1
|
Aguilar OA, Qualls AE, Gonzalez-Hinojosa MDR, Obeidalla S, Kerchberger VE, Tsao T, Singer JP, Looney MR, Raymond W, Hays SR, Golden JA, Kukreja J, Shaver CM, Ware LB, Christie J, Diamond JM, Lanier LL, Greenland JR, Calabrese DR. MICB Genomic Variant Is Associated with NKG2D-mediated Acute Lung Injury and Death. Am J Respir Crit Care Med 2024; 209:70-82. [PMID: 37878820 PMCID: PMC10870895 DOI: 10.1164/rccm.202303-0472oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Rationale: Acute lung injury (ALI) carries a high risk of mortality but has no established pharmacologic therapy. We previously found that experimental ALI occurs through natural killer (NK) cell NKG2D receptor activation and that the cognate human ligand, MICB, was associated with ALI after transplantation. Objectives: To investigate the association of a common missense variant, MICBG406A, with ALI. Methods: We assessed MICBG406A genotypes within two multicenter observational study cohorts at risk for ALI: primary graft dysfunction (N = 619) and acute respiratory distress syndrome (N = 1,376). Variant protein functional effects were determined in cultured and ex vivo human samples. Measurements and Main Results: Recipients of MICBG406A-homozygous allografts had an 11.1% absolute risk reduction (95% confidence interval [CI], 3.2-19.4%) for severe primary graft dysfunction after lung transplantation and reduced risk for allograft failure (hazard ratio, 0.36; 95% CI, 0.13-0.98). In participants with sepsis, we observed 39% reduced odds of moderately or severely impaired oxygenation among MICBG406A-homozygous individuals (95% CI, 0.43-0.86). BAL NK cells were less frequent and less mature in participants with MICBG406A. Expression of missense variant protein MICBD136N in cultured cells resulted in reduced surface MICB and reduced NKG2D ligation relative to wild-type MICB. Coculture of variant MICBD136N cells with NK cells resulted in less NKG2D activation and less susceptibility to NK cell killing relative to the wild-type cells. Conclusions: These data support a role for MICB signaling through the NKG2D receptor in mediating ALI, suggesting a novel therapeutic approach.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department Microbiology and Immunology
- Parker Institute for Cancer Immunotherapy
| | | | | | | | | | | | | | | | | | | | | | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | | | - Lorraine B. Ware
- Department Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jason Christie
- Department Medicine and
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | | - Lewis L. Lanier
- Department Microbiology and Immunology
- Parker Institute for Cancer Immunotherapy
| | - John R. Greenland
- Department Medicine
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Daniel R. Calabrese
- Department Medicine
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
2
|
Aguilar OA, Gonzalez-Hinojosa MD, Arakawa-Hoyt JS, Millan AJ, Gotthardt D, Nabekura T, Lanier LL. The CD16 and CD32b Fc-gamma receptors regulate antibody-mediated responses in mouse natural killer cells. J Leukoc Biol 2023; 113:27-40. [PMID: 36822164 PMCID: PMC10197019 DOI: 10.1093/jleuko/qiac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria D.R. Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Alberto J. Millan
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Present Address: Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
3
|
Aguilar OA, Tanaka M, Balaji GR, Berry R, Rossjohn J, Lanier LL, Carlyle JR. Tetramer Immunization and Selection Followed by CELLISA Screening to Generate Monoclonal Antibodies against the Mouse Cytomegalovirus m12 Immunoevasin. THE JOURNAL OF IMMUNOLOGY 2020; 205:1709-1717. [PMID: 32817368 DOI: 10.4049/jimmunol.2000687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
Abstract
The generation of reliable mAb of unique and desired specificities serves as a valuable technology to study protein expression and function. However, standard approaches to mAb generation usually involve large-scale protein purification and intensive screening. In this study, we describe an optimized high-throughput proof-of-principle method for the expanded generation, enrichment, and screening of mouse hybridomas secreting mAb specific for a protein of interest. Briefly, we demonstrate that small amounts of a biotinylated protein of interest can be used to generate tetramers for use as prime-boost immunogens, followed by selective enrichment of Ag-specific B cells by magnetic sorting using the same tetramers prior to hybridoma generation. This serves two purposes: 1) to effectively expand both low- and high-affinity B cells specific for the antigenic bait during immunization and 2) to minimize subsequent laborious hybridoma efforts by positive selection of Ag-specific, Ab-secreting cells prior to hybridoma fusion and validation screening. Finally, we employ a rapid and inexpensive screening technology, CELLISA, a high-throughput validation method that uses a chimeric Ag fused to the CD3ζ signaling domain expressed on enzyme-generating reporter cells; these reporters can detect specific mAb in hybridoma supernatants via plate-bound Ab-capture arrays, thereby easing screening. Using this strategy, we generated and characterized novel mouse mAb specific for a viral immunoevasin, the mouse CMV m12 protein, and suggest that these mAb may protect mice from CMV infection via passive immunity.
