 76 Stockholm, Sweden; Karolinska University Hospital, Department of Infectious Diseases, SE-17176 Stockholm, Sweden
| | - Niklas Ahlborg
- Mabtech AB, Box 1233, SE-131 28 Nacka Strand, Sweden; Stockholm University, Department of Immunology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Wilkinson KA, Walker NF, Meintjes G, Deffur A, Nicol MP, Skolimowska KH, Matthews K, Tadokera R, Seldon R, Maartens G, Rangaka MX, Besra GS, Wilkinson RJ. Cytotoxic mediators in paradoxical HIV-tuberculosis immune reconstitution inflammatory syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1748-54. [PMID: 25589068 PMCID: PMC4319311 DOI: 10.4049/jimmunol.1402105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/06/2014] [Indexed: 01/15/2023]
Abstract
Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) frequently complicates combined antiretroviral therapy and antituberculosis therapy in HIV-1-coinfected tuberculosis patients. The immunopathological mechanisms underlying TB-IRIS are incompletely defined, and improved understanding is required to derive new treatments and to reduce associated morbidity and mortality. We performed longitudinal and cross-sectional analyses of human PBMCs from paradoxical TB-IRIS patients and non-IRIS controls (HIV-TB-coinfected patients commencing antiretroviral therapy who did not develop TB-IRIS). Freshly isolated PBMC stimulated with heat-killed Mycobacterium tuberculosis H37Rv (hkH37Rv) were used for IFN-γ ELISPOT and RNA extraction. Stored RNA was used for microarray and RT-PCR, whereas corresponding stored culture supernatants were used for ELISA. Stored PBMC were used for perforin and granzyme B ELISPOT and flow cytometry. There were significantly increased IFN-γ responses to hkH37Rv in TB-IRIS, compared with non-IRIS PBMC (p = 0.035). Microarray analysis of hkH37Rv-stimulated PBMC indicated that perforin 1 was the most significantly upregulated gene, with granzyme B among the top five (log2 fold difference 3.587 and 2.828, respectively), in TB-IRIS. Downstream experiments using RT-PCR, ELISA, and ELISPOT confirmed the increased expression and secretion of perforin and granzyme B. Moreover, granzyme B secretion reduced in PBMC from TB-IRIS patients during corticosteroid treatment. Invariant NKT cell (CD3(+)Vα24(+)) proportions were higher in TB-IRIS patients (p = 0.004) and were a source of perforin. Our data implicate the granule exocytosis pathway in TB-IRIS pathophysiology. Further understanding of the immunopathogenesis of this condition will facilitate development of specific diagnostic and improved therapeutic options.
Collapse
Affiliation(s)
- Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa; Department of Medicine, University of Cape Town, Cape Town, 7925 South Africa; Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom;
| | - Naomi F Walker
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa; Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Graeme Meintjes
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa; Department of Medicine, University of Cape Town, Cape Town, 7925 South Africa; Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Armin Deffur
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa
| | - Mark P Nicol
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa; Division of Medical Microbiology, University of Cape Town, Cape Town, 7925 South Africa; National Health Laboratory Service, Cape Town, 7925 South Africa; and
| | - Keira H Skolimowska
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa; Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Kerryn Matthews
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa
| | - Rebecca Tadokera
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa
| | - Ronnett Seldon
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa
| | - Gary Maartens
- Department of Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Molebogeng X Rangaka
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, 7925 South Africa; Department of Medicine, University of Cape Town, Cape Town, 7925 South Africa; Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
10
|
Huang J, Ehrnfelt C, Paulie S, Zuber B, Ahlborg N. ELISpot and ELISA analyses of human IL-21-secreting cells: Impact of blocking IL-21 interaction with cellular receptors. J Immunol Methods 2015; 417:60-66. [DOI: 10.1016/j.jim.2014.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
11
|
Pedersen LE, Jungersen G, Sorensen MR, Ho CS, Vadekær DF. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers. Vet Immunol Immunopathol 2014; 162:108-16. [PMID: 25457547 DOI: 10.1016/j.vetimm.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022]
Abstract
The swine major histocompatibility complex (MHC) genomic region (SLA) is extremely polymorphic comprising high numbers of different alleles, many encoding a distinct MHC class I molecule, which binds and presents endogenous peptides to circulating T cells of the immune system. Upon recognition of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular stomatitis virus, foot-and-mouth-disease virus and others. Here we present the use of low- and high-resolution PCR-based typing methods to identify individual and commonly occurring SLA class I alleles in Danish swine. A total of 101 animals from seven different herds were tested, and by low resolution typing the top four most frequent SLA class I alleles were those of the allele groups SLA-3*04XX, SLA-1*08XX, SLA-2*02XX, and SLA-1*07XX, respectively. Customised high resolution primers were used to identify specific alleles within the above mentioned allele groups as well as within the SLA-2*05XX allele group. Our studies also suggest the most common haplotype in Danish pigs to be Lr-4.0 expressing the SLA-1*04XX, SLA-2*04XX, and SLA-3*04XX allele combination.
Collapse
Affiliation(s)
- Lasse Eggers Pedersen
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | - Gregers Jungersen
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark.
| | - Maria Rathmann Sorensen
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | - Chak-Sum Ho
- Histocompatibility Laboratory, Gift of Life Michigan, Ann Arbor, MI 48108, USA
| | - Dorte Fink Vadekær
- The National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes. Cell Death Differ 2014; 22:74-85. [PMID: 25146929 DOI: 10.1038/cdd.2014.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/28/2023] Open
Abstract
Perforin-mediated cytotoxicity is an essential host defense, in which defects contribute to tumor development and pathogenic disorders including autoimmunity and autoinflammation. How perforin (PFN) facilitates intracellular delivery of pro-apoptotic and inflammatory granzymes across the bilayer of targets remains unresolved. Here we show that cellular susceptibility to granzyme B (GzmB) correlates with rapid PFN-induced phosphatidylserine externalization, suggesting that pores are formed at a protein-lipid interface by incomplete membrane oligomers (or arcs). Supporting a role for these oligomers in protease delivery, an anti-PFN antibody (pf-80) suppresses necrosis but increases phosphatidylserine flip-flop and GzmB-induced apoptosis. As shown by atomic force microscopy on planar bilayers and deep-etch electron microscopy on mammalian cells, pf-80 increases the proportion of arcs which correlates with the presence of smaller electrical conductances, while large cylindrical pores decline. PFN appears to form arc structures on target membranes that serve as minimally disrupting conduits for GzmB translocation. The role of these arcs in PFN-mediated pathology warrants evaluation where they may serve as novel therapeutic targets.
