1
|
Wilson GE, Knight J, Liu Q, Shelar A, Stewart E, Wang X, Yan X, Sanders J, Visness C, Gill M, Gruchalla R, Liu AH, Kattan M, Khurana Hershey GK, Togias A, Becker PM, Altman MC, Busse WW, Jackson DJ, Montgomery RR, Chupp GL. Activated sputum eosinophils associated with exacerbations in children on mepolizumab. J Allergy Clin Immunol 2024; 154:297-307.e13. [PMID: 38485057 PMCID: PMC11305967 DOI: 10.1016/j.jaci.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.
Collapse
Affiliation(s)
- Gabriella E Wilson
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - James Knight
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Ashish Shelar
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Conn
| | - Emma Stewart
- Committee on Immunology, University of Chicago, Chicago, Ill
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Xiting Yan
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | | | | | - Michelle Gill
- Department of Pediatric Infectious Diseases, Washington University in St Louis School of Medicine, St Louis, Mo
| | - Rebecca Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Meyer Kattan
- Department of Pediatric Pulmonology, Columbia University Irving Medical Center, New York, NY
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
2
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Ma J, Wang C, Wang F, Zhang Y, Liu Y, Zhang J, Gao Z, Zhang Y, Xie H, Wang Y, Fu L. Intestinal proline is a potential anti-allergy factor for allergy diagnosis and therapy. Front Nutr 2022; 9:1036536. [DOI: 10.3389/fnut.2022.1036536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Allergy has become a public health problem worldwide, but effective diagnostic and therapeutic approaches are limited currently. Amino acids are essential macronutrients that potentially participated in the allergy process. This work aimed to investigate whether amino acids can be applied as a mediator for allergy diagnosis and therapy. Two cohort studies were performed to investigate the correlation between fecal amino acids and allergy responses, and a spleen cell model was used to validate the role of amino acids in regulating allergy. In a cohort study with 193 volunteers, fecal proline was found to be negatively correlated with serum IgE, and detailed data analysis revealed that people with high-IgE-mediated allergy had decreased odds of high intestinal proline. In another cohort study with distinct allergic and non-allergic individuals, proline concentration was significantly lower in the allergic group. Daily diet and metagenomics analysis showed that the proline intake and microbiota amino acid metabolism were not significantly different, implying that the body’s proline metabolism might be different between allergic and non-allergic individuals. Furthermore, the spleen cell model demonstrated that proline specifically targeted Th2 and Treg activity. Overall, this work revealed a tight correlation between gut proline and serum IgE, indicating proline as a promising biomarker and a potential therapeutic method for allergic diseases.
Collapse
|
4
|
Sharma P, Dhanjal DS, Chopra C, Tambuwala MM, Sohal SS, van der Spek PJ, Sharma HS, Satija S. Targeting eosinophils in chronic respiratory diseases using nanotechnology-based drug delivery. Chem Biol Interact 2022; 365:110050. [DOI: 10.1016/j.cbi.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
|
5
|
Blood Eosinophils Are Associated with Efficacy of Targeted Therapy in Patients with Advanced Melanoma. Cancers (Basel) 2022; 14:cancers14092294. [PMID: 35565423 PMCID: PMC9104271 DOI: 10.3390/cancers14092294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Eosinophils appear to contribute to the efficacy of immunotherapy and their frequency was suggested as a predictive biomarker. Whether this observation could be transferred to patients treated with targeted therapy remains unknown. Methods: Blood and serum samples of healthy controls and 216 patients with advanced melanoma were prospectively and retrospectively collected. Freshly isolated eosinophils were phenotypically characterized by flow cytometry and co-cultured in vitro with melanoma cells to assess cytotoxicity. Soluble serum markers and peripheral blood counts were used for correlative studies. Results: Eosinophil-mediated cytotoxicity towards melanoma cells, as well as phenotypic characteristics, were similar when comparing healthy donors and patients. However, high relative pre-treatment eosinophil counts were significantly associated with response to MAPKi (p = 0.013). Eosinophil-mediated cytotoxicity towards melanoma cells is dose-dependent and requires proximity of eosinophils and their target in vitro. Treatment with targeted therapy in the presence of eosinophils results in an additive tumoricidal effect. Additionally, melanoma cells affected eosinophil phenotype upon co-culture. Conclusion: High pre-treatment eosinophil counts in advanced melanoma patients were associated with a significantly improved response to MAPKi. Functionally, eosinophils show potent cytotoxicity towards melanoma cells, which can be reinforced by MAPKi. Further studies are needed to unravel the molecular mechanisms of our observations.
