1
|
Song Z, Zhang S, Pan H, Hu B, Liu X, Cui J, Zhang L. Global research trends on the links between NfL and neurological disorders: A bibliometric analysis and review. Heliyon 2024; 10:e34720. [PMID: 39157316 PMCID: PMC11327529 DOI: 10.1016/j.heliyon.2024.e34720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Background The global incidence of neurological diseases has been on the rise, creating an urgent need for a validated marker. Neurofilament Light Chain (NfL) holds promise as such a marker and has garnered significant attention in the field of neurological diseases over the past decades. Methods Corresponding articles from 2013 to 2023 were collected from the Web of Science database, and data were analyzed by CiteSpace and VOSviewer software. Results A total of 1350 articles were collected from 296 countries/regions, involving 7246 research organizations. Since 2013, among the top ten institutions and authors with the highest number of published papers, the most are from the US and the UK. The United States leads in the number of published papers, but England holds a more momentous position, because it has higher IF. Henrik Zetterberg is the most influential scholar in the field. Conclusions The output of papers mainly relies on researchers from developed countries, and scholars from the United States and England have contributed the largest number of papers. Until now, the importance of NfL in neurological diseases has attracted global attention. In addition, NfL contributes to the potential diagnosis of various neurological disorders and can be used to improve the accuracy of differential diagnosis and prognostic assessment as well as predict the response to treatments. More and more in-depth studies are highly needed in the future.
Collapse
Affiliation(s)
- Zhengxi Song
- Department of Neurology, The People' s Hospital of Jianyang city, Jianyang, 641400 China
| | - Shan Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - HongYu Pan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Bingshuang Hu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - XinLian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| | - Jia Cui
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
2
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
3
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Allen-Philbey K, De Trane S, MacDougall A, Adams A, Bianchi L, Campion T, Giovannoni G, Gnanapavan S, Holden DW, Marta M, Mathews J, Turner BP, Baker D, Schmierer K. Disease activity 4.5 years after starting cladribine: experience in 264 patients with multiple sclerosis. Ther Adv Neurol Disord 2023; 16:17562864231200627. [PMID: 37954917 PMCID: PMC10638874 DOI: 10.1177/17562864231200627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/15/2023] [Indexed: 11/14/2023] Open
Abstract
Background Cladribine is an effective immunotherapy for people with multiple sclerosis (pwMS). Whilst most pwMS do not require re-treatment following standard dosing (two treatment courses), disease activity re-emerges in others. The characteristics of pwMS developing re-emerging disease activity remain incompletely understood. Objectives To explore whether clinical and/or paraclinical baseline characteristics, including the degree of lymphocyte reduction, drug dose and lesions on magnetic resonance imaging (MRI) are associated with re-emerging disease activity. Design Service evaluation in pwMS undergoing subcutaneous cladribine (SClad) treatment. Methods Demographics, clinical, laboratory and MRI data of pwMS receiving two courses of SClad were extracted from health records. To assess associations of predictor variables with re-emerging disease activity, a series of Cox proportional hazards models was fitted (one for each predictor variable). Results Of n = 264 pwMS 236 received two courses of SClad and were included in the analysis. Median follow-up was 4.5 years (3.9, 5.3) from the first, and 3.5 years (2.9, 4.3) from the last SClad administration. Re-emerging disease activity occurred in 57/236 pwMS (24%); 22/236 received further cladribine doses (SClad or cladribine tablets) at 36.7 months [median; interquartile range (IQR): 31.7, 42.1], and 22/236 other immunotherapies 18.9 months (13.0, 30.2) after their second course of SClad, respectively. Eligibility was based on MRI activity in 29, relapse in 5, both in 13, elevated cerebrospinal fluid neurofilament light chain level in 3, deterioration unrelated to relapse in 4 and other in 3. Only 36/57 of those eligible for additional immunotherapy had received a reduced dose of SClad for their second treatment course. Association was detected between re-emerging disease activity and (i) high baseline MRI activity and (ii) low second dose of SClad. Conclusion Re-emerging disease activity was associated with baseline MRI activity and low dose second course of SClad.
Collapse
Affiliation(s)
- Kimberley Allen-Philbey
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Stefania De Trane
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
- Neurological Rehabilitation and Spinal Unit, Istituti Clinici Scientifici Maugeri, IRCCS Bari, Italy
| | - Amy MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashok Adams
- Department of Neuroradiology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Lucia Bianchi
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Thomas Campion
- Department of Neuroradiology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Gavin Giovannoni
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - David W. Holden
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Monica Marta
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - Joela Mathews
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Benjamin P. Turner
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | - David Baker
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
5
|
Mobed A, Charsouei S, Yazdani Y, Gargari MK, Ahmadalipour A, Sadremousavi SR, Farrahizadeh M, Shahbazi A, Haghani M. Biosensors, Recent Advances in Determination of BDNF and NfL. Cell Mol Neurobiol 2023; 43:3801-3814. [PMID: 37605014 DOI: 10.1007/s10571-023-01401-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Key biomarkers such as Brain Derived Neurotrophic Factor (BDNF) and Neurofilament light chain (NfL) play important roles in the development and progression of many neurological diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In these clinical conditions, the underlying biomarker processes are markedly heterogeneous. In this context, robust biomarker discovery is of critical importance for screening, early detection, and monitoring of neurological diseases. The difficulty of directly identifying biochemical processes in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory response have been identified in various body fluids such as blood, cerebrospinal fluid, and tears. Furthermore, biotechnology and nanotechnology have facilitated the development of biosensor platforms capable of real-time detection of multiple biomarkers in clinically relevant samples. Biosensing technology is approaching maturity and will be deployed in communities, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight clinical and current technological advances in the development of multiplex-based solutions for effective diagnosis and monitoring of neuroinflammatory and neurodegenerative diseases. The trend in the detection if BDNF and NfL.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeid Charsouei
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yalda Yazdani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morad Kohandel Gargari
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Reyhaneh Sadremousavi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, East Azarbayjan Science and Research Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Farrahizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ali Shahbazi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Haghani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Arslan B, Zetterberg H. Neurofilament light chain as neuronal injury marker - what is needed to facilitate implementation in clinical laboratory practice? Clin Chem Lab Med 2023; 61:1140-1149. [PMID: 36880940 DOI: 10.1515/cclm-2023-0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neurobiomarkers have attracted significant attention over the last ten years. One promising biomarker is the neurofilament light chain protein (NfL). Since the introduction of ultrasensitive assays, NfL has been developed into a widely used axonal damage marker of relevance to the diagnosis, prognostication, follow-up, and treatment monitoring of a range of neurological disorders, including multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. The marker is increasingly used clinically, as well as in clinical trials. Even if we have validated precise, sensitive, and specific assays for NfL quantification in both cerebrospinal fluid and blood, there are analytical, as well as pre- and post-analytical aspects of the total NfL testing process, including biomarker interpretation, to consider. Although the biomarker is already in use in specialised clinical laboratory settings, a more general use requires some further work. In this review, we provide brief basic information and opinions on NfL as a biomarker of axonal injury in neurological diseases and pinpoint additional work needed to facilitate biomarker implementation in clinical practice.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
8
|
Wolinski P, Ksiazek-Winiarek D, Glabinski A. Cytokines and Neurodegeneration in Epileptogenesis. Brain Sci 2022; 12:brainsci12030380. [PMID: 35326336 PMCID: PMC8945903 DOI: 10.3390/brainsci12030380] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by a heterogenous etiology. Its main features are recurrent seizures. Despite many clinical studies, about 30% of cases are refractory to treatment. Recent studies suggested the important role of immune-system elements in its pathogenesis. It was suggested that a deregulated inflammatory process may lead to aberrant neural connectivity and the hyperexcitability of the neuronal network. The aim of our study was the analysis of the expression of inflammatory mediators in a mouse model of epilepsy and their impact on the neurodegeneration process located in the brain. We used the KA-induced model of epilepsy in SJL/J mice and performed the analysis of gene expression and protein levels. We observed the upregulation of IL1β and CXCL12 in the early phase of KA-induced epilepsy and elevated levels of CCL5 at a later time point, compared with control animals. The most important result obtained in our study is the elevation of CXCL2 expression at both studied time points and its correlation with the neurodegeneration observed in mouse brain. Increasing experimental and clinical data suggest the influence of peripheral inflammation on epileptogenesis. Thus, studies focused on the molecular markers of neuroinflammation are of great value and may help deepen our knowledge about epilepsy, leading to the discovery of new drugs.
Collapse
|
9
|
Anad A, Barker MK, Katanga JA, Arfanakis K, Bridges LR, Esiri MM, Isaacs JD, Prpar Mihevc S, Pereira AC, Schneider JA, Hainsworth AH. Vasculocentric Axonal NfH in Small Vessel Disease. J Neuropathol Exp Neurol 2022; 81:182-192. [PMID: 35086142 PMCID: PMC8922195 DOI: 10.1093/jnen/nlab134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cerebral small vessel disease (SVD) causes lacunar stroke and vascular cognitive impairment in older people. The pathogenic pathways from vessel pathology to parenchymal damage in SVD are unknown. Neurofilaments are axonal structural proteins. Neurofilament-light (NfL) is an emerging biomarker for neurological disease. Here, we examined the high molecular weight form neurofilament-heavy (NfH) and quantified a characteristic pattern of peri-arterial (vasculocentric) NfH labeling. Subcortical frontal and parietal white matter from young adult controls, aged controls, and older people with SVD or severe Alzheimer disease (n = 52) was immunohistochemically labeled for hyperphosphorylated NfH (pNfH). The extent of pNfH immunolabeling and the degree of vasculocentric axonal pNfH were quantified. Axonal pNfH immunolabeling was sparse in young adults but a common finding in older persons (controls, SVD, or AD). Axonal pNfH was often markedly concentrated around small penetrating arteries. This vasculocentric feature was more common in older people with SVD than in those with severe AD (p = 0.004). We conclude that axonal pNfH is a feature of subcortical white matter in aged brains. Vasculocentric axonal pNfH is a novel parenchymal lesion that is co-located with SVD arteriopathy and could be a consequence of vessel pathology.