Collapse
|
13
|
Osińska I, Popko K, Demkow U. Perforin: an important player in immune response. Cent Eur J Immunol 2014; 39:109-15. [PMID: 26155110 PMCID: PMC4439970 DOI: 10.5114/ceji.2014.42135] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022] Open
Abstract
Perforin is a glycoprotein responsible for pore formation in cell membranes of target cells. Perforin is able to polymerize and form a channel in target cell membrane. Many research groups focus on the role of perforin in various diseases, immune response to bacterial and viral infections, immune surveillance and immunopathology. In addition, perforin is involved in the pathogenesis of autoimmune diseases and allogeneic transplant rejection. Natural killer (NK) cells and CD8-positive T-cells are the main source of perforin. However, CD4-positive T-cells are also able to express a low amount of perforin, when classic cytotoxicity is ineffective or disturbed. Polymerized perforin molecules form channels enabling free, non-selective, passive transport of ions, water, small-molecule substances and enzymes. In consequence, the channels disrupt protective barrier of cell membrane and destroy integrity of the target cell. This review will focus on mechanisms of action and structure of perforin. Also, in this review we discuss the problem of abnormal perforin production in diseases such as: hemophagocytic lymphohistiocytosis (HLH), leukemias and lymphomas, infectious diseases and autoimmune diseases. Better understanding of the role of these molecules in health and disease will open a new field of research with possible therapeutic implications.
Collapse
Affiliation(s)
- Iwona Osińska
- PhD Study, Department of Pathology, Medical University of Warsaw, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| | - Katarzyna Popko
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| |
Collapse
|
14
|
Savolainen LE, Koskivirta P, Kantele A, Valleala H, Pusa L, Tuompo R, Westerlund-Wikström B, Tuuminen T. Cytotoxic response persists in subjects treated for tuberculosis decades ago. BMC Infect Dis 2013; 13:573. [PMID: 24308801 PMCID: PMC4029532 DOI: 10.1186/1471-2334-13-573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/04/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Data exploring the potential use of effector molecules produced by cytotoxic T lymphocytes (CTLs) in the immunodiagnostics of tuberculosis (TB) are scarce. The present study focused a) to gain an insight into the discriminatory power of CTLs in patients with acute pulmonary or extra-pulmonary TB, or latent tuberculosis infection (LTBI); and b) to evaluate the influence of various anti-TB therapeutic schemes on the immunological profiles of residual CTLs. METHODS Immunological signatures of antigen-specific CTLs were explored in patients with active pulmonary and extra-pulmonary TB, LTBI and in those treated for TB decades ago by using ELISPOT, intracellular flow cytometry and extracellular CD107a detection. RESULTS No difference was seen between active TB, LTBI or any of those treated for TB in the ELISPOT analysis of antigen-specific Granzyme B (GrB), Perforin (Prf) and interferon-gamma (IFN-γ) producing lymphocytes, the FACS analysis of the intracellular expression of IFN-γ, or the surface expression of CD107a degranulation factor of both CD8+ and CD4+ antigen-specific T cell subsets. The effector memory (TEM) phenotype proved predominant in the surface marker profiling both in active TB and LTBI. The proportion of the CD107a degranulation factor proved higher in the central memory (TCM) than in the other cell subsets in all the study groups. Interestingly, functionally and phenotypically similar CTLs profiles were observed in active TB, LTBI and in all the three groups treated for TB. CONCLUSION The phenotypic and functional profiling of CTLs has a limited potential in the immunodiagnostics of active TB. Antigen-specific CTLs persist in patients treated for TB decades ago regardless of the efficacy of implemented and completed anti-TB therapy.
Collapse
Affiliation(s)
- Laura E Savolainen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
| | - Pekka Koskivirta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
| | - Anu Kantele
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Valleala
- Division of Rheumatology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Liana Pusa
- Länsi-Uusimaa Hospital, Tammisaari, Finland
| | - Riitta Tuompo
- Division of Rheumatology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Tamara Tuuminen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
- Eastern Finland Laboratory Centre Joint Authority Enterprise, Mikkeli, Finland
| |
Collapse
|
15
|
Saade F, Gorski SA, Petrovsky N. Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses. Expert Rev Vaccines 2013; 11:1459-70. [PMID: 23252389 DOI: 10.1586/erv.12.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response--a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | | | | |
Collapse
|
16
|
Jahnmatz M, Kesa G, Netterlid E, Buisman AM, Thorstensson R, Ahlborg N. Optimization of a human IgG B-cell ELISpot assay for the analysis of vaccine-induced B-cell responses. J Immunol Methods 2013; 391:50-9. [PMID: 23454005 DOI: 10.1016/j.jim.2013.02.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 01/03/2023]
Abstract
B-cell responses after infection or vaccination are often measured as serum titers of antigen-specific antibodies. Since this does not address the aspect of memory B-cell activity, it may not give a complete picture of the B-cell response. Analysis of memory B cells by ELISpot is therefore an important complement to conventional serology. B-cell ELISpot was developed more than 25 years ago and many assay protocols/reagents would benefit from optimization. We therefore aimed at developing an optimized B-cell ELISpot for the analysis of vaccine-induced human IgG-secreting memory B cells. A protocol was developed based on new monoclonal antibodies to human IgG and biotin-avidin amplification to increase the sensitivity. After comparison of various compounds commonly used to in vitro-activate memory B cells for ELISpot analysis, the TLR agonist R848 plus interleukin (IL)-2 was selected as the most efficient activator combination. The new protocol was subsequently compared to an established protocol, previously used in vaccine studies, based on polyclonal antibodies without biotin avidin amplification and activation of memory B-cells using a mix of antigen, CpG, IL-2 and IL-10. The new protocol displayed significantly better detection sensitivity, shortened the incubation time needed for the activation of memory B cells and reduced the amount of antigen required for the assay. The functionality of the new protocol was confirmed by analyzing specific memory B cells to five different antigens, induced in a limited number of subjects vaccinated against tetanus, diphtheria and pertussis. The limited number of subjects did not allow for a direct comparison with other vaccine studies. Optimization of the B-cell ELISpot will facilitate an improved analysis of IgG-secreting B cells in vaccine studies.