Collapse
|
6
|
van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021; 12:790317. [PMID: 34966391 PMCID: PMC8710542 DOI: 10.3389/fimmu.2021.790317] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans - sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.
Collapse
Affiliation(s)
- Eline J. H. van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Büll
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lenneke A. M. Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
First Evidence for a Role of Siglec-8 in Breast Cancer. Int J Mol Sci 2021; 22:ijms22042000. [PMID: 33670444 PMCID: PMC7922794 DOI: 10.3390/ijms22042000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are involved in various immune cell-mediated diseases. Their role in cancer is poorly investigated, and research focusses on Siglec-expression on immune cells interacting with tumor cells. This study evaluates the role of Siglec-8 in breast cancer (BC). Siglec-8 expression was analyzed immunohistochemically on 235 primary BC cases and was correlated with clinical and pathological parameters and outcome. Cell culture experiments were performed with various BC cell lines. Siglec-8 was expressed in 215 BC cases and expression was lowest in triple-negative BC. It correlated with estrogen receptor-status, grading and the prognostic factors galectin (Gal)-7 and tumor-associated mucin-1 (TA-MUC1). However, Gal-7 and TA-MUC1 were only prognosticators for clinical outcome in the cohort expressing high (Immunoreactivity score IRS > 3) Siglec-8 levels but not in the low-expressing cohort. Siglec-8 knockdown led to a significantly reduced Gal-7 expression in MCF7 cells. All BC cell lines expressed low Siglec-8-levels, that could be elevated in MCF7 by Peroxisome proliferator-activated receptor (PPARγ)-stimulation. This study demonstrates that Siglec-8 is expressed in BC cells and correlates with known clinical and prognostic parameters. It is probably associated with Gal-7 and TA-MUC1 and might be regulated via PPARγ. Further analyses focusing on functional associations will clarify Siglec-8’s eligibility as a possible therapeutic target.
Collapse
|
8
|
O'Sullivan JA, Chang AT, Youngblood BA, Bochner BS. Eosinophil and mast cell Siglecs: From biology to drug target. J Leukoc Biol 2020; 108:73-81. [PMID: 31965606 PMCID: PMC7531194 DOI: 10.1002/jlb.2mr0120-352rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/26/2022] Open
Abstract
Mast cells and eosinophils are innate immune cells involved in both acute and chronic inflammatory responses. Siglecs are a family of cell surface receptors that share sialic acid binding activity. Over the past 20 years, our knowledge of the expression and function of Siglecs on cells of the immune system and others has greatly expanded, as has our understanding of their signaling, ligands, and possible roles in disease pathophysiology. Because of this, Siglecs have garnered interest as potential drug targets using strategies ranging from biologics to ligand-directed nanoparticles. This mini-review will highlight the state of our knowledge regarding human eosinophil and mast cell Siglecs, their biology, what they recognize, tools developed for in vitro and preclinical experimentation, and the status of ongoing efforts to develop drugs that engage eosinophil and mast cell Siglecs for potential therapeutic benefit.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Sabogal Piñeros YS, Dekker T, Smids B, Majoor CJ, Ravanetti L, Villetti G, Civelli M, Facchinetti F, Lutter R. Phosphodiesterase 4 inhibitors attenuate virus-induced activation of eosinophils from asthmatics without affecting virus binding. Pharmacol Res Perspect 2020; 8:e00557. [PMID: 32447834 PMCID: PMC7245579 DOI: 10.1002/prp2.557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022] Open
Abstract