Collapse
Affiliation(s)
- Adam Anad
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
| | - Miriam K Barker
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA (KA, JAS)
| | - Jessica A Katanga
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA (KA, JAS)
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA (KA)
| | - Leslie R Bridges
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Cellular Pathology, St George’s University Hospitals NHS Foundation Trust, London, UK (LRB)
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK (MME)
| | - Jeremy D Isaacs
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, UK (JDI, ACP, AHH)
| | - Sonja Prpar Mihevc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia (SPM)
| | - Anthony C Pereira
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, UK (JDI, ACP, AHH)
| | - Julie A Schneider
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
| | - Atticus H Hainsworth
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, UK (JDI, ACP, AHH)
| |
Collapse
|
10
|
Heckler I, Venkataraman I. Phosphorylated Neurofilament Heavy Chain: A Potential Diagnostic Biomarker in Amyotrophic Lateral Sclerosis. J Neurophysiol 2022; 127:737-745. [PMID: 35138963 DOI: 10.1152/jn.00398.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroaxonal damage is a feature of various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Phosphorylated neurofilament heavy chain (pNfH) is a cytoskeletal structural protein released as a result of axonal damage into the CSF, and subsequently into the blood. Due to high specificity for neuronal cell damage, pNfH is advantageous over other biomarkers, for ALS disease identification. Here, we review the structure and function of neurofilaments and their role in detection of various neurodegenerative conditions. Additionally, a retrospective meta-analysis was performed to depict the significance of pNfH as a valuable diagnostic and prognostic biomarker in ALS.
Collapse
Affiliation(s)
- Ilana Heckler
- Euroimmun Medizinische Labordiagnostika (EUROIMMUN US), Mountain Lakes, NJ, United States
| | - Iswariya Venkataraman
- Euroimmun Medizinische Labordiagnostika (EUROIMMUN US), Mountain Lakes, NJ, United States
| |
Collapse
|
11
|
Bhan A, Jacobsen C, Dalen I, Bergsland N, Zivadinov R, Alves G, Myhr KM, Farbu E. CSF neurofilament light chain predicts 10-year clinical and radiologic worsening in multiple sclerosis. Mult Scler J Exp Transl Clin 2021; 7:20552173211060337. [PMID: 34900328 PMCID: PMC8652913 DOI: 10.1177/20552173211060337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Neurofilament light chain (NfL) is an attractive biomarker of disease
activity and progression in MS, but there is a lack in long-term prognostic
data. Objective To test the long-term clinical and radiological prognostic value of
cerebrospinal fluid (CSF)-NfL among newly diagnosed patients with MS. Methods Newly diagnosed MS patients where followed prospectively with baseline
CSF-NfL and repeated MRI and clinical assessments for up to 10 years.
Associations between baseline CSF-NfL and longitudinal MRI and clinical
assessments were found by Generalized Estimating Equations analysis. Results Forty-two participants were included. CSF-NfL at baseline was significantly
associated with the rate of atrophy in globus pallidus
(p = 0.009) and hippocampus (p = 0.001) as
evaluated by MRI. Baseline volumes of thalamus (β −0.33; 95% CI −0.57 to
−0.10, p = 0.006), T1 (β 0.28; 95% CI 0.11 to 0.44,
p = 0.001) and T2 (β 0.16; 95% CI 0.04 to 0.27,
p = 0.008) lesions and baseline levels of CSF-NfL (β
0.9; 95% CI 0.3 to 1.5, p = 0.002) significantly predicted
EDSS worsening over 10 years. Baseline CSF-NfL gave a comparable prediction
to the best MRI volumetric predictors. Conclusion CSF-NfL predicted the clinical and radiological course of newly diagnosed
patients with MS over a 10-year period, underlining its prognostic role.
Collapse
Affiliation(s)
- Alok Bhan
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Cecilie Jacobsen
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Dalen
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Guido Alves
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Elisabeth Farbu
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
12
|
Allen-Philbey K, De Trane S, Mao Z, Álvarez-González C, Mathews J, MacDougall A, Stennett A, Zhou X, Yildiz O, Adams A, Bianchi L, Blain C, Chapman C, Chung K, Constantinescu CS, Dalton C, Farrell RA, Fisniku L, Ford H, Gran B, Hobart J, Khaleeli Z, Mattoscio M, Pavitt S, Pearson O, Peruzzotti-Jametti L, Scalfari A, Sharrack B, Silber E, Tallantyre EC, Webb S, Turner BP, Marta M, Gnanapavan S, Juliusson G, Giovannoni G, Baker D, Schmierer K. Subcutaneous cladribine to treat multiple sclerosis: experience in 208 patients. Ther Adv Neurol Disord 2021; 14:17562864211057661. [PMID: 35173808 PMCID: PMC8842147 DOI: 10.1177/17562864211057661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: To report on safety and effectiveness of subcutaneous cladribine (Litak®) in multiple sclerosis (MS) patients. Methods: Litak® was offered to MS-patients irrespective of disease course. Litak® 10 mg was administered for 3–4 days during week 1. Based on lymphocyte count at week 4, patients received another 0–3 doses at week 5. A second course was administered 11 months later. Follow-up included adverse events, relapses, expanded disability status scale (EDSS), 9-hole-peg and Timed-25-foot-walking tests, no-evidence-of-disease-activity (NEDA), no-evidence-of-progression-or-active-disease (NEPAD), MRI, cerebrospinal fluid (CSF) neurofilament light chain (NfL), and lymphocyte counts. Results: In all, 208 patients received at least one course of treatment. Age at baseline was 44 (17–72) years and EDSS 0–8.5. Cladribine was generally well tolerated. One myocardial infarction, one breast cancer, and three severe skin reactions occurred without long-term sequelae. Two patients died (one pneumonia, one encephalitis). Lymphopenia grade 3 occurred in 5% and grade 4 in 0.5%. In 94 out of 116 pwMS with baseline and follow-up (BaFU) data after two treatment courses, EDSS remained stable or improved. At 18 months, 64% of patients with relapsing MS and BaFU data ( n = 39) had NEDA. At 19 months, 62% of patients with progressive MS and BaFU data ( n = 13) had NEPAD. Of n = 13 patients whose CSF-NfL at baseline was elevated, 77% were normalised within 12 months. Conclusions: Litak® was well tolerated. Effectiveness in relapsing MS appeared similar to cladribine tablets and was encouraging in progressive MS. Our data suggest cladribine may be safe and effective in MS-patients irrespective of their disease stage.
Collapse
Affiliation(s)
- Kimberley Allen-Philbey
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Stefania De Trane
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Zhifeng Mao
- Kingmed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Medical School, Xiangnan University, Chenzhou, China
| | - Cesar Álvarez-González
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Joela Mathews
- Pharmacy Department, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Amy MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Andrea Stennett
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Xia Zhou
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Ozlem Yildiz
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ashok Adams
- Neuroradiology Department, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Lucia Bianchi
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Camilla Blain
- St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Christine Chapman
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Karen Chung
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Cris S Constantinescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Catherine Dalton
- St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Rachel A Farrell
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neuroinflammation, National Hospital for Neurology and Neurosurgery, London, UK
| | - Leonora Fisniku
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK; Brighton and Sussex Medical School, Brighton, UK
| | - Helen Ford
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jeremy Hobart
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Zhaleh Khaleeli
- Department of Neuroinflammation, National Hospital for Neurology and Neurosurgery, London, UK
| | - Miriam Mattoscio
- Queen’s Hospital, Barking Havering and Redbridge Hospital NHS Trust, Romford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sue Pavitt
- Dental Translational and Clinical Research Unit, School of Dentistry, University of Leeds, Leeds, UK
| | - Owen Pearson
- Department of Neurology, Swansea Bay University Health Board, Port Talbot, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine Charing Cross Hospital, Imperial College London, London, UK
| | - Basil Sharrack
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Neuroscience and NIHR Neurosciences Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Eli Silber
- Department of Neurology, King’s College Hospital, London, UK
| | - Emma C Tallantyre
- Department of Neurology, University Hospital of Wales, Cardiff, UK
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Stewart Webb
- Institute of Neuroscience, Department of Neurology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Benjamin P Turner
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Monica Marta
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gunnar Juliusson
- Department of Hematology, Skåne University Hospital, Lund, Sweden
- Stem Cell Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Gavin Giovannoni
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - David Baker
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Klaus Schmierer
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
13
|
Factors contributing to CSF NfL reduction over time in those starting treatment for multiple sclerosis: An observational study. Mult Scler Relat Disord 2021; 57:103409. [PMID: 34871856 DOI: 10.1016/j.msard.2021.103409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In multiple sclerosis (MS) neurofilament light chain (NfL) is a marker of neuronal damage secondary to inflammation and neurodegeneration. NfL levels drop after commencement of disease-modifying treatment, especially the highly active ones. However, the factors that influence this drop are unknown. OBJECTIVE To examine the patient and treatment-related factors that influence CSF NfL before and after starting treatment. METHODS Eligible patients across two centres with two CSF NfL measurements, clinical and MRI data were included as part of an observational cohort study. RESULTS Data were available in 61 patients, of which 40 were untreated at the first CSF sampling (T1) and treated at the second (T2; mean T1-T2: 19 months). CSF NfL reduction correlated with age (beta = 1.24 95%CI(1.07,1.43); R2 = 0.17; p = 0.005), Expanded Disability Status Scale (EDSS) (beta = 1.12 95%CI(1.00,1.25); R2 = 0.21; p = 0.05) and the type of MS (beta = 0.63 95%CI(0.43, 0.92); R2 = 0.12; p = 0.018; reference=relapsing MS). The treatment effect on a baseline NfL of 702 pg/mL was 451 pg/ml 95%CI(374,509) in a 30-year-old versus 228 pg/ml 95%CI(63,350) in a 60-year-old. There was no association in CSF NfL reduction with BMI, disease duration or sex. In cladribine- and alemtuzumab-treated patients, the CSF NfL T2/T1 ratio did not correlate with lymphocyte depletion rate at 23 weeks. CONCLUSIONS In this observational study, we found that factors reflecting early disease stage, including a younger age, lower disability and relapsing MS were associated with treatment response in CSF NfL. Other factors were not found to be related, including lymphopaenia in highly-active treatments.