Collapse
Affiliation(s)
- Maja Jahnmatz
- Swedish Institute for Communicable Disease Control, Solna, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 2012; 30:4907-20. [PMID: 22658928 DOI: 10.1016/j.vaccine.2012.05.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/15/2022]
Abstract
Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine.
Collapse
|
18
|
Malyguine AM, Strobl S, Dunham K, Shurin MR, Sayers TJ. ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials. Cells 2012; 1:111-26. [PMID: 24710418 PMCID: PMC3901085 DOI: 10.3390/cells1020111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
The profiling and monitoring of immune responses are key elements in the evaluation of the efficacy and development of new biotherapies, and a number of assays have been introduced for analyzing various immune parameters before, during, and after immunotherapy. The choice of immune assays for a given clinical trial depends on the known or suggested immunomodulating mechanisms associated with the tested therapeutic modality. Cell-mediated cytotoxicity represents a key mechanism in the immune response to various pathogens and tumors. Therefore, the selection of monitoring methods for the appropriate assessment of cell-mediated cytotoxicity is thought to be crucial. Assays that can detect both cytotoxic T lymphocytes (CTL) frequency and function, such as the IFN-γ enzyme-linked immunospot assay (ELISPOT) have gained increasing popularity for monitoring clinical trials and in basic research. Results from various clinical trials, including peptide and whole tumor cell vaccination and cytokine treatment, have shown the suitability of the IFN-γ ELISPOT assay for monitoring T cell responses. However, the Granzyme B ELISPOT assay and Perforin ELISPOT assay may represent a more direct analysis of cell-mediated cytotoxicity as compared to the IFN-γ ELISPOT, since Granzyme B and perforin are the key mediators of target cell death via the granule-mediated pathway. In this review we analyze our own data and the data reported by others with regard to the application of various modifications of ELISPOT assays for monitoring CTL activity in clinical vaccine trials.
Collapse
Affiliation(s)
- Anatoli M Malyguine
- Applied and Developmental Research Support Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Susan Strobl
- Applied and Developmental Research Support Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Kimberly Dunham
- Applied and Developmental Research Support Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Thomas J Sayers
- Cancer and Inflammation Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
19
|
Measurement of human latent Transforming Growth Factor-β1 using a latency associated protein-reactive ELISA. J Immunol Methods 2012; 379:23-9. [PMID: 22406166 DOI: 10.1016/j.jim.2012.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 12/14/2022]
Abstract
Human Transforming Growth Factor (TGF)-β1, one of three TGF-β isoforms, is a pleotropic cytokine critical for many physiological and immunological processes. TGF-β1 is secreted in a latent form, linked to Latency Associated Protein (LAP). Analysis of Latent TGF-β1 by TGF-β1 ELISA requires dissociation of TGF-β1 from LAP, e.g. by acidification of samples. The ELISA then measures total TGF-β1, equivalent to dissociated Latent TGF-β1 plus any free TGF-β1 present prior to acidification. Evolutionary conservation of TGF-β1 across mammals also renders TGF-β1 ELISAs reactive with TGF-β1 in bovine serum often used in human cell cultures. To enable a direct analysis of Latent TGF-β1, monoclonal antibodies were made against LAP from human Latent TGF-β1 and used to develop a LAP ELISA detecting Latent TGF-β1. The ELISA did not react with LAP from human Latent TGF-β2 or 3, respectively, nor with Latent TGF-β in bovine serum. EDTA-containing plasma from healthy subjects (n=20) was analyzed by conventional TGF-β1 ELISA and LAP ELISA. By TGF-β1 ELISA, total TGF-β1 were detected in all samples (median 133 pM, range 34-348 pM); low levels of free TGF-β1 found in 8/20 non-acidified samples showed that >98.5% of the total TGF-β1 derived from Latent TGF-β1. Latent TGF-β1 found in non-acidified samples by LAP ELISA (median 154 pM, range 48-403 pM) was comparable in molar levels to, and correlated with, total TGF-β1 (r(s) 0.96, p<0.0001). A similar agreement between the total TGF-β1 and the LAP ELISA was found with citrate- and heparin-containing plasma. The LAP ELISA facilitates analysis of Latent TGF-β1 without sample acidification and is not compromised by the presence of bovine serum in human cell supernatants.
Collapse
|
20
|
Vetsika EK, Konsolakis G, Aggouraki D, Kotsakis A, Papadimitraki E, Christou S, Menez-Jamet J, Kosmatopoulos K, Georgoulias V, Mavroudis D. Immunological responses in cancer patients after vaccination with the therapeutic telomerase-specific vaccine Vx-001. Cancer Immunol Immunother 2012; 61:157-168. [PMID: 21858533 PMCID: PMC11028568 DOI: 10.1007/s00262-011-1093-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/26/2011] [Indexed: 12/13/2022]
Abstract
Vx-001, an HLA-A*0201 restricted telomerase (TERT)-specific anti-tumor vaccine, is composed of the 9-mer cryptic TERT(572) peptide and its optimized variant TERT(572Y). We have previously shown that Vx-001 is non-toxic, highly immunogenic and in vaccinated NSCLC patients early specific immune response is associated with prolonged survival. The aim of the present study was to investigate the specific T-cell immune response against Vx-001. Fifty-five patients with chemo-resistant advanced solid tumors were vaccinated with TERT(572Y) (2 subcutaneous injections) followed by TERT(572) peptide (4 subcutaneous injections) every 3 weeks. Specific immune response was evaluated by IFN-γ and perforin ELISpot and intracellular cytokine staining assays. TERT-reactive T cells were detected in 27 (51%) out of 53 evaluable patients after the 2nd vaccination and in 22 (69%) out of 32 evaluable patients after the completion of 6 vaccinations. Immune responses developed irrespective of the stage of disease and disease status before vaccination. Patients with disease progression at study entry who developed a post-vaccination-induced immunological response had a significant overall survival benefit compared to the post-vaccination non-responders. The Vx-001 vaccine is a promising candidate for cancer immunotherapy since it can induce a TERT-specific T-cell immune response that is associated with prolonged survival.