Collapse
Affiliation(s)
- Oscar A Aguilar
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - Miho Tanaka
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - Gautham R Balaji
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Richard Berry
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
4
|
Balaji GR, Aguilar OA, Tanaka M, Shingu-Vazquez MA, Fu Z, Gully BS, Lanier LL, Carlyle JR, Rossjohn J, Berry R. Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition. Nat Commun 2018; 9:4623. [PMID: 30397201 PMCID: PMC6218473 DOI: 10.1038/s41467-018-06989-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 01/16/2023] Open
Abstract
The interaction between natural killer (NK) cell inhibitory receptors and their cognate ligands constitutes a key mechanism by which healthy tissues are protected from NK cell-mediated lysis. However, self-ligand recognition remains poorly understood within the prototypical NKR-P1 receptor family. Here we report the structure of the inhibitory NKR-P1B receptor bound to its cognate host ligand, Clr-b. NKR-P1B and Clr-b interact via a head-to-head docking mode through an interface that includes a large array of polar interactions. NKR-P1B:Clr-b recognition is extremely sensitive to mutations at the heterodimeric interface, with most mutations severely impacting both Clr-b binding and NKR-P1B receptor function to implicate a low affinity interaction. Within the structure, two NKR-P1B:Clr-b complexes are cross-linked by a non-classic NKR-P1B homodimer, and the disruption of homodimer formation abrogates Clr-b recognition. These data provide an insight into a fundamental missing-self recognition system and suggest an avidity-based mechanism underpins NKR-P1B receptor function.
Collapse
MESH Headings
- Animals
- Carrier Proteins
- Crystallography, X-Ray
- HEK293 Cells
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- NK Cell Lectin-Like Receptor Subfamily B/chemistry
- NK Cell Lectin-Like Receptor Subfamily B/genetics
- Protein Conformation
- Protein Conformation, alpha-Helical
- Protein Domains
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Natural Killer Cell/chemistry
- Receptors, Natural Killer Cell/genetics
- X-Ray Diffraction
Collapse
Affiliation(s)
- Gautham R Balaji
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Oscar A Aguilar
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, 94143, USA
| | - Miho Tanaka
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Miguel A Shingu-Vazquez
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Zhihui Fu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, 94143, USA
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
5
|
High affinity sugar ligands of C-type lectin receptor langerin. Biochim Biophys Acta Gen Subj 2018; 1862:1592-1601. [PMID: 29631057 DOI: 10.1016/j.bbagen.2018.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application. METHODS We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin. RESULTS We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system. CONCLUSIONS L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin. GENERAL SIGNIFICANCE These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.
Collapse
|
6
|
Aguilar OA, Berry R, Rahim MMA, Reichel JJ, Popović B, Tanaka M, Fu Z, Balaji GR, Lau TNH, Tu MM, Kirkham CL, Mahmoud AB, Mesci A, Krmpotić A, Allan DSJ, Makrigiannis AP, Jonjić S, Rossjohn J, Carlyle JR. A Viral Immunoevasin Controls Innate Immunity by Targeting the Prototypical Natural Killer Cell Receptor Family. Cell 2017; 169:58-71.e14. [PMID: 28340350 DOI: 10.1016/j.cell.2017.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 02/27/2017] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.
Collapse
Affiliation(s)
- Oscar A Aguilar
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Richard Berry
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Mir Munir A Rahim
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Johanna J Reichel
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Branka Popović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Miho Tanaka
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Zhihui Fu
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Gautham R Balaji
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Timothy N H Lau
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christina L Kirkham
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; College of Applied Medical Sciences, Taibah University, 30001 Madinah Munawwarah, Kingdom of Saudi Arabia
| | - Aruz Mesci
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - David S J Allan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
7
|
Wittmann A, Lamprinaki D, Bowles KM, Katzenellenbogen E, Knirel YA, Whitfield C, Nishimura T, Matsumoto N, Yamamoto K, Iwakura Y, Saijo S, Kawasaki N. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem 2016; 291:17629-38. [PMID: 27358401 PMCID: PMC5016159 DOI: 10.1074/jbc.m116.741256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2.