Collapse
|
14
|
Milella G, Introna A, D'Errico E, Fraddosio A, Scaglione G, Morea A, Ucci M, Ruggieri M, Mastrapasqua M, Megna M, Puntillo F, Simone IL. Cerebrospinal Fluid and Clinical Profiles in Adult Type 2-3 Spinal Muscular Atrophy Patients Treated with Nusinersen: An 18-Month Single-Centre Experience. Clin Drug Investig 2021; 41:775-784. [PMID: 34389971 PMCID: PMC8390404 DOI: 10.1007/s40261-021-01071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Nusinersen was approved as the first disease-modifying therapy in spinal muscular atrophy (SMA). Our aim was to analyse therapy-related changes in cerebrospinal fluid (CSF) and serum parameters of adult type 2-3 SMA and to correlate biochemical data with motor functional status. METHODS Nine adult SMA type 2-3 patients and ten control subjects without neurodegenerative diseases were included in our single-centre study. Cross-sectional analysis of CSF routine parameters, CSF neurofilament light chain, CSF Tau, CSF phospho-Tau and serum creatinine was performed between SMA patients at baseline (T0) and control subjects. The above-mentioned fluid parameters were longitudinally analysed in the SMA cohort after loading dose (T1) and after four maintenance doses (T2, T3, T4, T5). Hammersmith Functional Motor Scale Expanded (HFMSE), Revised Upper Limb Module (RULM) and the 6-minute walking test (6MWT) were used to evaluate motor outcomes. RESULTS Improvements in HFMSE, RULM and 6MWT were observed only after the loading dose of nusinersen. No significant differences in routine CSF parameters and CSF markers of neurodegeneration were found between SMA patients and control subjects. Serum creatinine levels were significantly lower in SMA patients than in control subjects. CSF/serum albumin ratio (Qalb) significantly increased from T0 to each time point, without any further increase after the maintenance doses. Persistent systemic oligoclonal bands (OCBs) were found in five patients from baseline. Three more patients developed persistent systemic OCBs from T1; one patient showed intrathecal OCBSs from baseline to T5. Markers of neurodegeneration did not change during the follow-up and did not correlate with motor scores at baseline and at each timepoint. Serum creatinine levels significantly correlated with HFMSE and RULM at each time point. CONCLUSIONS The increase of the Qalb values and the development of systemic OCBs in some SMA patients could be due to repeated lumbar puncture and to the immunogenic effect of nusinersen. On the other hand, the presence of OCBs in serum and/or CSF at baseline should be further investigated. Furthermore, biomarkers of neurodegeneration did not play a prognostic role in our cohort of adult SMA patients.
Collapse
Affiliation(s)
- Giammarco Milella
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandro Introna
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Angela Fraddosio
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gaspare Scaglione
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Antonella Morea
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Maria Ucci
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Maddalena Ruggieri
- Neurophysiopathology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Mariangela Mastrapasqua
- Neurophysiopathology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marisa Megna
- Physical Medicine and Rehabilitation Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Filomena Puntillo
- Anesthesia, Intensive Care, and Pain Unit, Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
15
|
Verde F, Otto M, Silani V. Neurofilament Light Chain as Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2021; 15:679199. [PMID: 34234641 PMCID: PMC8255624 DOI: 10.3389/fnins.2021.679199] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related currently incurable neurodegenerative diseases. ALS is characterized by degeneration of upper and lower motor neurons causing relentless paralysis of voluntary muscles, whereas in FTD, progressive atrophy of the frontal and temporal lobes of the brain results in deterioration of cognitive functions, language, personality, and behavior. In contrast to Alzheimer's disease (AD), ALS and FTD still lack a specific neurochemical biomarker reflecting neuropathology ex vivo. However, in the past 10 years, considerable progress has been made in the characterization of neurofilament light chain (NFL) as cerebrospinal fluid (CSF) and blood biomarker for both diseases. NFL is a structural component of the axonal cytoskeleton and is released into the CSF as a consequence of axonal damage or degeneration, thus behaving in general as a relatively non-specific marker of neuroaxonal pathology. However, in ALS, the elevation of its CSF levels exceeds that observed in most other neurological diseases, making it useful for the discrimination from mimic conditions and potentially worthy of consideration for introduction into diagnostic criteria. Moreover, NFL correlates with disease progression rate and is negatively associated with survival, thus providing prognostic information. In FTD patients, CSF NFL is elevated compared with healthy individuals and, to a lesser extent, patients with other forms of dementia, but the latter difference is not sufficient to enable a satisfying diagnostic performance at individual patient level. However, also in FTD, CSF NFL correlates with several measures of disease severity. Due to technological progress, NFL can now be quantified also in peripheral blood, where it is present at much lower concentrations compared with CSF, thus allowing less invasive sampling, scalability, and longitudinal measurements. The latter has promoted innovative studies demonstrating longitudinal kinetics of NFL in presymptomatic individuals harboring gene mutations causing ALS and FTD. Especially in ALS, NFL levels are generally stable over time, which, together with their correlation with progression rate, makes NFL an ideal pharmacodynamic biomarker for therapeutic trials. In this review, we illustrate the significance of NFL as biomarker for ALS and FTD and discuss unsolved issues and potential for future developments.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Dreger M, Steinbach R, Gaur N, Metzner K, Stubendorff B, Witte OW, Grosskreutz J. Cerebrospinal Fluid Neurofilament Light Chain (NfL) Predicts Disease Aggressiveness in Amyotrophic Lateral Sclerosis: An Application of the D50 Disease Progression Model. Front Neurosci 2021; 15:651651. [PMID: 33889072 PMCID: PMC8056017 DOI: 10.3389/fnins.2021.651651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder. As previous therapeutic trials in ALS have been severely hampered by patients’ heterogeneity, the identification of biomarkers that reliably reflect disease progression represents a priority in ALS research. Here, we used the D50 disease progression model to investigate correlations between cerebrospinal fluid (CSF) neurofilament light chain (NfL) levels and disease aggressiveness. The D50 model quantifies individual disease trajectories for each ALS patient. The value D50 provides a unified measure of a patient’s overall disease aggressiveness (defined as time taken in months to lose 50% of functionality). The relative D50 (rD50) reflects the individual disease covered and can be calculated for any time point in the disease course. We analyzed clinical data from a well-defined cohort of 156 patients with ALS. The concentration of NfL in CSF samples was measured at two different laboratories using the same procedure. Based on patients’ individual D50 values, we defined subgroups with high (<20), intermediate (20–40), or low (>40) disease aggressiveness. NfL levels were compared between these subgroups via analysis of covariance, using an array of confounding factors: age, gender, clinical phenotype, frontotemporal dementia, rD50-derived disease phase, and analyzing laboratory. We found highly significant differences in NfL concentrations between all three D50 subgroups (p < 0.001), representing an increase of NfL levels with increasing disease aggressiveness. The conducted analysis of covariance showed that this correlation was independent of gender, disease phenotype, and phase; however, age, analyzing laboratory, and dementia significantly influenced NfL concentration. We could show that CSF NfL is independent of patients’ disease covered at the time of sampling. The present study provides strong evidence for the potential of NfL to reflect disease aggressiveness in ALS and in addition proofed to remain at stable levels throughout the disease course. Implementation of CSF NfL as a potential read-out for future therapeutic trials in ALS is currently constrained by its demonstrated susceptibility to (pre-)analytical variations. Here we show that the D50 model enables the discovery of correlations between clinical characteristics and CSF analytes and can be recommended for future studies evaluating potential biomarkers.
Collapse
Affiliation(s)
- Marie Dreger
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Robert Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Klara Metzner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain 2020; 143:1975-1998. [PMID: 32408345 DOI: 10.1093/brain/awaa098] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Arie R Gafson
- Department of Brain Sciences, Imperial College, London, UK
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, Montpellier University, Montpellier, France
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Henrik Zetterberg
- University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute at Imperial College, London
| |
Collapse
|
18
|
Reyes S, Smets I, Holden D, Carrillo-Loza K, Christmas T, Bianchi L, Ammoscato F, Turner B, Marta M, Schmierer K, Giovannoni G, Gnanapavan S. CSF neurofilament light chain testing as an aid to determine treatment strategies in MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e880. [PMID: 32826298 PMCID: PMC7455313 DOI: 10.1212/nxi.0000000000000880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/20/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the use of CSF neurofilament light chain (NfL) measurements in clinical practice as well as their effect on treatment strategies and outcomes in patients with MS. METHODS This was an observational cohort study of patients with MS who had a CSF NfL measurement between December 2015 and July 2018 as part of their routine clinical care. Treatment strategies were classified as "No Treatment/No Escalation" (no treatment or no escalation of treatment) or "Treatment/Escalation" (first-line injectable/oral disease-modifying therapies (DMTs), highly active DMTs, or treatment escalation). Change in Expanded Disability Status Scale (EDSS) scores was evaluated after 1-year follow-up. RESULTS Of 203 patients with MS, 117 (58%) had relapsing-remitting MS. Disease activity was most frequently indicated by elevated CSF NfL (n = 85), followed by clinical (n = 81) and MRI activity (n = 65). CSF NfL measurements were independently associated with clinical (p = 0.02) and MRI activity (p < 0.001). Of those with elevated CSF NfL as the only evidence of disease activity (n = 22), 77% had progressive MS (PMS). In patients with PMS, 17 (20%) had elevated CSF NfL as the sole indicator of disease activity. Elevated CSF NfL resulted more frequently in Treatment/Escalation than normal CSF NfL (p < 0.001). Median EDSS change at follow-up was similar between patients receiving No Treatment/No Escalation and Treatment/Escalation decisions (p = 0.81). CONCLUSIONS CSF NfL measurements informed treatment strategies, alongside clinical and MRI measures. CSF NfL levels were the only indicator of disease activity in a subset of patients, which was more pronounced in patients with PMS. Elevated CSF NfL was associated with more Treatment/Escalation strategies, which had an impact on EDSS outcomes at 1 year.