Collapse
Affiliation(s)
- Eleni-Kyriaki Vetsika
- Laboratory of Tumor Biology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece.
| | - Georgios Konsolakis
- Laboratory of Tumor Biology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece
| | - Despoina Aggouraki
- Laboratory of Tumor Biology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | | | - Soultana Christou
- Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | | | | | - Vassilis Georgoulias
- Laboratory of Tumor Biology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
- Department of Medical Oncology, "IASO" General Hospital of Athens, Athens, Greece
| | - Dimitris Mavroudis
- Laboratory of Tumor Biology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| |
Collapse
|
21
|
Abstract
During more than 25 years of application in immunological sciences, ELISPOT has been established as a routine, robust, versatile, and reliable assay. From basic research to clinical immune monitoring, ELISPOT is being used to address the quantification and (to a lesser extent) functional characterization of immune cells secreting different molecules in the context of health and disease, immune intervention, and therapy in humans and other species [Kalyuzhny (Ed.) (2005) Handbook of Elispot: methods and protocols, Vol. 302, Humana Press Inc., Totowa, NJ]. Over the last decade, ELISPOT assays have been increasingly implemented as an immune-monitoring tool in clinical trials [Schmittel et al. J Immunother 23:289-295, 2000; Whiteside Immunol Invest 29:149-162, 2000; Nagata et al. Ann N Y Acad Sci 1037:10-15, 2004; Cox et al. (2005) Cellular immune assays for evaluation of vaccine efficacy in developing countries., In Manual of Clinical Immunology Laboratory (Rose, N. R., Hamilton, R. G., and Detrick, B., Eds.), p 301, ASM Press, Washington, DC; Cox et al. Methods 38:274-282, 2006]. While the principles of the original protocol have changed little since its first introduction [Czerkinsky J Immunol Methods 110:29-36, 1988], individual laboratories have adapted assay procedures based on experimental needs, availability of reagents and equipment, obtained recommendations, and gained experience, leading to a wide disparity of applied ELISPOT protocols with inevitable consequences. This chapter addresses the resulting challenges for ELISPOT use in clinical trial settings, and discusses the influence of harmonization strategies as a tool for overcoming these challenges. Furthermore, harmonization is discussed in the context of assay standardization and validation strategies.
Collapse
|
22
|
Analytical technologies for integrated single-cell analysis of human immune responses. Methods Mol Biol 2012; 853:211-35. [PMID: 22323150 DOI: 10.1007/978-1-61779-567-1_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The immune system is a network of cells in which the constitutive members interact through dense and sometimes overlapping connections. The extreme complexity of this network poses a significant challenge for monitoring pathological conditions (e.g., food allergies, autoimmunity, and other chronic inflammatory diseases) and for discovering robust signatures of immunological responses that correlate with or predict the efficacy of interventions. The diversity among immune cells found in clinical samples (variations in cellular functions, lineages, and clonotypic breadth) requires approaches for monitoring immune responses with single-cell resolution.In this chapter, we present an engineering approach for integrated single-cell analysis that uses interchangeable modular operations to provide a comprehensive characterization of the phenotypic, functional, and genetic variations for individual cells. We focus on the use of microfabricated devices to isolate and interrogate single cells, and on the analytical components that enable subsequent detection, correlation, and interpretation of multidimensional sets of data. We discuss specific challenges and opportunities in the realization of this concept, and review two examples where it has been implemented. The presented approach should provide a basis for the design and implementation of nonconventional bioanalytical processes for studying specific responses of an immune system.
Collapse
|
23
|
Pannetier D, Reynard S, Russier M, Journeaux A, Tordo N, Deubel V, Baize S. Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol 2011; 85:8293-306. [PMID: 21632749 PMCID: PMC3147965 DOI: 10.1128/jvi.02120-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 05/23/2011] [Indexed: 12/14/2022] Open
Abstract
The events leading to death in severe cases of Lassa fever (LF) are unknown. Fatality seems to be linked to high viremia and immunosuppression, and cellular immunity, rather than neutralizing antibodies, appears to be essential for survival. We previously compared Lassa virus (LV) with its genetically close but nonpathogenic homolog Mopeia virus (MV), which was used to model nonfatal LF. We showed that strong and early activation of antigen-presenting cells (APC) may play a crucial role in controlling infection. Here we developed an in vitro model of dendritic-cell (DC)-T-cell coculture in order to characterize human T-cell responses induced by MV- or LV-infected DCs. Our results show very different responses to infection with LV and MV. MV strongly and durably stimulated CD8(+) and CD4(+) T cells, showing early and high activation, a strong proliferative response, and acquisition of effector and memory phenotypes. Furthermore, robust and functional CD4(+) and CD8(+) cytotoxic T lymphocytes (CTL) were generated. LV, however, induced only weak memory responses. Thus, this study allows an improved understanding of the pathogenesis and immune mechanisms involved in the control of human LV.
Collapse
Affiliation(s)
- Delphine Pannetier
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon Cedex 07, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu C, Betancourt A, Cohen DA, Adams AA, Sun L, Horohov DW. Granzyme B-mRNA expression by equine lymphokine activated killer (LAK) cells is associated with the induction of apoptosis in target cells. Vet Immunol Immunopathol 2011; 143:108-15. [PMID: 21802151 DOI: 10.1016/j.vetimm.2011.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
Abstract
Lymphokine-activated killer (LAK) cells are a subset of cytotoxic cells capable of lysing freshly isolated tumor cells. While LAK activity is typically measured using the (51)Cr-release assay, here we used a non-radioactive flow cytometric method to demonstrate equine LAK activity. Equine peripheral blood mononuclear cells (PBMC) were stimulated in vitro with recombinant human interleukin 2 (hIL-2) to generate LAK cells. An equine tumor cell line, EqT8888, labeled with carboxyfluorescein succinimidyl ester (CFSE) was used as target cells. Following incubation of the targets with different concentrations of LAK cells, Annexin V was added to identify the early apoptotic cells. With increasing effector to target cell ratios, EqT8888 apoptosis was increased. We also measured interferon-gamma, granzyme B and perforin mRNA expression in the LAK cell cultures as possible surrogate markers for cytotoxic cell activity and found granzyme B mRNA expression correlated best with LAK activity. Also, we found that the reduced LAK activity of young horses was associated with decreased granzyme B mRNA expression. Our results indicate that fluorescence-based detection of LAK cell activity provides a suitable non-radioactive alternative to (51)Cr-release assays and mRNA expression of granzyme B can be used as surrogate marker for these cytotoxic cells.