Collapse
Affiliation(s)
- Alexandra Wittmann
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Dimitra Lamprinaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ewa Katzenellenbogen
- the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw 53-114, Poland
| | - Yuriy A Knirel
- the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chris Whitfield
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Takashi Nishimura
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Naoki Matsumoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Kazuo Yamamoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Yoichiro Iwakura
- the Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Shinobu Saijo
- the Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Norihito Kawasaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom, the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan,
| |
Collapse
|
8
|
Aguilar OA, Mesci A, Ma J, Chen P, Kirkham CL, Hundrieser J, Voigt S, Allan DSJ, Carlyle JR. Modulation of Clr Ligand Expression and NKR-P1 Receptor Function during Murine Cytomegalovirus Infection. J Innate Immun 2015; 7:584-600. [PMID: 26044139 DOI: 10.1159/000382032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
Viruses are known to induce pathological cellular states that render infected cells susceptible or resistant to immune recognition. Here, we characterize an MHC-I-independent natural killer (NK) cell recognition mechanism that involves modulation of inhibitory NKR-P1B:Clr-b receptor-ligand interactions in response to mouse cytomegalovirus (MCMV) infection. We demonstrate that mouse Clr-b expression on healthy cells is rapidly lost at the cell surface and transcript levels in a time- and dose-dependent manner upon MCMV infection. In addition, cross-species infections using rat cytomegalovirus (RCMV) infection of mouse fibroblasts and MCMV infection of rat fibroblasts suggest that this response is conserved during host-pathogen interactions. Active viral infection appears to be necessary for Clr-b loss, as cellular stimulation using UV-inactivated whole virus or agonists of many innate pattern recognition receptors failed to elicit efficient Clr-b downregulation. Notably, Clr-b loss could be partially blocked by titrated cycloheximide treatment, suggesting that early viral or nascent host proteins are required for Clr-b downregulation. Interestingly, reporter cell assays suggest that MCMV may encode a novel Clr-b-independent immunoevasin that functionally engages the NKR-P1B receptor. Together, these data suggest that Clr-b modulation is a conserved innate host cell response to virus infection that is subverted by multiple CMV immune evasion strategies.
Collapse
Affiliation(s)
- Oscar A Aguilar
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ont., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Taketa DA, De Tomaso AW. Botryllus schlosseri allorecognition: tackling the enigma. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:254-65. [PMID: 24709050 PMCID: PMC4185259 DOI: 10.1016/j.dci.2014.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/24/2014] [Accepted: 03/21/2014] [Indexed: 05/15/2023]
Abstract
Allorecognition has been well-studied in the context of vertebrate adaptive immunity and recognition of the Major Histocompatibility Complex (MHC), which is the central event of vertebrate immune responses. Although allorecognition systems have been identified throughout the metazoa, recent results have shown that there is no apparent conservation or orthologous relationship between the mechanisms underlying this phenomenon in different organisms. Thus the origin of the vertebrate adaptive immune system as well as these other complex recognition systems is a complete mystery. This review will focus on allorecognition in Botryllus schlosseri, a basal chordate which undergoes a natural transplantation reaction following contact between two individuals, and, analogous to vertebrates, is controlled by a single locus. We will summarize each of the known candidate genes within this locus and their potential roles in allorecognition, and speculate on how these findings may in fact be revealing potential functional relationships between disparate allorecognition systems.
Collapse
Affiliation(s)
- Daryl A Taketa
- Department of Molecular, Cellular and Development Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Development Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
10
|
Rat macrophage C-type lectin is an activating receptor expressed by phagocytic cells. PLoS One 2013; 8:e57406. [PMID: 23468983 PMCID: PMC3585393 DOI: 10.1371/journal.pone.0057406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023] Open
Abstract
Macrophage C-type lectin (MCL) is a membrane surface receptor encoded by the Antigen Presenting Lectin-like gene Complex (APLEC). We generated a mouse monoclonal antibody for the study of this receptor in the rat. We demonstrate that rat MCL is expressed on blood monocytes and neutrophils, as well as on several tissue macrophage populations, including alveolar and peritoneal cavity macrophages. We also demonstrate MCL expression on a subset of resident spleen macrophages. Immunohistochemistry analysis of the spleen showed staining specifically in the marginal zone and red pulp. Exposure to pro-inflammatory mediators or to yeast cell wall extract (zymosan) increased surface MCL expression on peritoneal macrophages. We characterized a rat myeloid cell line, RMW, which expresses high levels of MCL. We found that MCL co-immunoprecipitated with the activating adaptor protein FcεRIγ in these cells. Moreover, beads coated with anti-MCL antibody increased phagocytosis in the RMW cells. Together, these observations indicate that rat MCL is a receptor that activates phagocytosis in myeloid cells under inflammatory conditions.