Collapse
Affiliation(s)
- Saúl Reyes
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Ide Smets
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - David Holden
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karina Carrillo-Loza
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Tatiana Christmas
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Lucia Bianchi
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Francesca Ammoscato
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Benjamin Turner
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Monica Marta
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Klaus Schmierer
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Gavin Giovannoni
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Sharmilee Gnanapavan
- From the The Blizard Institute (S.R., I.S., D.H., K.C.-L., T.C., L.B., F.A., M.M., K.S., G.G., S.G.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; and Clinical Board Medicine (Neuroscience) (S.R., I.S., B.T., M.M., K.S., G.G., S.G.), The Royal London Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
19
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
20
|
Bäckström D, Linder J, Jakobson Mo S, Riklund K, Zetterberg H, Blennow K, Forsgren L, Lenfeldt N. NfL as a biomarker for neurodegeneration and survival in Parkinson disease. Neurology 2020; 95:e827-e838. [PMID: 32680941 PMCID: PMC7605503 DOI: 10.1212/wnl.0000000000010084] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether neurofilament light chain protein in CSF (cNfL), a sensitive biomarker of neuroaxonal damage, reflects disease severity or can predict survival in Parkinson disease (PD). METHODS We investigated whether disease severity, phenotype, or survival in patients with new-onset PD correlates with cNfL concentrations around the time of diagnosis in the population-based New Parkinsonism in Umeå (NYPUM) study cohort (n = 99). A second, larger new-onset PD cohort (n = 194) was used for independent validation. Association of brain pathology with the cNfL concentration was examined with striatal dopamine transporter imaging and repeated diffusion tensor imaging at baseline and 1 and 3 years. RESULTS Higher cNfL in the early phase of PD was associated with greater severity of all cardinal motor symptoms except tremor in both cohorts and with shorter survival and impaired olfaction. cNfL concentrations above the median of 903 ng/L conferred an overall 5.8 times increased hazard of death during follow-up. After adjustment for age and sex, higher cNfL correlated with striatal dopamine transporter uptake deficits and lower fractional anisotropy in diffusion tensor imaging of several axonal tracts. CONCLUSIONS cNfL shows usefulness as a biomarker of disease severity and to predict survival in PD. The present results indicate that the cNfL concentration reflects the intensity of the neurodegenerative process, which could be important in future clinical trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in patients with PD, cNfL concentrations are associated with more severe disease and shorter survival.
Collapse
Affiliation(s)
- David Bäckström
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK.
| | - Jan Linder
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Susanna Jakobson Mo
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Katrine Riklund
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Henrik Zetterberg
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Kaj Blennow
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Lars Forsgren
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Niklas Lenfeldt
- From the Department of Clinical Science (D.B., J.L., L.F., N.L.), Neurosciences, and Department of Radiation Sciences (S.J.M., K.R.), Diagnostic Radiology and Umeå Center for Functional Brain Imaging, Umeå University; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Queen Square Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| |
Collapse
|
21
|
Papuć E, Rejdak K. Increased CSF NFL in Non-demented Parkinson's Disease Subjects Reflects Early White Matter Damage. Front Aging Neurosci 2020; 12:128. [PMID: 32477099 PMCID: PMC7240127 DOI: 10.3389/fnagi.2020.00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/15/2020] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder with various underlying pathological processes. Until now, no fluid biomarkers have been established for PD. Given recent biochemical and neuroimaging evidence for the presence of white matter damage in PD, which may even precede neuronal loss, we investigated whether neurofilament light (NFL) was increased in the cerebrospinal fluid (CSF) of PD patients in comparison to controls. NFL is located mainly in large myelinated axons, and increased CSF levels of this protein reflect axonal injury. CSF levels of NFL in 58 early PD patients and 28 controls were quantified by ELISA (Uman Diagnostics). Measures of PD severity included disease duration, UPDRS-III, and Hoehn-Yahr stage. Statistically significant differences in CSF NFL levels were found between PD patients and controls [median with interquartile range 524.82 (393.28-678.34) vs. 271.84 (198.09-335.24) ng/l; p < 0.05)]. In PD patients, there were no correlations between CSF NFL level and the measures of disease severity. The CSF NFL turned out to have a high discriminatory value (AUC 0.850) for differentiating between PD subjects and healthy controls, with 84% sensitivity and 85.2% specificity. The study indirectly demonstrates that axonal damage is present in early PD in addition to neuronal loss. Interestingly, white matter damage was observed in non-demented PD patients. In the light of the results of recent MRI studies which confirm early white matter damage in PD, our data may turn out to be potentially useful in the diagnosis of early, or even preclinical, stages of the disease.
Collapse
Affiliation(s)
- Ewa Papuć
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
22
|
Preziosa P, Rocca MA, Filippi M. Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. Expert Rev Neurother 2020; 20:747-769. [DOI: 10.1080/14737175.2020.1760846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Alifirova VM, Kamenskikh EM, Koroleva ES. [Evaluation of serum neurofilament light chains levels for diagnosis, treatment monitoring and prognosis in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:7-13. [PMID: 31934983 DOI: 10.17116/jnevro2019119107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pathophysiological processes in multiple sclerosis frequently not diagnosed by clinicians become available for analysis only on the basis of paraclinical data (biomarkers). Nowadays neurofilament light chain can be defined as a promising biomarker for multiple sclerosis (MS). Neurofilaments are a structural part of normal neuronal processes consisting of light, intermediate and heavy chains. However, a damage of neurons such as neurodegeneration or axonal damage causes the escape of neurofilaments into extracellular space. Cutting-edge highly sensitive methods make it possible to detect neurofilament light chains not only in the cerebrospinal fluid but also in the blood serum thus opening the opportunities to utilize them in routine diagnosis in clinical practice. This review comprises existing data on the possible opportunities for research of serum neurofilament light chains in terms of exacerbations, effectiveness of basic therapy, assessment of individual disability, the atrophy of central nervous system structures. Also, there is some information on comparison of two methods: routine MRI of the brain with the contrast agents and detection of serum neurofilament light chains.
Collapse
Affiliation(s)
| | | | - E S Koroleva
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
24
|
Antonell A, Tort-Merino A, Ríos J, Balasa M, Borrego-Écija S, Auge JM, Muñoz-García C, Bosch B, Falgàs N, Rami L, Ramos-Campoy O, Blennow K, Zetterberg H, Molinuevo JL, Lladó A, Sánchez-Valle R. Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimers Dement 2020; 16:262-272. [PMID: 31668967 DOI: 10.1016/j.jalz.2019.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Synaptic damage, axonal neurodegeneration, and neuroinflammation are common features in Alzheimer's disease (AD), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD). METHODS Unicentric cohort of 353 participants included healthy control (HC) subjects, AD continuum stages, genetic AD and FTD, and FTD and CJD. We measured cerebrospinal fluid neurofilament light (NF-L), neurogranin (Ng), 14-3-3, and YKL-40 proteins. RESULTS Biomarkers showed differences in HC subjects versus AD, FTD, and CJD. Disease groups differed between them except AD versus FTD for YKL-40. Only NF-L differed between all stages within the AD continuum. AD and FTD symptomatic mutation carriers presented differences with respect to HC subjects. Applying the AT(N) system, 96% subjects were positive for neurodegeneration if 14-3-3 was used, 94% if NF-L was used, 62% if Ng was used, and 53% if YKL-40 was used. DISCUSSION Biomarkers of synapse and neurodegeneration differentiate HC subjects from neurodegenerative dementias and between AD, FTD, and CJD. NF-L and 14-3-3 performed similar to total tau when AT(N) system was applied.
Collapse
Affiliation(s)
- Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - José Ríos
- Medical Statistics Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Hospital Clínic, Barcelona, Spain.,Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Josep M Auge
- Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clínic, Barcelona, Spain
| | - Cristina Muñoz-García
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Lorena Rami
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - José L Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Petzold A, Braithwaite T, van Oosten BW, Balk L, Martinez-Lapiscina EH, Wheeler R, Wiegerinck N, Waters C, Plant GT. Case for a new corticosteroid treatment trial in optic neuritis: review of updated evidence. J Neurol Neurosurg Psychiatry 2020; 91:9-14. [PMID: 31740484 PMCID: PMC6952848 DOI: 10.1136/jnnp-2019-321653] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Axel Petzold
- Expertise Centrum Neuro-ophthalmology, Departments of Neurology & Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands .,Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
| | - Tasanee Braithwaite
- Neuro-ophthalmology, Moorfields Eye Hospital and The National Hospital for Neurology & Neurosurgery, London, UK
| | | | - Lisanne Balk
- Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology and Service of Neurology, Clinic Barcelona Hospital University, Barcelona, Spain
| | | | - Nils Wiegerinck
- )Patient Organisation (Neuro-ophthalmology), Lisbon, Portugal
| | - Christiaan Waters
- Neuro-ophthalmologie Vereniging Nederland (KvK nummer 66260140), Amsterdam, Netherlands
| | - Gordon T Plant
- ,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, St. Thomas Hospital, Moorfields Eye Hospital, London, UK
| |
Collapse
|
26
|
Petzold A, Lu CH, Groves M, Gobom J, Zetterberg H, Shaw G, O’Connor S. Protein aggregate formation permits millennium-old brain preservation. J R Soc Interface 2020; 17:20190775. [PMID: 31910770 PMCID: PMC7014809 DOI: 10.1098/rsif.2019.0775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Human proteins have not been reported to survive in free nature, at ambient temperature, for long periods. Particularly, the human brain rapidly dissolves after death due to auto-proteolysis and putrefaction. The here presented discovery of 2600-year-old brain proteins from a radiocarbon dated human brain provides new evidence for extraordinary long-term stability of non-amyloid protein aggregates. Immunoelectron microscopy confirmed the preservation of neurocytoarchitecture in the ancient brain, which appeared shrunken and compact compared to a modern brain. Resolution of intermediate filaments (IFs) from protein aggregates took 2-12 months. Immunoassays on micro-dissected brain tissue homogenates revealed the preservation of the known protein topography for grey and white matter for type III (glial fibrillary acidic protein, GFAP) and IV (neurofilaments, Nfs) IFs. Mass spectrometry data could be matched to a number of peptide sequences, notably for GFAP and Nfs. Preserved immunogenicity of the prehistoric human brain proteins was demonstrated by antibody generation (GFAP, Nfs, myelin basic protein). Unlike brain proteins, DNA was of poor quality preventing reliable sequencing. These long-term data from a unique ancient human brain demonstrate that aggregate formation permits for the preservation of brain proteins for millennia.