Collapse
Affiliation(s)
- C Liu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
25
|
Adsorption of IgG on/in a PAH/PSS multilayer film: Layer structure and cell response. J Colloid Interface Sci 2011; 354:31-7. [DOI: 10.1016/j.jcis.2010.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/03/2010] [Accepted: 10/07/2010] [Indexed: 11/23/2022]
|
26
|
D'Eliseo D, Pisu P, Romano C, Tubaro A, De Nunzio C, Morrone S, Santoni A, Stoppacciaro A, Velotti F. Granzyme B is expressed in urothelial carcinoma and promotes cancer cell invasion. Int J Cancer 2010; 127:1283-94. [PMID: 20027633 DOI: 10.1002/ijc.25135] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Granzyme B (GrB) is a serine proteinase known to be expressed by cytotoxic lymphocytes and to induce, in presence of perforin (Pf), apoptosis in target cells. Recently, GrB expression has been shown (often in absence of Pf) in nonlymphoid cells, but its function is not defined. In our study, we investigated GrB and Pf expression in bladder cancer cell lines and in urothelial carcinoma (UC) tissues by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, ELISA, immunofluorescence and immunohistochemistry. We also assessed the function of GrB in UC cells; the in vitro function of GrB was examined by loss-of-function experiments. Our results revealed that GrB is expressed, in absence of Pf, in UC cells. Significant differences were found between GrB expression and both increasing pathological tumor spreading and high-grade vs. low-grade pTa tumors. Notably, GrB in UC tissues was concentrated at the cancer invasion front and was expressed in neoplastic cells undergoing epithelial-mesenchymal transition, a key event in carcinoma invasion. Indeed, GrB-positive cells also expressed Snail, N-cadherin or were negative for E-cadherin. GrB expressed in tumor cell lines was enzymatically active and capable of vitronectin cleavage, implying extracellular matrix (ECM) remodeling by GrB. Inhibition of GrB activity or Stealth RNA interference-mediated GrB gene silencing markedly suppressed bladder cancer cell invasion through matrigel. This data provides the first evidence for a role of GrB in promoting cancer cell invasion. Taken together, our findings suggest that GrB, via ECM degradation, contributes to the establishment of the UC invasive phenotype.
Collapse
Affiliation(s)
- Donatella D'Eliseo
- Department of Ecology and Sustainable Economic Development DECOS, Tuscia University, Viterbo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Janetzki S, Price L, Britten CM, van der Burg SH, Caterini J, Currier JR, Ferrari G, Gouttefangeas C, Hayes P, Kaempgen E, Lennerz V, Nihlmark K, Souza V, Hoos A. Performance of serum-supplemented and serum-free media in IFNgamma Elispot Assays for human T cells. Cancer Immunol Immunother 2010; 59:609-18. [PMID: 19894047 PMCID: PMC2813531 DOI: 10.1007/s00262-009-0788-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/16/2009] [Indexed: 12/26/2022]
Abstract
The choice of serum for supplementation of media for T cell assays and in particular, Elispot has been a major challenge for assay performance, standardization, optimization, and reproducibility. The Assay Working Group of the Cancer Vaccine Consortium (CVC-CRI) has recently identified the choice of serum to be the leading cause for variability and suboptimal performance in large international Elispot proficiency panels. Therefore, a serum task force was initiated to compare the performance of commercially available serum-free media to laboratories' own medium/serum combinations. The objective of this project was to investigate whether a serum-free medium exists that performs as well as lab-own serum/media combinations with regard to antigen-specific responses and background reactivity in Elispot. In this way, a straightforward solution could be provided to address the serum challenge. Eleven laboratories tested peripheral blood mononuclear cells (PBMC) from four donors for their reactivity against two peptide pools, following their own Standard Operating Procedure (SOP). Each laboratory performed five simultaneous experiments with the same SOP, the only difference between the experiments was the medium used. The five media were lab-own serum-supplemented medium, AIM-V, CTL, Optmizer, and X-Vivo. The serum task force results demonstrate compellingly that serum-free media perform as well as qualified medium/serum combinations, independent of the applied SOP. Recovery and viability of cells are largely unaffected by serum-free conditions even after overnight resting. Furthermore, one serum-free medium was identified that appears to enhance antigen-specific IFNgamma-secretion.
Collapse
Affiliation(s)
- Sylvia Janetzki
- Cancer Vaccine Consortium of the Cancer Research Institute, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Minang JT, Areström I, Ahlborg N. ELISpot Displays a Better Detection over ELISA of T Helper (Th) 2-Type Cytokine-Production byEx Vivo-Stimulated Antigen-Specific T Cells from Human Peripheral Blood. Immunol Invest 2009; 37:279-91. [DOI: 10.1080/08820130802083648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Qu C, Nguyen VA, Merad M, Randolph GJ. MHC class I/peptide transfer between dendritic cells overcomes poor cross-presentation by monocyte-derived APCs that engulf dying cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3650-9. [PMID: 19265143 DOI: 10.4049/jimmunol.0801532] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vivo data suggest that monocytes participate critically in cross-presentation, but other data suggest that lymph node resident dendritic cells (DCs) mainly cross-present. Here, we utilized a three-dimensional model of a blood vessel wall that endogenously supports DC development from human monocytes, and we incorporated dying autologous cells in the subendothelial matrix of the model. Flu-infected dying cells promoted monocytes to become mature DCs and cross-present cell-associated Ags for the activation of CTLs. Similar responses were induced by loading the dying cells with the TLR7/8 ligand ssRNA, whereas dying cells loaded with TLR3 ligand were less efficient. Monocyte-derived DCs that developed in this model cross-presented Ag to T cells efficiently regardless of whether they engulfed detectable amounts of labeled dying cells. Unexpectedly, the monocyte-derived cells that directly engulfed dying cells in vitro were not the major APCs stimulating CD8(+) lymphocytes. Instead, bystander DCs acquired more robust capacity to cross-prime through receipt of MHC class I/peptide from the phagocytic, monocyte-derived cells. In mice, lymph node-homing monocyte-derived DCs processed Ags from engulfed cells and then transferred MHC class I/peptide complexes to confer cross-priming capacity to MHC class I-deficient lymph node resident CD8alpha(+) DCs. Thus, natural or synthetic TLR7/8 agonists contained within dying cells promote the conversion of monocytes to DCs with capacity for cross-presentation and for "cross-dressing" other DCs. These data reveal a way in which migratory monocyte-derived DCs and other DCs, like lymph node resident DCs, both mediate cross-presentation.