Collapse
|
11
|
Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples. Food Chem 2012; 135:2661-5. [PMID: 22980855 DOI: 10.1016/j.foodchem.2012.07.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 10/16/2010] [Accepted: 07/03/2012] [Indexed: 11/20/2022]
Abstract
Abrin is a plant toxin, which can be easily isolated from the seeds of Abrus precatorius. It may be used as a biological warfare agent. In order to detect abrin in food samples, a two-layer sandwich format enzyme-linked immunosorbent assay based on the monoclonal antibody (mAb) (as capture antibody) and rabbit polyclonal serum (as detecting antibody) was developed and applied for the determination of abrin in some food matrices. The linear range of the mAb was 1-100 μg L(-1) with a detection limit of 0.5 μg L(-1) for abrin in phosphate buffered saline (PBS). The recoveries of abrin from sausage, beer and milk samples ranged 97.5-98.6%, 95.8-98.4% and 94.8-9.6%, respectively, with a coefficient of variation (CV) of 3.7% or less. The newly developed sandwich ELISA using the mAb appears to be a reliable and useful method for detection of abrin in sausage, beer and milk.
Collapse
|
12
|
Cortes HD, Montgomery BC, Verheijen K, García-García E, Stafford JL. Examination of the stimulatory signaling potential of a channel catfish leukocyte immune-type receptor and associated adaptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:62-73. [PMID: 21703302 DOI: 10.1016/j.dci.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 05/31/2023]
Abstract
Expressed by various subsets of myeloid and lymphoid immune cells, channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are predicted to play a key role in the initiation and termination of teleost cellular effector responses. These type I transmembrane proteins belong to the immunoglobulin superfamily and display features of immunoregulatory receptors with inhibitory and/or stimulatory signaling potential. Expanding on our previous work, which demonstrated that putative stimulatory IpLITR-types associated with the catfish adaptor proteins IpFcRγ and FcRγ-L, this study focuses on the functional significance of this immune receptor-adaptor signaling complex. Specifically, we generated an epitope-tagged chimeric receptor construct by fusing the extracellular domain of IpLITR 2.6b with the transmembrane region and cytoplasmic tail of IpFcRγ-L. This chimera was stably expressed in a rat basophilic leukemia (RBL) cell line, RBL-2H3, and following cross-linking of the surface receptor with an anti-hemagglutinin monoclonal antibody or opsonized microspheres, the chimeric teleost receptor induced cellular degranulation and phagocytic responses, respectively. Site-directed mutagenesis of the immunoreceptor tyrosine-based activation motif encoded within the cytoplasmic tail of the chimera confirmed that these functional responses were dependent on the phosphorylated tyrosines within this motif. Using a combination of phospho-specific antibodies and pharmacological inhibitors, we also demonstrate that the IpLITR/IpFcRγ-L-induced degranulation response requires the activity of Src homology 2 domain containing protein tyrosine phosphatases, phosphatidylinositol 3-kinase, protein kinase C, and mitogen-activated protein kinases but appears independent of the c-Jun N-terminal kinase and p38 MAP kinase pathways. In addition to this first look at stimulatory IpLITR-mediated signaling and its influence on cellular effector responses, the advantage of generating RBL-2H3 cells stably expressing a functional IpLITR-adaptor chimera will be discussed.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Basophils/drug effects
- Basophils/immunology
- Basophils/metabolism
- Basophils/pathology
- Cell Degranulation/drug effects
- Cell Line, Tumor
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Ictaluridae
- Immunity, Cellular
- Mutagenesis, Site-Directed
- Phagocytosis
- Phosphorylation
- Protein Structure, Tertiary/genetics
- Rats
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transgenes/genetics