Collapse
Affiliation(s)
- Axel Petzold
- Department of Neuroinflammation and National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, UCLH, Queen Square, London WC1N 3BG, UK
- Moorfields Eye Hospital, City Road, London EC1V 2PD, UK
- Department of Neurology, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Ching-Hua Lu
- Neurology, School of Medicine, China Medical University and Hospital, Taichung City, Taiwan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mike Groves
- Division of Neuropathology, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Gerry Shaw
- EnCor Biotechnology Inc., 4949 SW 41st Boulevard, Ste 40., Gainesville, FL 32608, USA
| | - Sonia O’Connor
- Archaeological and Forensic Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| |
Collapse
|
27
|
Oosterveld LP, Verberk IMW, Majbour NK, El-Agnaf OM, Weinstein HC, Berendse HW, Teunissen CE, van de Berg WDJ. CSF or serum neurofilament light added to α-Synuclein panel discriminates Parkinson's from controls. Mov Disord 2019; 35:288-295. [PMID: 31737952 PMCID: PMC7027879 DOI: 10.1002/mds.27897] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurofilament light chain is a marker of axonal damage and is of interest as a biofluid biomarker for PD. The objective of this study was to investigate whether CSF or serum neurofilament contributes to a combination of CSF biomarkers in defining the optimal biomarker panel for discriminating PD patients from healthy controls. In addition, we aimed to assess whether CSF and/or serum neurofilament levels are associated with clinical measures of disease severity. METHODS We measured neurofilament light chain levels in CSF and/or serum of 139 PD patients and 52 age-matched healthy controls. We used stepwise logistic regression analyses to test whether neurofilament contributes to a biomarker CSF panel including total, oligomeric, and phosphorylated α-synuclein and Alzheimer's disease biomarkers. Measures of disease severity included disease duration, UPDRS-III, Hoehn & Yahr stage, and MMSE. RESULTS After correcting for age, CSF neurofilament levels were 42% higher in PD patients compared with controls (P < 0.01), whereas serum neurofilament levels were 37% higher (P = 0.08). Combining CSF neurofilament, phosphorylated-/total α-synuclein, and oligomeric-/total α-synuclein yielded the best-fitting model for discriminating PD patients from controls (area under the curve 0.92). The discriminatory potential of serum neurofilament in the CSF biomarker panel was similar (area under the curve 0.90). Higher serum neurofilament was associated with a lower MMSE score. There were no other associations between CSF and/or serum neurofilament levels and clinical disease severity. CONCLUSIONS CSF neurofilament contributes to a panel of CSF α-synuclein species in differentiating PD patients from healthy controls. Serum neurofilament may have added value to a biofluid biomarker panel for differentiating PD patients from controls. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Linda P Oosterveld
- Department of Anatomy and Neurosciences, Section Clinical Anatomy and Biobanking, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Inge M W Verberk
- Department of Clinical Chemistry, Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Henry C Weinstein
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Neurology, OLVG, Amsterdam, The Netherlands
| | - Henk W Berendse
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Anatomy and Biobanking, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Martin SJ, McGlasson S, Hunt D, Overell J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case-control studies. J Neurol Neurosurg Psychiatry 2019; 90:1059-1067. [PMID: 31123141 PMCID: PMC6820150 DOI: 10.1136/jnnp-2018-319190] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Neurofilament is a biomarker of axonal injury proposed as a useful adjunct in the monitoring of patients with multiple sclerosis (MS). We conducted a systematic review and meta-analysis of case-control studies that have measured neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF) of people with MS (pwMS), in order to determine whether, and to what degree, CSF NfL levels differentiate MS from controls, or the subtypes or stages of MS from each other. METHODS Guidelines on Preferred Reporting Items for Systematic Reviews and Meta-Analyses were followed. Electronic databases were searched for published and 'grey' literature, with 151 hits. Of 51 full articles screened, 20 were included in qualitative analysis, and 14 in meta-analysis. RESULTS CSF NfL was higher in 746 pwMS than 435 (healthy and disease) controls, with a moderate effect size of 0.61 (p < 0.00001). Mean CSF NfL levels were significantly higher in 176 pwMS with relapsing disease than 92 with progressive disease (2124.8 ng/L, SD 3348.9 vs 1121.4 ng/L, SD 947.7, p = 0.0108). CSF NfL in 138 pwMS in relapse (irrespective of MS subtype) was double that seen in 268 pwMS in remission (3080.6 ng/L, SD 4715.9 vs 1541.7 ng/L, SD 2406.5, p < 0.0001). CONCLUSIONS CSF NfL correlates with MS activity throughout the course of MS, reflecting the axonal damage in pwMS. Relapse is more strongly associated with elevated CSF NfL levels than the development of progression, and NfL may be most useful as a marker of disease 'activity' rather than as a marker of disability or disease stage.
Collapse
Affiliation(s)
- Sarah-Jane Martin
- Anne Rowling Centre for Regenerative Neurology, University of Edinburgh, Edinburgh, UK
- University of Glasgow, Glasgow, UK
| | - Sarah McGlasson
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Hunt
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - James Overell
- University of Glasgow, Glasgow, UK
- Glasgow Multiple Sclerosis Clinical Research Centre, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
29
|
Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE. Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol 2019; 76:1035-1048. [PMID: 31206160 PMCID: PMC6580449 DOI: 10.1001/jamaneurol.2019.1534] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date. OBJECTIVES To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions. DATA SOURCES PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC. STUDY SELECTION Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex. DATA EXTRACTION AND SYNTHESIS Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept. MAIN OUTCOME AND MEASURE The cNfL levels adjusted for age and sex across diagnoses. RESULTS Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes. CONCLUSIONS AND RELEVANCE These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Wessel N. van Wieringen
- Department of Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, the Netherlands
- Department of Mathematics, VU University, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Dementia Research Institute at UCL, London, United Kingdom
| | - Betty M. Tijms
- Department of Neurology and Alzheimer Centre, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
30
|
Wong YYM, Bruijstens AL, Barro C, Michalak Z, Melief MJ, Wierenga AF, van Pelt ED, Neuteboom RF, Kuhle J, Hintzen RQ. Serum neurofilament light chain in pediatric MS and other acquired demyelinating syndromes. Neurology 2019; 93:e968-e974. [DOI: 10.1212/wnl.0000000000008057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo explore the correlation between serum and CSF neurofilament light chain (NfL) and the association of NfL levels and future disease activity in pediatric patients with a first attack of acquired demyelinating syndromes (ADS).MethodsIn total, 102 children <18 years with a first attack of CNS demyelination and 23 age-matched controls were included. Clinically definite multiple sclerosis (CDMS) was set as an endpoint for analysis. CSF NfL was tested by the commercially available ELISA (UmanDiagnostics); serum NfL (sNfL) was tested with a Simoa assay. Hazard ratios (HR) were calculated with Cox regression analysis.ResultsOf the 102 patients, 47 (46%) were tested for CSF NfL. CSF and serum NfL correlated significantly in the total group (ρ 0.532, p < 0.001) and even more significantly in the subgroup of patients with future CDMS diagnosis (ρ 0.773, p < 0.001). sNfL was higher in patients than in controls (geometric mean 6.1 pg/mL, p < 0.001), and was highest in ADS presenting with encephalopathy (acute disseminated encephalomyelitis, n = 28, 100.4 pg/mL), followed by patients without encephalopathy (ADS−) with future CDMS diagnosis (n = 40, 32.5 pg/mL), and ADS− who remained monophasic (n = 34, 17.6 pg/mL). sNfL levels higher than a median of 26.7 pg/mL at baseline are associated with a shorter time to CDMS diagnosis in ADS− (p = 0.045). HR for CDMS diagnosis was 1.09 for each 10 pg/mL increase of sNfL, after correction for age, oligoclonal bands, and MRI measures (p = 0.012).ConclusionThe significant correlation between CSF and serum NfL strengthens its reliability as a peripheral marker of neuroaxonal damage. Higher sNfL levels at baseline were associated with higher probability of future CDMS diagnosis in ADS−.
Collapse
|
31
|
Giovannoni G. Peripheral blood neurofilament light chain levels: the neurologist's C-reactive protein? Brain 2019; 141:2235-2237. [PMID: 30060019 DOI: 10.1093/brain/awy200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Zucchi E, Lu CH, Cho Y, Chang R, Adiutori R, Zubiri I, Ceroni M, Cereda C, Pansarasa O, Greensmith L, Malaspina A, Petzold A. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry. J Neurochem 2019; 146:631-641. [PMID: 29959860 PMCID: PMC6175430 DOI: 10.1111/jnc.14542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Neurofilament proteins (Nf) are a biomarker of disease progression in amyotrophic lateral sclerosis (ALS). This study investigated whether there are major differences in expression from in vivo measurements of neurofilament isoforms, from the light chain, NfL (68 kDa), compared with larger proteins, the medium chain (NfM, 150 kDa) and the heavy (NfH, 200‐210 kDa) chains in ALS patients and healthy controls. New immunological methods were combined with Nf subunit stoichiometry calculations and Monte Carlo simulations of a coarse‐grained Nf brush model. Based on a physiological Nf subunit stoichiometry of 7 : 3 : 2 (NfL:NfM:NfH), we found an ‘adaptive’ Nf subunit stoichiometry of 24 : 2.4 : 1.6 in ALS. Adaptive Nf stoichiometry preserved NfL gyration radius in the Nf brush model. The energy and time requirements for Nf translation were 56 ± 27k ATP (5.6 h) in control subjects compared to 123 ± 102k (12.3 h) in ALS with ‘adaptive’ (24:2.4:1.6) Nf stoichiometry (not significant) and increased significantly to 355 ± 330k (35.5 h) with ‘luxury’ (7:3:2) Nf subunit stoichiometry (p < 0.0001 for each comparison). Longitudinal disease progression‐related energy consumption was highest with a ‘luxury’ (7:3:2) Nf stoichiometry. Therefore, an energy and time‐saving option for motor neurons is to shift protein expression from larger to smaller (cheaper) subunits, at little or no costs on a protein structural level, to compensate for increased energy demands. ![]()
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Ching-Hua Lu
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Yunju Cho
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Rocco Adiutori
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Ceroni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,General Neurology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, University College London, London, UK
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Petzold
- Department of Neuromuscular Diseases, MRC Centre for Neuromuscular Diseases, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Moorfields Eye Hospital, London, UK.,Amsterdam UMC, Departments of Neurology and Ophthalmology, De Boelelaan, Amsterdam, NL
| |
Collapse
|
33
|
Franciotta D, Gastaldi M, Biagioli T, Benedetti L, Giannotta C, Bedin R, Zardini E, Nobile-Orazio E. Anti-ganglioside antibodies: experience from the Italian Association of Neuroimmunology external quality assessment scheme. Clin Chem Lab Med 2019; 56:1921-1925. [PMID: 30204587 DOI: 10.1515/cclm-2018-0234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/05/2018] [Indexed: 11/15/2022]
Abstract
Background Anti-ganglioside antibodies are currently used in the differential diagnosis of suspected immune-mediated neuropathies. In-house and increasingly used commercial assays seem to perform suboptimally, and comparative information on their analytical performance are essentially lacking. Born within the frame of guidelines and standardization activities by the Italian Association of Neuroimmunology, this external quality assessment scheme (EQAS) is a real-life snapshot of the laboratory diagnostics in this field. Methods The EQAS consisted of five surplus, anonymized serum samples from patients with clinically-defined neuropathies and two serum samples from healthy blood donors. Eight laboratories used commercial line-/dot-blots, seven in-house/commercial ELISAs (in addition, 13 laboratories tested a recently released ELISA by Bühlmann). Only high anti-ganglioside antibody reactivities were considered, in accordance with consolidated recommendations. Results Large variations in anti-ganglioside antibody profiles were observed, even, although to a lesser extent, within homogeneous classes of assays. Concordance between the profiles and clinical phenotypes was also partial. Conclusions Although conducted on a relatively small, but representative number of Italian laboratories, this EQAS shows a critical between-laboratory disagreement in the test results of anti-ganglioside antibodies. Also considering the trend for using certified assays in generalist laboratories, strong efforts toward standardization and the identification of the best method(s) for their determinations are compellingly needed.