Collapse
Affiliation(s)
- Chunfeng Qu
- Department of Gene and Cell Medicine and Institute for Immunology, Icahn Medical Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
30
|
Fuse S, Usherwood E. Simultaneous analysis of in vivo CD8+ T cell cytotoxicity against multiple epitopes using multicolor flow cytometry. Immunol Invest 2008; 36:829-45. [PMID: 18161531 DOI: 10.1080/08820130701683753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD8+ T cells play a critical role in host defense against infections and tumors. Analysis of cytotoxic function of antigen-specific CD8+ T cells in animal models would be important in optimizing vaccine design against infections and tumors. In vivo cytotoxicity assays using fluorescent cellular dyes have been used as a popular alternative to traditionally used in vitro (51)Cr-release assays. With the identification of multiple epitopes in various pathogen models, methods to simultaneously analyze cytotoxicity of CD8+ T cells to multiple epitopes in vivo would assist studies which aim to generate protective CD8+ T cell immunity to multiple epitopes. In this study, we evaluate the use of multiple fluorescent cellular dyes for the in vivo cytotoxicity assay. The use of 3 dyes allowed us to analyze the cytotoxicity of antigen-specific CD8+ T cell populations to multiple epitopes generated by virus infections, as well as their functional avidity, in vivo. Our studies extend the use of in vivo cytotoxicity assays to allow direct comparisons of cytotoxicity to various epitopes in the same animal and may also be applicable to assessment of in vitro cytotoxicity of human CD8+ T cells specific for multiple viral or tumor antigens in clinical settings.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | |
Collapse
|
31
|
Analysis and Characterization of Antitumor T-cell Response After Administration of Dendritic Cells Loaded With Allogeneic Tumor Lysate to Metastatic Melanoma Patients. J Immunother 2008; 31:101-12. [DOI: 10.1097/cji.0b013e318159f5ba] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Malyguine A, Strobl S, Zaritskaya L, Baseler M, Shafer-Weaver K. New approaches for monitoring CTL activity in clinical trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:273-84. [PMID: 17713015 DOI: 10.1007/978-0-387-72005-0_29] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a modification of the ELISPOT assay that measures Granzyme B (GrB) release from cytotoxic T lymphocytes (CTLs). The GrB ELISPOT assay is a superior alternative to the 51Cr-release assay since it is significantly more sensitive and provides an estimation of cytotoxic effector cell frequency. Additionally, unlike the IFN-gamma ELISPOT assay, the GrB ELISPOT directly measures the release of a cytolytic protein. We report that the GrB ELISPOT can be utilized to measure ex vivo antigen-specific cytotoxicity of peripheral blood mononuclear cells (PBMCs) from cancer patients vaccinated with a peptide-based cancer vaccine. We compare the reactivity of patients' PBMCs in the GrB ELISPOT, with reactivity in the tetramer, IFN-gamma ELISPOT and chromium (51Cr)-release assays. Differences in immune response over all assays tested were found between patients, and four response patterns were observed. Reactivity in the GrB ELISPOT was more closely associated with cytotoxicity in the 51Cr-release assay than the tetramer or IFN-gamma ELISPOT assays. We also optimized the GrB ELISPOT assay to directly measure immune responses against autologous primary tumor cells in vaccinated cancer patients. A perforin ELISPOT assay was also adapted to evaluate peptide-stimulated reactivity of PMBCs from vaccinated melanoma patients. Modifications of the ELISPOT assay described in this chapter allow a more comprehensive evaluation of low-frequency tumor-specific CTLs and their specific effector functions and can provide a valuable insight into immune responses in cancer vaccine trials.