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Herman D Cortes
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
13
|
Karsunke XYZ, Pschenitza M, Rieger M, Weber E, Niessner R, Knopp D. Screening and characterization of new monoclonal anti-benzo[a]pyrene antibodies using automated flow-through microarray technology. J Immunol Methods 2011; 371:81-90. [PMID: 21723870 DOI: 10.1016/j.jim.2011.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/08/2011] [Accepted: 06/16/2011] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, which can cause cancer in humans. The maximum tolerable limit of benzo[a]pyrene (B[a]P) in drinking water was set to 10 ng/L by the European Commission (Council Directive 98/83/EC), because of its highly carcinogenic and mutagenic effect on humans. In the present investigation, mice were immunized with B[a]P-bovine serum albumin conjugates and 110 generated hybridoma cell lines screened by different techniques to identify clones that produce anti-B[a]P antibodies. Subsequently, a new automated flow-through biochip noncompetitive direct chemiluminescence immunoassay (CLEIA) was compared with conventional indirect and direct enzyme-linked immunosorbent assays (ELISAs). It was demonstrated that the microchip-based screening method compared to ELISA was fast and very sensitive with use of only nanoliter volumes of supernatant. Forty clones could be evaluated in less than 5 min. Six high affinity monoclonal antibodies with different cross-reactivities (CR) for individual PAHs were identified by the chip-based assay and indirect microtiter plate ELISA. In comparison, the direct ELISA in the microtiter plate failed to identify three of these clones. The four antibodies with the highest affinity had half maximum inhibitory concentrations (IC(50) values) between 0.31 and 0.92 μg/L for B[a]P. Affinity constants of these four antibodies were determined by surface plasmon resonance using a water soluble B[a]P-peptide. The observed CR pattern of the four monoclonal antibodies for 16 tested PAHs was quite different. Only one specific antibody for B[a]P was observed, while others were more suitable for class-specific PAH determination.
Collapse
Affiliation(s)
- Xaver Y Z Karsunke
- Institute of Hydrochemistry, Technische Universität München, Marchioninistr. 17, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Chen P, Bélanger S, Aguilar OA, Zhang Q, St-Laurent A, Rahim MMA, Makrigiannis AP, Carlyle JR. Analysis of the mouse 129-strain Nkrp1-Clr gene cluster reveals conservation of genomic organization and functional receptor-ligand interactions despite significant allelic polymorphism. Immunogenetics 2011; 63:627-40. [PMID: 21667046 DOI: 10.1007/s00251-011-0542-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/23/2011] [Indexed: 11/28/2022]
Abstract
The Nkrp1 (Klrb) family of NK cell receptors and their genetically linked Clr (Clec2) ligands are conserved between rodents and humans. Nonetheless, certain mouse and rat Nkrp1 genes exhibit significant allelic polymorphism between inbred strains. We previously demonstrated that the Nkrp1-Clr recognition system is genetically and functionally conserved between the B6 and BALB/c strains, with focused sequence divergence evident in certain genes (e.g., Nkrp1b,c). Here, we extend this finding by mapping the 129-strain Nkrp1-Clr gene cluster, which is structurally conserved yet displays significant sequence divergence relative to the B6 haplotype. In addition, we show that 129-strain NK cells possess comparable Nkrp1 and Clr transcript expression, and characterize several NKR-P1:Clr interactions that are functionally conserved between the B6 and 129 strains, including documented and novel receptor-ligand pairs. Thus, despite significant allelic polymorphism observed in the Nkrp1-Clr region, the overall genetic organization and functional repertoire appear to be conserved among mouse strains, in contrast to the striking variation observed in the corresponding Ly49 region. These data extend our knowledge of the complex genetically linked Nkrp1-Clr NK recognition system in mice.