Collapse
Affiliation(s)
- Diego Franciotta
- Laboratory of Neuroimmunology, IRCCS Mondino Foundation, Via Mondino 2, I-27100 Pavia, Italy, Phone: 0039-0382-380365, Fax: 0039-0382-380286
| | - Matteo Gastaldi
- Laboratory of Neuroimmunology, IRCCS Mondino Foundation, University of Pavia, Pavia, Italy
| | | | - Luana Benedetti
- IRCCS Ospedale Policlinico San Martino, University of Genova, Genoa, Italy
| | - Claudia Giannotta
- Neuromuscular and Neuroimmunology Service, Department of Medical Biotechnology and Translational Medicine, Humanitas Clinical and Research Institute, Milan University, Rozzano, Milan, Italy
| | - Roberta Bedin
- Ospedale Civile Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Elisabetta Zardini
- Laboratory of Neuroimmunology, IRCCS Mondino Foundation, University of Pavia, Pavia, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, Department of Medical Biotechnology and Translational Medicine, Humanitas Clinical and Research Institute, Milan University, Rozzano, Milan, Italy
| |
Collapse
|
34
|
Kalatha T, Arnaoutoglou M, Koukoulidis T, Hatzifilippou E, Bouras E, Baloyannis S, Koutsouraki E. Does cognitive dysfunction correlate with neurofilament light polypeptide levels in the CSF of patients with multiple sclerosis? J Int Med Res 2019; 47:2187-2198. [PMID: 30982375 PMCID: PMC6567748 DOI: 10.1177/0300060519840550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate whether neurofilament light polypeptide (NfL) level in cerebrospinal fluid (CSF), currently a prognostic biomarker of neurodegeneration in patients with multiple sclerosis (MS), may be a potential biomarker of cognitive dysfunction in MS. Methods This observational case–control study included patients with MS. CSF levels of NfL were determined using enzyme-linked immunosorbent assay. Cognitive function was measured with the Brief International Cognitive Assessment for MS (BICAMS) battery and Paced Auditory Serial Addition Test (PASAT3), standardized to the Greek population. Results Of 39 patients enrolled (aged 42.7 ± 13.6 years), 36% were classified as cognitively impaired according to BICAMS z-scores (–0.34 ± 1.13). Relapsing MS was significantly better than progressive forms regarding BICAMS z-score (mean difference [MD] 1.39; 95% confidence interval [CI] 0.54, 2.24), Symbol Digit Modality Test score (MD 1.73; 95% CI 0.46, 3.0) and Greek Verbal Learning Test (MD 1.77; 95% CI 0.82, 2.72). An inversely proportional association between CSF NfL levels and BICAMS z-scores was found in progressive forms of MS (rp = –0.944). Conclusions This study provides preliminary evidence for an association between CSF NfL levels and cognition in progressive forms of MS, which requires validation in larger samples.
Collapse
Affiliation(s)
- Thaleia Kalatha
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Koukoulidis
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Hatzifilippou
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanouil Bouras
- 2 Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Baloyannis
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Effrosyni Koutsouraki
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
35
|
Akgün K, Kretschmann N, Haase R, Proschmann U, Kitzler HH, Reichmann H, Ziemssen T. Profiling individual clinical responses by high-frequency serum neurofilament assessment in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e555. [PMID: 31119188 PMCID: PMC6501638 DOI: 10.1212/nxi.0000000000000555] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022]
Abstract
Objective To evaluate individual neurofilament light chain (NfL) variation over the time of disease course and the potential of NfL measurement to predict treatment response in patients with MS. Methods We investigated 15 patients with MS after immune reconstitution treatment with alemtuzumab (ATZ). Monthly serum NfL (sNFL) measurements were correlated with Expanded Disability Status Scale (EDSS), MRI, and relapse activity over an observational period of up to 102 months. Results Before ATZ, sNfL was significantly increased in correlation with previous relapse/MRI activity. After ATZ, sNfL decreased quickly within the first 6 months. In patients classified as NEDA-3, sNfL declined and persisted at an individual low steady-state level of <8 pg/mL. During follow-up, 34 sNfL peaks with a >20 fold increase could be detected, which were associated with clinical or MRI disease activity. Even patient-reported relapse-suspicious symptoms, which have not been confirmed because relapses were accompanied by sNfL, increase, proposing sNfL assessment as a marker for relapse activity. sNfL started to increase earliest 5 months before, peaked at clinical onset, and recovered within 4–5 months. sNfL presented at higher levels in active patients requiring ATZ retreatment compared with responder patients. During 2 documented pregnancies, sNfL was at a low level, whereas a postpartum transient sNfL increase was seen without any signs of activity. Conclusions This study applied a long-term high-frequency sNfL assessment in an ATZ-treated cohort, allowing a holistic profiling on the individual level and highlighted that sNfL can eminently complement the individual clinical and MRI monitoring in clinical practice.
Collapse
Affiliation(s)
- Katja Akgün
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Nicole Kretschmann
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Hagen H Kitzler
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Heinz Reichmann
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience (K.A., N.K., R.H., U.P., T.Z.), University Hospital, Dresden, Germany; Department of Neuroradiology (H.H.K.), University Hospital, Dresden, Germany; and Department of Neurology (H.R.), University Hospital, Dresden, Germany
| |
Collapse
|
36
|
How minimal variations in neuronal cytoskeletal integrity modulate cognitive control. Neuroimage 2019; 185:129-139. [DOI: 10.1016/j.neuroimage.2018.10.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022] Open
|
37
|
Petzold A. The relevance of buffer system ionic strength in immunoassay development. J Immunol Methods 2018; 465:27-30. [PMID: 30543827 DOI: 10.1016/j.jim.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The best validated immunoassays for neurodegeneration have been developed for class III and IV intermediate filaments. There are a number of unique biochemical features of the intrinsically unstructured polyampholytic tail regions of these proteins which affect domain structure and thereby affinity and epitope recognition of antibodies used in immunoassays. Here one of these intermediate filaments, the neurofilament heavy chain, is chosen to demonstrate the effect of the ionic strength of a buffer system on the analytical signal to noise ratio. Higher ionic strengths gave better results. Next, a dose-dependent effect is demonstrated for barbitone to increase epitope recognition and protein quantification. The described effects of the buffer systems may be found helpful for future immunoassay developments.
Collapse
Affiliation(s)
- Axel Petzold
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|
38
|
Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, Petzold A, Blennow K, Zetterberg H, Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 2018; 14:577-589. [DOI: 10.1038/s41582-018-0058-z] [Citation(s) in RCA: 767] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Diagnostic and prognostic power of CSF Tau in amyotrophic lateral sclerosis. J Neurol 2018; 265:2353-2362. [PMID: 30116940 DOI: 10.1007/s00415-018-9008-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that still lacks reliable diagnostic biomarkers. This study aims to evaluate the diagnostic and prognostic potential of CSF total Tau (t-Tau), phospho-Tau (p-Tau) and p-Tau/t-Tau ratio in ALS patients using CSF neurofilament light (NFL) as the reference biomarker. METHODS Eighty-five incident ALS, 30 ALS-mimicking (AM) diseases and 51 other non-neurodegenerative diseases (ONND) were included in the study. RESULTS ALS patients had higher levels of CSF t-Tau and lower p-Tau/t-Tau ratio than AM (p = 0.005 and p = 0.006) and ONND (p < 0.001). CSF t-Tau levels discriminated ALS from AM with a sensitivity of 69% and specificity of 60%, and from ONND with a sensitivity of 88% and specificity of 51%. These values were lower than the accuracy of CSF NFL in ALS (sensitivity 86% and specificity 87% in distinguishing ALS from AM and sensitivity 83% and specificity 75% from ONND); CSF t-Tau correlated with progression rate and SNIP. CSF p-Tau did not show relation with any ALS clinical features. CSF NFL significantly correlated with all considered clinical parameters. High levels of CSF t-Tau and NFL were related to poor survival. CONCLUSION CSF t-Tau showed no reliable diagnostic significance but the relation between the high levels of CSF t-Tau and short survival suggests the potential prognostic role of this biomarker in ALS. However, CSF NFL was confirmed to be the most reliable and efficient tool for diagnosis and prediction of clinical progression and survival in ALS patients.
Collapse
|
40
|
Bhan A, Jacobsen C, Myhr KM, Dalen I, Lode K, Farbu E. Neurofilaments and 10-year follow-up in multiple sclerosis. Mult Scler 2018; 24:1301-1307. [PMID: 30066611 DOI: 10.1177/1352458518782005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The role of biomarkers to predict clinical outcome in multiple sclerosis (MS) is still debated. OBJECTIVE To test whether cerebrospinal fluid (CSF) light-chain neurofilament (NfL) levels in newly diagnosed patients with MS could predict clinical outcome over a 10-year period. METHODS Patients with newly diagnosed MS underwent standardized clinical assessments at baseline and 5 and 10 years of follow-up. Expanded Disability Status Scale (EDSS) progression between assessments was defined as an increase in one point or more if <6 and 0.5 or more if ≥6. CSF obtained at baseline was analyzed for levels of NfL using enzyme-linked immunosorbent assay technology. RESULTS A total of 44 patients were included. In all, 35 patients (80%) had relapsing-remitting multiple sclerosis (RRMS). Patients who progressed in EDSS showed a trend for higher median baseline CSF-NfL levels than patients who did not progress after 5 years (947 ng/L vs 246 ng/L, p = 0.05), and although not statistically significant, after 10 years (708 ng/L vs 265 ng/L, p = 0.28). Patients who converted from RRMS to secondary-progressive multiple sclerosis (SPMS) at 5 years had a statistical significant higher median CSF level of NfL (2122 ng/L vs 246 ng/L, p = 0.01). CONCLUSION CSF levels of NfL at the time of diagnosis seems to be an early predictive biomarker of long-term clinical outcome and conversion from RRMS to SPMS.