Collapse
Affiliation(s)
- Anatoli Malyguine
- Applied and Developmental Research Support Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The need to quantitate and monitor immune responses of large patient cohorts with standardized techniques is increasing due to the growing range of treatment options for hepatitis B and hepatitis C, the development of combination therapies, and candidate experimental vaccines for HCV. In addition, advances in immunological techniques have provided new tools for detailed phenotypic and functional analysis of cellular immune responses. At present, there is substantial variation in laboratory protocols, reagents, controls and analysis and presentation of results. Standardization of immunological assays would therefore allow better comparison of results amongst individual laboratories and patient cohorts. The EASL-sponsored and AASLD-endorsed Monothematic Conference on Clinical Immunology in Viral Hepatitis was held at the University College London, United Kingdom, Oct 7-8, 2006 to bring together investigators with research experience in clinical immunology of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections for in-depth discussion, critical evaluation and standardization of immunological assays. This report summarizes the information presented and discussed at the conference, but is not intended to represent a consensus statement. Our aim is to highlight topics and issues that were supported by general agreement and those that were controversial, as well as to provide suggestions for future work.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch NIDDK, National Institutes of Health, DHHS, 10 Center Drive, Room 9B16, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Andersen MH, Soerensen RB, Becker JC, thor Straten P. HLA-A24 and survivin: possibilities in therapeutic vaccination against cancer. J Transl Med 2006; 4:38. [PMID: 16948867 PMCID: PMC1564416 DOI: 10.1186/1479-5876-4-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/04/2006] [Indexed: 12/22/2022] Open
Abstract
Recently, it was described that an HLA-A24 restricted peptide derived from the survivin splice variant survivin-2B can be recognized by CD8(+) cytotoxic T-cells. The identification of an HLA-A24 epitope is critical for survivin-based immunotherapy as HLA-24 is the most frequent HLA allele in Asia. Consequently, this survivin-2B epitope is already a target in a clinical study in patients with advanced or recurrent colorectal cancer expressing survivin. However, the splice variant survivin-2B has been described to be pro-apoptotic, and is only expressed at low levels in most malignant tissues. Furthermore, survivin-2B expression are significantly decreased in later tumor stages and inversely correlated with tumor differentiation and invasion. Consequently, survivin is a more general vaccination candidate than the splice variant survivin-2B. Here, we on the basis of spontaneous immune responses in HLA-A24+ cancer patients describes that a HLA-A24-restricted survivin epitopes does indeed exist. Consequently, this epitope is an attractive target for the ongoing survivin-based peptide immunotherapy against cancer.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immunotherapy (CCIT), Department of Hematology, Herlev University Hospital, Dk-2730 Herlev, Denmark
| | - Rikke B Soerensen
- Center for Cancer Immunotherapy (CCIT), Department of Hematology, Herlev University Hospital, Dk-2730 Herlev, Denmark
| | - Jürgen C Becker
- Department of Dermatology, University of Würzburg, D-97080 Würzburg, Germany
| | - Per thor Straten
- Center for Cancer Immunotherapy (CCIT), Department of Hematology, Herlev University Hospital, Dk-2730 Herlev, Denmark
| |
Collapse
|
35
|
Zuber B, Quigley MF, Critchfield JW, Shacklett BL, Abel K, Miller CJ, Mörner A, Paulie S, Ahlborg N, Sandberg JK. Detection of macaque perforin expression and release by flow cytometry, immunohistochemistry, ELISA, and ELISpot. J Immunol Methods 2006; 312:45-53. [PMID: 16647080 DOI: 10.1016/j.jim.2006.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 02/15/2006] [Indexed: 11/30/2022]
Abstract
Simian immunodeficiency virus (SIV)-infection in macaques provides an important animal model for human immunodeficiency virus-1 (HIV-1) infection. The involvement of perforin (PFN), released by cytotoxic cells to mediate killing of virus-infected cells, has been difficult to assess in this experimental model due to a lack of reagents. We therefore evaluated monoclonal antibodies (mAbs) Pf-80, Pf-164 and Pf-344, previously raised against human PFN, for cross-reactivity with macaque PFN. Mabs Pf-164 and Pf-344 reacted with intracellular PFN in peripheral blood mononuclear cells (PBMC) from cynomolgus and rhesus macaques by flow cytometry and stained PFN in rhesus lymphoid tissue by immunohistochemistry (IHC). Moreover, PFN capture enzyme-linked immunosorbent (ELISA) and enzyme-linked immunospot (ELISpot) assays utilizing mAbs Pf-164/Pf-80 for capture and mAb Pf-344 for detection were used to quantify PFN release by mitogen-stimulated cynomolgus and rhesus PBMC. The PFN ELISpot was further used to quantify antigen-specific CD8+ T cells by ex vivo stimulation of PBMC from cynomolgus macaques immunized against SIV/HIV-1. These macaque PFN-reactive mAbs and immunoassays will be valuable new tools for investigation of cytotoxic T lymphocyte (CTL) responses in non-human primate models of infectious diseases as well as for vaccine development.
Collapse
|
36
|
Abstract
The understanding and importance of antigen-specific immune responses after vaccination has completely changed in recent years. In the past, the focus for monitoring a vaccine-specific immune reaction was principally on the humoral branch of the immune system. The efficacy of vaccines, as assessed by the induction of protective immunity was mainly correlated with antibodies and antibody-titers. However, this correlation often failed and other parts of the immune system had also to be considered: namely, the innate immune system and the cellular branch of the antigen-specific immune system. With regard to vaccines, the innate immune system plays its main role in the effective activation of the antigen-specific immune response, in antigen-uptake and antigen-presentation. The dendritic cells (DCs) are the most important antigen presenting cells which present processed protein antigens (peptides) through MHC-molecules: MHC-class I, for the presentation of endogenous synthesised antigen; MHC-class II for exogenous antigen. Activation of DC leads to an enhanced production of cytokines and chemokines, to an up-regulation of co-stimulatory and activation molecules and also molecules for cell-cell interactions, e.g. interactions with cells of the antigen-specific immune system. T lymphocytes are the effector cells of the cellular branch of the antigen-specific immune system. They act either as MHC-class I-restricted cytolytic T lymphocytes (CTL) or as MHC-class II-restricted T-helper cells providing support for B lymphocytes (T(H)2) and the cellular part of the antigen-specific immune system (T(H)1). In order to achieve effective vaccination, the activation of all T-cell subpopulations is of advantage, but more important is the generation of antigen-specific memory T and B lymphocytes. In addition to these 'generic' immunological factors which are essential for the design of more efficacious vaccines, our detailed knowledge about feline and canine immune reactions after vaccination, which is still poor, has to be improved.