Acute respiratory virus infections, such as influenza and RSV, are predominant causes of asthma exacerbations. Eosinophils act as a double-edged sword in exacerbations in that they are activated by viral infections but also can capture and inactivate respiratory viruses. Phosphodiesterase type 4 (PDE4) is abundantly expressed by eosinophils and has been implicated in their activation. This exploratory study aims to determine whether these opposing roles of eosinophils activation of eosinophils upon interaction with virus can be modulated by selective PDE4 inhibitors and whether eosinophils from healthy, moderate and severe asthmatic subjects respond differently. Eosinophils were purified by negative selection from blood and subsequently exposed to RSV or influenza. Prior to exposure to virus, eosinophils were treated with vehicle or selective PDE4 inhibitors CHF6001 and GSK256066. After 18 hours of exposure, influenza, but not RSV, increased CD69 and CD63 expression by eosinophils from each group, which were inhibited by PDE4 inhibitors. ECP release, although not stimulated by virus, was also attenuated by PDE4 inhibitors. Eosinophils showed an increased Nox2 activity upon virus exposure, which was less pronounced in eosinophils derived from mild and severe asthmatics and was counteracted by PDE4 inhibitors. PDE4 inhibitors had no effect on binding of virus by eosinophils from each group. Our data indicate that PDE4 inhibitors can attenuate eosinophil activation, without affecting virus binding. By attenuating virus-induced responses, PDE4 inhibitors may mitigate virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Yanaika Shari Sabogal Piñeros
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tamara Dekker
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Barbara Smids
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Christof J. Majoor
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lara Ravanetti
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gino Villetti
- Corporate Pre‐Clinical R&DChiesi Farmaceutici S.p.A.ParmaItaly
| | | | | | - René Lutter
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
10
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
11
|
Peng C, Van Meel ER, Cardenas A, Rifas-Shiman SL, Sonawane AR, Glass KR, Gold DR, Platts-Mills TA, Lin X, Oken E, Hivert MF, Baccarelli AA, De Jong NW, Felix JF, Jaddoe VW, Duijts L, Litonjua AA, DeMeo DL. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics 2019; 14:445-466. [PMID: 30876376 DOI: 10.1080/15592294.2019.1590085] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms integrate both genetic variability and environmental exposures. However, comprehensive epigenome-wide analysis has not been performed across major childhood allergic phenotypes. We examined the association of epigenome-wide DNA methylation in mid-childhood peripheral blood (Illumina HumanMethyl450K) with mid-childhood atopic sensitization, environmental/inhalant and food allergen sensitization in 739 children in two birth cohorts (Project Viva-Boston, and the Generation R Study-Rotterdam). We performed covariate-adjusted epigenome-wide association meta-analysis and employed pathway and regional analyses of results. Seven-hundred and five methylation sites (505 genes) were significantly cross-sectionally associated with mid-childhood atopic sensitization, 1411 (905 genes) for environmental and 45 (36 genes) for food allergen sensitization (FDR<0.05). We observed differential methylation across multiple genes for all three phenotypes, including genes implicated previously in innate immunity (DICER1), eosinophilic esophagitis and sinusitis (SIGLEC8), the atopic march (AP5B1) and asthma (EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU). In addition, most of the associated methylation marks for all three phenotypes occur in putative transcription factor binding motifs. Pathway analysis identified multiple methylation sites associated with atopic sensitization and environmental allergen sensitization located in/near genes involved in asthma, mTOR signaling, and inositol phosphate metabolism. We identified multiple differentially methylated regions associated with atopic sensitization (8 regions) and environmental allergen sensitization (26 regions). A number of nominally significant methylation sites in the cord blood analysis were epigenome-wide significant in the mid-childhood analysis, and we observed significant methylation - time interactions among a subset of sites examined. Our findings provide insights into epigenetic regulatory pathways as markers of childhood allergic sensitization.