Collapse
Affiliation(s)
- Alok Bhan
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Cecilie Jacobsen
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Kjell Morten Myhr
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Dalen
- Section of Biostatistics, Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Kirsten Lode
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Elisabeth Farbu
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
van der Vuurst de Vries RM, Wong YYM, Mescheriakova JY, van Pelt ED, Runia TF, Jafari N, Siepman TA, Melief MJ, Wierenga-Wolf AF, van Luijn MM, Samijn JP, Neuteboom RF, Hintzen RQ. High neurofilament levels are associated with clinically definite multiple sclerosis in children and adults with clinically isolated syndrome. Mult Scler 2018; 25:958-967. [PMID: 29774770 PMCID: PMC6545618 DOI: 10.1177/1352458518775303] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: A promising biomarker for axonal damage early in the disease course of multiple sclerosis (MS) is neurofilament light chain (NfL). It is unknown whether NfL has the same predictive value for MS diagnosis in children as in adults. Objective: To explore the predictive value of NfL levels in cerebrospinal fluid (CSF) for MS diagnosis in paediatric and adult clinically isolated syndrome (CIS) patients. Methods: A total of 88 adult and 65 paediatric patients with a first attack of demyelination were included and followed (mean follow up-time in adults: 62.8 months (standard deviation (SD) ±38.7 months) and 43.8 months (SD ±27.1 months) in children). Thirty control patients were also included. Lumbar puncture was done within 6 months after onset of symptoms. NfL was determined in CSF using enzyme-linked immunosorbent assay (ELISA). COX regression analyses were used to calculate hazard ratios (HR) for clinically definite multiple sclerosis (CDMS) diagnosis. Results: After adjustments for age, oligoclonal bands (OCB), and asymptomatic T2 lesions on baseline magnetic resonance imaging (MRI), increased NfL levels in both paediatric and adult CIS patients were associated with a shorter time to CDMS diagnosis (children HR = 3.7; p = 0.007, adults HR = 2.1; p = 0.032). For CIS patients with a future CDMS diagnosis, children showed higher NfL levels than adults (geometric mean 4888 vs 2156 pg/mL; p = 0.007). Conclusion: CSF NfL levels are associated with CDMS diagnosis in children and adults with CIS. This makes NfL a promising predictive marker for disease course with potential value in clinical practice.
Collapse
Affiliation(s)
| | - Yu Yi M Wong
- Department of Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | | | - E Daniëlle van Pelt
- Department of Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Tessel F Runia
- Department of Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Naghmeh Jafari
- Department of Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Theodora Am Siepman
- Department of Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | | | - Marvin M van Luijn
- Department of Immunology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Johnny P Samijn
- Department of Neurology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Rinze F Neuteboom
- Department of Paediatric Neurology, Paediatric MS Centre, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Rogier Q Hintzen
- Department of Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Kahle J, Maul KJ, Wätzig H. The next generation of capillary electrophoresis instruments: Performance of CE-SDS protein analysis. Electrophoresis 2017; 39:311-325. [DOI: 10.1002/elps.201700278] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/01/2017] [Accepted: 09/15/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Kahle
- Technische Universität Braunschweig; Institute of Medicinal and Pharmaceutical Chemistry; Braunschweig Germany
| | - Kai Jorrit Maul
- Technische Universität Braunschweig; Institute of Medicinal and Pharmaceutical Chemistry; Braunschweig Germany
- PVZ: Center of Pharmaceutical Engineering; Technische Universität Braunschweig; Braunschweig Germany
| | - Hermann Wätzig
- Technische Universität Braunschweig; Institute of Medicinal and Pharmaceutical Chemistry; Braunschweig Germany
- PVZ: Center of Pharmaceutical Engineering; Technische Universität Braunschweig; Braunschweig Germany
| |
Collapse
|
43
|
Intan-Shameha A, Divers TJ, Morrow JK, Graves A, Olsen E, Johnson AL, Mohammed HO. Phosphorylated neurofilament H (pNF-H) as a potential diagnostic marker for neurological disorders in horses. Res Vet Sci 2017; 114:401-405. [DOI: 10.1016/j.rvsc.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
44
|
Steinicke F, Oltmann-Norden I, Wätzig H. Long term kinetic measurements revealing precision and general performance of surface plasmon resonance biosensors. Anal Biochem 2017; 530:94-103. [DOI: 10.1016/j.ab.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/16/2017] [Accepted: 05/08/2017] [Indexed: 11/29/2022]
|
45
|
Gaiani A, Martinelli I, Bello L, Querin G, Puthenparampil M, Ruggero S, Toffanin E, Cagnin A, Briani C, Pegoraro E, Sorarù G. Diagnostic and Prognostic Biomarkers in Amyotrophic Lateral Sclerosis: Neurofilament Light Chain Levels in Definite Subtypes of Disease. JAMA Neurol 2017; 74:525-532. [PMID: 28264096 PMCID: PMC5822207 DOI: 10.1001/jamaneurol.2016.5398] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/10/2016] [Indexed: 01/14/2023]
Abstract
Importance A clearer definition of the role of neurofilament light chain (NFL) as a biomarker in amyotrophic lateral sclerosis (ALS) is needed. Objectives To assess the ability of NFL to serve as a diagnostic biomarker in ALS and the prognostic value of cerebrospinal fluid NFL in patients with ALS. Design, Setting, and Participants In this single-center, retrospective, longitudinal study, disease progression was assessed by the ALS Functional Rating Score-Revised and the ALS Milano-Torino Staging system at baseline and 6, 12, 24, and 36 months. Cerebrospinal fluid samples were obtained from 176 patients admitted to the Department of Neurosciences of the University of Padua, Padova, Italy, from January 1, 2010, through February 29, 2016. Patients with ALS underwent ambulatory follow-up at the same department. Main Outcomes and Measures Levels of NFL. Results The study included 94 patients with ALS (64 men [36.4%] and 30 women [17.0%]; median age, 62.5 years), 20 patients with frontotemporal dementia (FTD) (8 men [4.5%] and 12 women [6.8%]; median age, 65 years), 18 patients with motor neuropathies (14 men [8.0%] and 4 women [2.3%]; median age, 63 years), and 44 controls (24 men [13.6%] and 20 women [11.4%]; median age, 54 years). Log-transformed NFL (log[NFL]) concentrations were higher in the ALS and FTD groups compared with the motor neuropathies and control groups (hazard ratio [HR], 2.45; 95% CI, 1.66-3.61; P < .001). Patients with typical ALS (HR, 1.0 [reference]), progressive bulbar palsy (HR, 1.48; 95% CI, 0.58-3.75; P = .41), and upper motor neuron dominant ALS (HR, 0.12; 95% CI, 0.02-0.61; P = .01) had higher levels of NFL than did those with flail arm or leg syndrome (HR, 0.28; 95% CI, 0.08-0.10; P = .049) and progressive muscular atrophy (HR, 0.17; 95% CI, 0.22-1.36; P = .10). There was an inverse correlation between log[NFL] concentration and overall survival (HR, 2.45; 95% CI, 1.66-3.61; P < .001). There was no evidence of different log[NFL] concentrations and survival in genetic ALS. Conclusions and Relevance This study confirms the role of NFL as a biomarker in ALS. Elevation in NFL levels in patients with upper motor neuron involvement and FTD might reflect the corticospinal tract degeneration. Low NFL levels in patients with lower motor neuron signs might be a prognostic indicator of milder phenotypes of disease.
Collapse
Affiliation(s)
| | | | - Luca Bello
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Giorgia Querin
- Department of Neurosciences, University of Padua, Padova, Italy
| | | | - Susanna Ruggero
- Department of Neurosciences, General Hospital of Padua, Padova, Italy
| | | | | | - Chiara Briani
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Padova, Italy
| |
Collapse
|
46
|
Gastaldi M, Zardini E, Franciotta D. An update on the use of cerebrospinal fluid analysis as a diagnostic tool in multiple sclerosis. Expert Rev Mol Diagn 2016; 17:31-46. [DOI: 10.1080/14737159.2017.1262260] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matteo Gastaldi
- Laboratory of Neuroimmunology, and Dept. of General Neurology, C. Mondino National Neurological Institute, University of Pavia, Pavia, Italy
| | - Elisabetta Zardini
- Laboratory of Neuroimmunology, and Dept. of General Neurology, C. Mondino National Neurological Institute, University of Pavia, Pavia, Italy
| | - Diego Franciotta
- Laboratory of Neuroimmunology, and Dept. of General Neurology, C. Mondino National Neurological Institute, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Multicenter immunoassay validation of cerebrospinal fluid neurofilament light: a biomarker for neurodegeneration. Bioanalysis 2016; 8:2243-2254. [PMID: 27684648 DOI: 10.4155/bio-2016-0114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Neurofilament light (NfL) chain, a putative cerebrospinal fluid biomarker, can support neurodegenerative disease diagnosis and indicate disease severity and prognosis. Universal validation protocols when used to measure biomarkers can reduce pre and analytical laboratory variation, thus increasing end-user confidence in the consistency of validation data across sites. METHODOLOGY Here, a commercially available NfL ELISA (UmanDiagnostics, Umeå, Sweden) was validated in a multicentered setting using comprehensive newly developed standard operating procedures. RESULTS The data showed good assay sensitivity and intra and interassay precision. Interlaboratory precision was, however, suboptimal. CONCLUSION The UmanDiagnostics assay is suitable for the quantification of NfL in human cerebrospinal fluid. However, sources of interlaboratory variation in the data require further investigation.