Collapse
Affiliation(s)
- Armin Saalmüller
- Clinical Immunology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
37
|
Minang JT, Areström I, Zuber B, Jönsson G, Troye-Blomberg M, Ahlborg N. Nickel-induced IL-10 down-regulates Th1- but not Th2-type cytokine responses to the contact allergen nickel. Clin Exp Immunol 2006; 143:494-502. [PMID: 16487249 PMCID: PMC1809611 DOI: 10.1111/j.1365-2249.2006.03018.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Whereas the involvement of Th1- and Th2-type cytokines in contact allergy to nickel (Ni) is well documented, the role of the regulatory cytokine IL-10 is less clear. We therefore investigated the impact of IL-10 on Ni-induced Th1- (IFN-gamma) and Th2-type (IL-4 and IL-13) cytokine responses in human peripheral blood mononuclear cells (PBMC). PBMC from 15 blood donors with reactivity to Ni (Ni-PBMC) and 8 control donors devoid of reactivity (control PBMC) were stimulated with Ni and the frequency of cytokine-producing cells and the levels of secreted cytokines were analysed by ELISpot (IL-4, IL-13 and IFN-gamma) and ELISA (IL-10, IL-13 and IFN-gamma), respectively. The Ni-induced response was further assessed in the presence of recombinant IL-10 (rIL-10) or neutralizing antibody to IL-10 and the phenotype of the Ni-specific cytokine-producing cells regulated by IL-10 was determined by cell depletion experiments. Ni induced IL-10 production in Ni-PBMC (mean, (range); 33.1 pg/ml (0-93.4 pg/ml)) but not control PBMC (2.2 pg/ml (0-14.9 pg/ml)) (P = 0.002). Ni also induced significant production of IL-4, IL-13 and IFN-gamma that correlated with the IL-10 response. Addition of rIL-10 down-regulated the Ni-induced production of all cytokines but with a more pronounced effect on IFN-gamma. However, neutralization of Ni-induced IL-10 enhanced the levels of IFN-gamma induced by Ni (P = 0.004) but did not affect the number of IFN-gamma-producing cells or the production of other cytokines. Cell depletion experiments suggested that the Ni-specific IFN-gamma (and Th2-type cytokine) producing cells were CD4(+) T cells. The impact of IL-10 on Ni-induced IFN-gamma responses by CD4(+) T cells suggests that an important role of IL-10 in vivo is to counteract the allergic reactions mediated by Th1-type cytokines.
Collapse
Affiliation(s)
- J T Minang
- Department of Immunology F5, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
38
|
Adhikary D, Behrends U, Moosmann A, Witter K, Bornkamm GW, Mautner J. Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins. ACTA ACUST UNITED AC 2006; 203:995-1006. [PMID: 16549597 PMCID: PMC2118290 DOI: 10.1084/jem.20051287] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans by latently infecting B cells, with occasional cycles of reactivation, virus production, and reinfection. Protective immunity against EBV is mediated by T cells, but the role of EBV-specific T helper (Th) cells is still poorly defined. Here, we study the Th response to the EBV lytic cycle proteins BLLF1 (gp350/220), BALF4 (gp110), and BZLF1 and show that glycoprotein-specific Th cells recognize EBV-positive cells directly; surprisingly, a much higher percentage of target cells than those expressing lytic cycle proteins were recognized. Antigen is efficiently transferred to bystander B cells by receptor-mediated uptake of released virions, resulting in recognition of target cells incubated with <1 virion/cell. T cell recognition does not require productive infection and occurs early after virus entry before latency is established. Glycoprotein-specific Th cells are cytolytic and inhibit proliferation of lymphoblastoid cell lines (LCL) and the outgrowth of LCL after infection of primary B cells with EBV. These results establish a novel role for glycoprotein-specific Th cells in the control of EBV infection and identify virion proteins as important immune targets. These findings have implications for the treatment of diseases associated with EBV and potentially other coated viruses infecting MHC class II–positive cells.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Clinical Cooperation Group, Institute for Clinical and Molecular Biology, GSF-National Research Center for Environment and Health, Technical University Munich, 80804 Munich, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Klingström J, Gudmundsdotter L, Zuber B, Hinkula J, Mörner A, Wahren B, Rollman E. Elevated levels of serum perforin in chronic HIV-1 and acute SIV/SHIV infection. AIDS 2006; 20:125-7. [PMID: 16327331 DOI: 10.1097/01.aids.0000196170.57927.e1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The impaired functional activity of cytotoxic T lymphocytes and natural killer cells during HIV-1 infection has recently been attributed to decreased intracellular levels of perforin and granzyme B. In sera from individuals chronically infected with HIV-1 we report increased levels of extracellular perforin compared with uninfected individuals. Increased perforin was also observed during experimental SIV/SHIV infection. The combination of reduced intracellular perforin levels and an increased serum level indicates that HIV infection induces aberrant perforin secretion.
Collapse
Affiliation(s)
- Jonas Klingström
- Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Denyer MS, Wileman TE, Stirling CMA, Zuber B, Takamatsu HH. Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Vet Immunol Immunopathol 2005; 110:279-92. [PMID: 16325923 DOI: 10.1016/j.vetimm.2005.10.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/30/2005] [Accepted: 10/14/2005] [Indexed: 01/09/2023]
Abstract
In this study we have used the expression of perforin to characterize subsets of porcine cytotoxic lymphocytes. Perforin positive lymphocytes expressed both CD2 and CD8alpha, most were small dense lymphocytes (SDL) and up to 90% were CD3 negative. However, the numbers of perforin positive T-cells increased with the age of the animal and their populations increased after specific antigen stimulation in vitro. The remaining perforin positive lymphocytes were large and granular and contained more CD3+CD5+CD6+ T-cells (-40%) of which a substantial proportion also co-expressed CD4. Perforin was expressed in subpopulations of both CD8alphaalpha and CD8alphabeta lymphocytes, but was not expressed in gammadelta T-cells or monocyte/macrophages. The perforin positive CD3- subset was phenotypically homogeneous and defined as CD5-CD6-CD8beta-CD16+CD11b+. This population had NK activity and expressed mRNA for the NK receptor NKG2D, and adaptors DAP10 and DAP12. Perforin positive T-cells (CD3+) could be divided into at least three subsets. The first subset was CD4-CD5+CD6+CD11b-CD16- most were small dense lymphocytes with cytotoxic T-cell activity but not all expressed CD8beta. The second subset was mainly observed in the large granular lymphocytes. Their phenotype was CD4+CD5+CD6+CD8beta+CD16-CD11b- and also showed functional CTL activity. Thus not all of double positive T-cells are memory helper T-cells. The third subset did not express the T-cell co-receptor CD6, but up to half of them expressed another T-cell co-receptor CD5. The majority of this subset expressed CD11b and CD16, thus the third perforin positive T-cell subset was CD3+CD4-CD5+CD6-CD8beta+/-CD11b+CD16+, and possessed MHC-unrestricted cytotoxicity and LAK activity.
Collapse
Affiliation(s)
- Michael S Denyer
- Immunology Division, Institute for Animal Health, Pirbright Laboratory, Woking, GU24 0NF Surrey, UK
| | | | | | | | | |
Collapse
|