Collapse
Affiliation(s)
- Cheng Peng
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Evelien R Van Meel
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Andres Cardenas
- d Division of Environmental Health Science , University of California, Berkeley, School of Public Health , Berkeley , CA , USA
| | - Sheryl L Rifas-Shiman
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Abhijeet R Sonawane
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Kimberly R Glass
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA
| | - Diane R Gold
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,g Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Thomas A Platts-Mills
- h Division of Allergy and Clinical Immunology , University of Virginia School of Medicine , Charlottesville , VA , USA
| | - Xihong Lin
- f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA.,i Department of Statistics , Harvard University , Cambridge , MA , USA
| | - Emily Oken
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Marie-France Hivert
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA.,j Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Andrea A Baccarelli
- k Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , New York , NY , USA
| | - Nicolette W De Jong
- l Department of Internal Medicine, Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Janine F Felix
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Vincent W Jaddoe
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Liesbeth Duijts
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,o Department of Pediatrics, Division of Neonatology , Erasmus MC, University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Augusto A Litonjua
- p Department of Pediatrics, Division of Pulmonary Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,q Division of Pulmonary and Critical Care, Harvard Medical School , Department of Medicine, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
12
|
Ding J, Hou J, Liu D, Wang Y, Wang X, Wang X. Expression and significance of molecular profiles on eosinophils of children with food allergy. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219868601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peripheral blood eosinophils may increase in food allergy (FA). However, the correlation between activation status of blood eosinophils and features of FA are unknown. We collected 25 cases of FA out-patients with increased number of eosinophils and 20 healthy children. Eosinophil surface markers were analyzed by flow cytometry. We found that CD23, CD44, CD54, and CRTH2 were positive on different eosinophils and that their expressions were increased in FA patients compared to the control individuals. There was a positive correlation with strong protein–protein interactions between the four eosinophil surface markers which were functionally involved in regulation of cell killing, interferon-gamma-mediated signaling pathway, and Epstein–Barr virus infection pathway. Thus, blood eosinophils change their phenotype during FA and induce significant gene regulation changes that may cause FA with eosinophilia. Detection of the expression of CD23, CD44, CD54, and CRTH2 on eosinophils can be used as indicators of FA with eosinophilia.
Collapse
Affiliation(s)
- Junqiong Ding
- Shanghai Fifth People’s Hospital of Fudan University, Shanghai, P.R. China
| | - Jia Hou
- Children’s Hospital of Fudan University, Shanghai, P.R. China
| | - Danru Liu
- Children’s Hospital of Fudan University, Shanghai, P.R. China
| | - Ying Wang
- Children’s Hospital of Fudan University, Shanghai, P.R. China
| | - Xiaoming Wang
- Shanghai Fifth People’s Hospital of Fudan University, Shanghai, P.R. China
| | - Xiaochuan Wang
- Children’s Hospital of Fudan University, Shanghai, P.R. China
| |
Collapse
|
13
|
Legrand F, Cao Y, Wechsler JB, Zhu X, Zimmermann N, Rampertaap S, Monsale J, Romito K, Youngblood BA, Brock EC, Makiya MA, Tomasevic N, Bebbington C, Maric I, Metcalfe DD, Bochner BS, Klion AD. Sialic acid-binding immunoglobulin-like lectin (Siglec) 8 in patients with eosinophilic disorders: Receptor expression and targeting using chimeric antibodies. J Allergy Clin Immunol 2018; 143:2227-2237.e10. [PMID: 30543818 DOI: 10.1016/j.jaci.2018.10.