Collapse
|
48
|
|
49
|
Arrambide G, Espejo C, Eixarch H, Villar LM, Alvarez-Cermeño JC, Picón C, Kuhle J, Disanto G, Kappos L, Sastre-Garriga J, Pareto D, Simon E, Comabella M, Río J, Nos C, Tur C, Castilló J, Vidal-Jordana A, Galán I, Arévalo MJ, Auger C, Rovira A, Montalban X, Tintore M. Neurofilament light chain level is a weak risk factor for the development of MS. Neurology 2016; 87:1076-84. [PMID: 27521440 PMCID: PMC5027802 DOI: 10.1212/wnl.0000000000003085] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/14/2016] [Indexed: 11/30/2022] Open
Abstract
Objective: To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Methods: Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. Results: The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7–1,897.5] ng/L and CIS-CIS 499.0 [168.8–829.2] ng/L, p < 0.0001). The strongest associations were with brain parenchymal fraction change (rs = −0.892) and percentage brain volume change (rs = −0.842) at 5 years. NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005–1.014) and McDonald MS (HR = 1.009, 95% CI 1.005–1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000–1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. Conclusions: NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes.
Collapse
Affiliation(s)
- Georgina Arrambide
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carmen Espejo
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Herena Eixarch
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Luisa M Villar
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José C Alvarez-Cermeño
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carmen Picón
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jens Kuhle
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Giulio Disanto
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ludwig Kappos
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Deborah Pareto
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eva Simon
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Manuel Comabella
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jordi Río
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carlos Nos
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carmen Tur
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joaquín Castilló
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Angela Vidal-Jordana
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ingrid Galán
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Maria J Arévalo
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Auger
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alex Rovira
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Xavier Montalban
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mar Tintore
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
50
|
Meeter LH, Dopper EG, Jiskoot LC, Sanchez-Valle R, Graff C, Benussi L, Ghidoni R, Pijnenburg YA, Borroni B, Galimberti D, Laforce RJ, Masellis M, Vandenberghe R, Ber IL, Otto M, van Minkelen R, Papma JM, Rombouts SA, Balasa M, Öijerstedt L, Jelic V, Dick KM, Cash DM, Harding SR, Jorge Cardoso M, Ourselin S, Rossor MN, Padovani A, Scarpini E, Fenoglio C, Tartaglia MC, Lamari F, Barro C, Kuhle J, Rohrer JD, Teunissen CE, van Swieten JC. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Transl Neurol 2016; 3:623-36. [PMID: 27606344 PMCID: PMC4999594 DOI: 10.1002/acn3.325] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022] Open
Abstract
Objective To evaluate cerebrospinal fluid (CSF) and serum neurofilament light chain (NfL) levels in genetic frontotemporal dementia (FTD) as a potential biomarker in the presymptomatic stage and during the conversion into the symptomatic stage. Additionally, to correlate NfL levels to clinical and neuroimaging parameters. Methods In this multicenter case–control study, we investigated CSF NfL in 174 subjects (48 controls, 40 presymptomatic carriers and 86 patients with microtubule‐associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading frame 72 (C9orf72) mutations), and serum NfL in 118 subjects (39 controls, 44 presymptomatic carriers, 35 patients). In 55 subjects both CSF and serum was determined. In two subjects CSF was available before and after symptom onset (converters). Additionally, NfL levels were correlated with clinical parameters, survival, and regional brain atrophy. Results CSF NfL levels in patients (median 6762 pg/mL, interquartile range 3186–9309 pg/mL) were strongly elevated compared with presymptomatic carriers (804 pg/mL, 627–1173 pg/mL, P < 0.001), resulting in a good diagnostic performance to discriminate both groups. Serum NfL correlated highly with CSF NfL (rs= 0.87, P < 0.001) and was similarly elevated in patients. Longitudinal samples in the converters showed a three‐ to fourfold increase in CSF NfL after disease onset. Additionally, NfL levels in patients correlated with disease severity, brain atrophy, annualized brain atrophy rate and survival. Interpretation NfL in both serum and CSF has the potential to serve as a biomarker for clinical disease onset and has a prognostic value in genetic FTD.
Collapse
Affiliation(s)
- Lieke H Meeter
- Alzheimer Center Rotterdam and Department of Neurology Erasmus Medical Center PO Box 2040, 3000 CA Rotterdam The Netherlands
| | - Elise G Dopper
- Alzheimer Center Rotterdam and Department of Neurology Erasmus Medical Center PO Box 2040, 3000 CA Rotterdam The Netherlands
| | - Lize C Jiskoot
- Alzheimer Center Rotterdam and Department of Neurology Erasmus Medical Center PO Box 2040, 3000 CA Rotterdam The Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit Department of Neurology Hospital Clínic Institut d'Investigació Biomèdica August Pi i Sunyer Villarroel, 170 Barcelona 08036 Spain
| | - Caroline Graff
- Division of Neurogeriatrics Department NVS, Karolinska Institutet Center for Alzheimer Research Huddinge 141 57 Sweden; Department of Geriatric Medicine Karolinska University Hospital- Huddinge Stockholm 141 86 Sweden
| | - Luisa Benussi
- Molecular Markers Laboratory IRCCS Centro San Giovanni di Dio Fatebenefratelli via Pilastroni 4 Brescia 25125 Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory IRCCS Centro San Giovanni di Dio Fatebenefratelli via Pilastroni 4 Brescia 25125 Italy
| | - Yolande A Pijnenburg
- Alzheimer Center and Department of Neurology Neuroscience Campus Amsterdam VU University Medical Center PO Box 7057, 1007 MB Amsterdam The Netherlands
| | - Barbara Borroni
- Neurology Unit Department of Clinical and Experimental Sciences Centre for Neurodegenerative Diseases University of Brescia Brescia Italy
| | - Daniela Galimberti
- University of Milan Fondazione Ca' Granda IRCSS Ospedale Policlinico Milan Italy
| | - Robert Jr Laforce
- Département des Sciences Neurologiques Clinique Interdisciplinaire de Mémoire (CIME) CHU de Québec Université Laval Québec Canada
| | - Mario Masellis
- Division of Neurology Department of Medicine Sunnybrook Health Sciences Centre University of Toronto Toronto Canada; Hurvitz Brain Sciences Research Program Sunnybrook Research Institute Toronto Canada
| | - Rik Vandenberghe
- Neurology University Hospitals Leuven Herestraat 49 Leuven Belgium; Laboratory for Cognitive Neurology Department of Neurosciences KU Leuven Leuven Belgium
| | - Isabelle Le Ber
- Institut du Cerveau et de la Moelle épinière (ICM) Inserm U1127 CNRS UMR 7225 Sorbonne Universités Université Pierre et Marie Curie Univ Paris 06U PMC-P6 UMR S 1127 - Hôpital Pitié-Salpêtrière Paris France; Centre de Référence des Démences Rares AP-HP Hôpital de la Pitié-Salpêtrière Paris France; Département des maladies du système nerveux AP-HP Hôpital de la Pitié-Salpêtrière Paris France
| | - Markus Otto
- Department of Neurology Ulm University Ulm Germany; German FTLD consortium Department of Neurology University of Ulm Ulm Germany
| | - Rick van Minkelen
- Department of Clinical Genetics Erasmus Medical Center PO Box 2040, 3000 CA Rotterdam The Netherlands
| | - Janne M Papma
- Alzheimer Center Rotterdam and Department of Neurology Erasmus Medical Center PO Box 2040, 3000 CA Rotterdam The Netherlands
| | - Serge A Rombouts
- Institute of Psychology Leiden University Leiden The Netherlands; Department of Radiology Leiden University Medical Center Leiden The Netherlands
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit Department of Neurology Hospital Clínic Institut d'Investigació Biomèdica August Pi i Sunyer Villarroel, 170 Barcelona 08036 Spain
| | - Linn Öijerstedt
- Division of Neurogeriatrics Department NVS, Karolinska Institutet Center for Alzheimer Research Huddinge 141 57 Sweden; Department of Geriatric Medicine Karolinska University Hospital- Huddinge Stockholm 141 86 Sweden
| | - Vesna Jelic
- Department of Geriatric Medicine Karolinska University Hospital- Huddinge Stockholm 141 86 Sweden; Division of clinical geriatrics Deptartment NVS Karolinska Institutet Center for Alzheimer Research Huddinge 141 57 Sweden
| | - Katrina M Dick
- Dementia Research Centre Department of Neurodegenerative Disease Institute of Neurology University College London WC1N 3BG London United Kingdom
| | - David M Cash
- Division of clinical geriatrics Department NVS Karolinska Institutet Center for Alzheimer Research Huddinge 141 57 Sweden; Translational Imaging Group Centre for Medical Image Computing University College London NW1 2HE London United Kingdom
| | - Sophie R Harding
- Dementia Research Centre Department of Neurodegenerative Disease Institute of Neurology University College London WC1N 3BG London United Kingdom
| | - M Jorge Cardoso
- Dementia Research Centre Department of Neurodegenerative Disesase Institute of Neurology University College London WC1N 3BG London United Kingdom; Translational Imaging Group Centre for Medical Image Computing University College London NW1 2HE London United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group Centre for Medical Image Computing University College London NW1 2HE London United Kingdom
| | - Martin N Rossor
- Dementia Research Centre Department of Neurodegenerative Disease Institute of Neurology University College London WC1N 3BG London United Kingdom
| | - Alessandro Padovani
- Neurology Unit Department of Clinical and Experimental Sciences Centre for Neurodegenerative Diseases University of Brescia Brescia Italy
| | - Elio Scarpini
- University of Milan Fondazione Ca' Granda IRCSS Ospedale Policlinico Milan Italy
| | - Chiara Fenoglio
- University of Milan Fondazione Ca' Granda IRCSS Ospedale Policlinico Milan Italy
| | - Maria C Tartaglia
- Laboratoire de Biochimie AP-HP Hopital Pitié-Salpétrière Paris France
| | - Foudil Lamari
- Tanz Center for Research in Neurodegenerative Diseases University of Toronoto Toronoto Canada
| | - Christian Barro
- Neurology Departments of Medicine Biomedicine and Clinical Research University Hospital Basel Basel Switzerland
| | - Jens Kuhle
- Neurology Departments of Medicine Biomedicine and Clinical Research University Hospital Basel Basel Switzerland
| | - Jonathan D Rohrer
- Dementia Research Centre Department of Neurodegenerative Disease Institute of Neurology University College London WC1N 3BG London United Kingdom
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank Department of Clinical Chemistry Neuroscience Campus VU University Medical Center PO Box 7057, 1007 MB Amsterdam The Netherlands
| | - John C van Swieten
- Alzheimer Center Rotterdam and Department of Neurology Erasmus Medical Center PO Box 2040, 3000 CA Rotterdam The Netherlands; Department of Clinical Genetics VU University Medical Center PO Box 7057, 1007 MB Amsterdam The Netherlands
| |
Collapse
|