Collapse
Affiliation(s)
- Peter Chen
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
CELLISA: reporter cell-based immunization and screening of hybridomas specific for cell surface antigens. Methods Mol Biol 2011; 748:209-25. [PMID: 21701977 DOI: 10.1007/978-1-61779-139-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monoclonal antibodies (mAbs) specific for cell surface antigens are an invaluable tool to study immune receptor expression and function. Here, we outline a generalized reporter cell-based approach to the generation and high-throughput screening of mAbs specific for cell surface antigens. Termed CELLISA, this technology hinges upon the capture of hybridoma supernatants in mAb arrays that facilitate ligation of an antigen of interest displayed on BWZ reporter cells in the form of a CD3ζ-fusion chimeric antigen receptor (zCAR); in turn, specific mAb-mediated cross-linking of zCAR on BWZ cells results in the production of β-galactosidase enzyme (β-gal), which can be assayed colorimetrically. Importantly, the BWZ reporter cells bearing the zCAR of interest may be used for immunization as well as screening. In addition, serial immunizations employing additional zCAR- or native antigen-bearing cell lines can be used to increase the frequency of the desired antigen-specific hybridomas. Finally, the use of a cohort of epitope-tagged zCAR (e.g., zCAR(FLAG)) variants allows visualization of the cell surface antigen prior to immunization, and coimmunization using these variants can be used to enhance the immunogenicity of the target antigen. Employing the CELLISA strategy, we herein describe the generation of mAb directed against an uncharacterized natural killer cell receptor protein.
Collapse
|
16
|
An efficient system to generate monoclonal antibodies against membrane-associated proteins by immunisation with antigen-expressing mammalian cells. BMC Biotechnol 2010; 10:87. [PMID: 21159168 PMCID: PMC3019159 DOI: 10.1186/1472-6750-10-87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 12/15/2010] [Indexed: 12/16/2022] Open
Abstract
Background The generation of monoclonal antibodies specific for protein antigens usually depends on purified recombinant protein for both immunisation and hybridoma screening. Purification of recombinant protein in sufficient yield and purity is a tedious undertaking and can be demanding especially in the case of membrane proteins. Furthermore, antibodies generated against a purified recombinant protein are frequently incapable of binding to the endogenous protein in its native context. Results We describe a strategy to generate monoclonal antibodies against membrane or membrane-associated proteins that completely bypasses any need for purified recombinant antigen. This approach utilises stably transfected mammalian cells expressing recombinant antigens on their cell surface for immunisation of mice. The transfected cells are also used for measuring seroconversion, hybridoma selection and antibody characterisation. By presenting the antigen in its native conformation for immunisation and hybridoma selection, this procedure promotes the generation of antibodies capable of binding to the endogenous protein. In the present study, we applied this approach successfully for three predicted GPI-anchored proteins of the malaria parasite Plasmodium falciparum. Conclusions The described entirely cell-based technology is a fast and efficient approach for obtaining antibodies reactive with endogenous cell-surface proteins in their native conformation.
Collapse
|
17
|
Zhao Z, Ciric B, Yu S, Zhang GX, Rostami A. Targeting ganglioside epitope 3G11 on the surface of CD4+ T cells suppresses EAE by altering the Treg/Th17 cell balance. Int Immunol 2010; 22:817-26. [PMID: 20679513 DOI: 10.1093/intimm/dxq432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss of expression of the 3G11 epitope, present on disialoceramide that is predominantly found on CD4(+) T cells, has been associated with a regulatory T cell (Treg) phenotype and tolerance induction in experimental autoimmune encephalomyelitis (EAE). Here we report that treatment with anti-3G11 mAb shifts the immune response from pro-inflammatory to tolerogenic and suppresses both chronic-progressive and relapsing-remitting EAE. This therapeutic effect can be achieved at different stages of EAE. Treatment with anti-3G11 mAb increased the proportion of Foxp3(+)CD25(+)CD4(+) Tregs and IL-10 production while inhibiting production of pro-inflammatory cytokines and responsiveness to IL-2 and decreasing the proportion of T(h)17 cells. The effect of anti-3G11 mAb was diminished in IL-10(-/-) mice, indicating that this cytokine mediates some of its effects. As 3G11 belongs to the ganglioside family, which is expressed on the surface of both murine and human CD4(+) T cells, targeting this class of molecules may provide a novel approach for treating autoimmune diseases.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Neurology, Suite 200, Jefferson Hospital for Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
18
|
Production of human monoclonal antibodies against Fc(epsilon)RI(alpha) by a method combining in vitro immunization with phage display. Biosci Biotechnol Biochem 2009; 73:1465-9. [PMID: 19584553 DOI: 10.1271/bbb.80640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An in vitro immunization protocol using human peripheral blood mononuclear cells (PBMC) was developed to generate human antigen-specific antibodies. Monoclonal antibodies have great potential, and in particular, efficient acquirement of monoclonal antibodies against membrane proteins provides advantages. In this study, we tried to generate a human monoclonal antibody against the high affinity IgE receptor, Fc(epsilon)RI(alpha), using a method combining in vitro immunization and phage display. Heavy and light chain variable region genes were obtained from PBMC immunized in vitro with Fc(epsilon)RI(alpha)-expressed KU812F cells. Subsequently a combined phage antibody library 6 x 10(3) in the size was generated. Antigen-specific phage antibody clones were selected by panning with recombinant Fc(epsilon)RI(alpha) and recombined to produce human IgG format antibodies using CHO cells. The antibodies exhibited specific binding against Fc(epsilon)RI(alpha). These results suggest that one can obtain membrane protein-specific human monoclonal antibodies from a relatively small phage antibody library using in vitro immunized PBMCs.
Collapse
|
19
|
Development of a novel antibody probe useful for domoic acid detection. Biosens Bioelectron 2009; 24:3159-63. [DOI: 10.1016/j.bios.2009.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/28/2009] [Accepted: 03/17/2009] [Indexed: 02/03/2023]
|
20
|
Sancho D, Mourão-Sá D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008; 118:2098-110. [PMID: 18497879 DOI: 10.1172/jci34584] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/16/2008] [Indexed: 01/07/2023] Open
Abstract
The mouse CD8alpha+ DC subset excels at cross-presentation of antigen, which can elicit robust CTL responses. A receptor allowing specific antigen targeting to this subset and its equivalent in humans would therefore be useful for the induction of antitumor CTLs. Here, we have characterized a C-type lectin of the NK cell receptor group that we named DC, NK lectin group receptor-1 (DNGR-1). DNGR-1 was found to be expressed in mice at high levels by CD8+ DCs and at low levels by plasmacytoid DCs but not by other hematopoietic cells. Human DNGR-1 was also restricted in expression to a small subset of blood DCs that bear similarities to mouse CD8alpha+ DCs. The selective expression pattern and observed endocytic activity of DNGR-1 suggested that it could be used for antigen targeting to DCs. Consistent with this notion, antigen epitopes covalently coupled to an antibody specific for mouse DNGR-1 were selectively cross-presented by CD8alpha+ DCs in vivo and, when given with adjuvants, induced potent CTL responses. When the antigens corresponded to tumor-expressed peptides, treatment with the antibody conjugate and adjuvant could prevent development or mediate eradication of B16 melanoma lung pseudometastases. We conclude that DNGR-1 is a novel, highly specific marker of mouse and human DC subsets that can be exploited for CTL cross-priming and tumor therapy.
Collapse
Affiliation(s)
- David Sancho
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Voigt S, Mesci A, Ettinger J, Fine JH, Chen P, Chou W, Carlyle JR. Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity 2007; 26:617-27. [PMID: 17462921 DOI: 10.1016/j.immuni.2007.03.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/26/2007] [Accepted: 03/23/2007] [Indexed: 02/07/2023]
Abstract
Cytomegaloviruses are known to encode several gene products that function to subvert MHC-dependent immune recognition. Here we characterize a rat cytomegalovirus (RCMV) C-type lectin-like (RCTL) gene product with homology to the Clr ligands for the NKR-P1 receptors. RCMV infection rapidly extinguished host Clr-b expression, thereby sensitizing infected cells to killing by natural killer (NK) cells. However, the RCTL protein functioned as a decoy ligand to protect infected cells from NK killing via direct interaction with the NKR-P1B inhibitory receptor. In vivo, an RCTL mutant virus displayed diminished virulence in an NK-dependent and strain-specific manner, suggesting that host NKR-P1 polymorphisms have evolved to avert the viral decoy mechanism while maintaining Clr-b recognition to preserve self tolerance. These findings reveal a unique strategy adopted by cytomegaloviruses to evade MHC-independent self-nonself discrimination. The existence of lectin-like genes in several poxviruses suggests that this may represent a common theme for viral evasion of innate immunity.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Calcitonin Receptor-Like Protein
- Cell Line
- Female
- Gene Expression Regulation
- Genome, Viral/genetics
- Humans
- Immunity, Innate/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Ligands
- Molecular Sequence Data
- Muromegalovirus/genetics
- Muromegalovirus/immunology
- Muromegalovirus/pathogenicity
- Phylogeny
- Rats
- Receptors, Calcitonin/chemistry
- Receptors, Calcitonin/genetics
- Receptors, Calcitonin/metabolism
- Receptors, Immunologic/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Virus Internalization
Collapse
Affiliation(s)
- Sebastian Voigt
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|