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/19/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec) 8 is selectively expressed on eosinophils, mast cells, and basophils and, when engaged on eosinophils, can cause cell death. OBJECTIVE We sought to characterize surface and soluble Siglec-8 (sSiglec-8) levels in normal donors (NDs) and eosinophilic donors (EOs) and assess the efficacy of anti-Siglec-8 antibodies in inducing eosinophil cell death in vitro. METHODS Eosinophil expression of Siglec-8 was assessed by using flow cytometry and quantitative PCR. Serum sSiglec-8 levels were measured by means of ELISA. Induction of eosinophil death by IgG4 (chimeric 2E2 IgG4) and afucosylated IgG1 (chimeric 2E2 IgG1 [c2E2 IgG1]) anti-Siglec-8 antibodies was evaluated in vitro by using flow cytometry and in vivo in humanized mice. RESULTS Siglec-8 was consistently expressed on eosinophils from NDs and EOs and did not correlate with absolute eosinophil count or disease activity. sSiglec-8 levels were measurable in sera from most donors unrelated to absolute eosinophil counts or Siglec-8 surface expression. c2E2 IgG1 and chimeric 2E2 IgG4 were equally effective at inducing cell death (Annexin-V positivity) of purified eosinophils from NDs and EOs after overnight IL-5 priming. In contrast, killing of purified eosinophils without IL-5 was only seen in EOs, and natural killer cell-mediated eosinophil killing was seen only with c2E2 IgG1. Finally, treatment of humanized mice with anti-Siglec antibody led to robust depletion of IL-5-induced eosinophilia in vivo. CONCLUSIONS Siglec-8 is highly expressed on blood eosinophils from EOs and NDs and represents a potential therapeutic target for eosinophilic disorders. Enhanced killing of eosinophils in the presence of IL-5 might lead to increased efficacy in patients with IL-5-driven eosinophilia.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/genetics
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Death
- Cells, Cultured
- Cytotoxicity, Immunologic
- Eosinophilia/immunology
- Eosinophilia/therapy
- Eosinophils/immunology
- Humans
- Immunoglobulin G/genetics
- Interleukin-5/metabolism
- Killer Cells, Natural/immunology
- Lectins/genetics
- Lectins/immunology
- Lectins/metabolism
- Leukocyte Count
- Mice
- Mice, SCID
- Molecular Targeted Therapy
- Recombinant Fusion Proteins/genetics
- Transcriptome
Collapse
Affiliation(s)
- Fanny Legrand
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| | - Yun Cao
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Joshua B Wechsler
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Xiang Zhu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shakuntala Rampertaap
- Department of Laboratory Medicine, Warren Magnusson Clinical Center, National Institutes of Health, Bethesda
| | - Joseph Monsale
- Department of Laboratory Medicine, Warren Magnusson Clinical Center, National Institutes of Health, Bethesda
| | - Kimberly Romito
- Department of Laboratory Medicine, Warren Magnusson Clinical Center, National Institutes of Health, Bethesda
| | | | | | - Michelle A Makiya
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | | | - Irina Maric
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Amy D Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| |
Collapse
|
14
|
Filippone RT, Robinson AM, Jovanovska V, Stavely R, Apostolopoulos V, Bornstein JC, Nurgali K. Targeting eotaxin-1 and CCR3 receptor alleviates enteric neuropathy and colonic dysfunction in TNBS-induced colitis in guinea pigs. Neurogastroenterol Motil 2018; 30:e13391. [PMID: 29968270 DOI: 10.1111/nmo.13391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/14/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The accumulation of eosinophils is mediated by the chemokine receptor-3 (CCR3)-eotaxin axis. Increased expression of eotaxin and its receptor is associated with inflammatory bowel disease (IBD). Activation of eosinophils causes the release of cationic proteins that are neurotoxic such as eosinophil-derived neurotoxin (EDN). Damage to enteric neurons alters neurally controlled functions of the gut correlated with intestinal inflammation. We hypothesized that inhibition of the CCR3-eotaxin axis will prevent inflammation-induced functional changes to the gastrointestinal tract. METHODS Hartley guinea pigs were administered with trinitrobenzene sulfonate (TNBS; 30 mg/kg in 30% ethanol) intrarectally to induce colitis. A CCR3 receptor antagonist (SB 328437 [SB3]) was injected intraperitoneally 1 hour postinduction of colitis. Animals were euthanized 7 days post-treatment and colon tissues were collected for ex vivo studies. The EDN-positive eosinophils in the colon, indicating eosinophil activation, were quantified by immunohistochemistry. Effects of SB3 treatment on gross morphological damage, enteric neuropathy, and colonic dysmotility were determined by histology, immunohistochemistry, and organ bath experiments. KEY RESULTS The number of EDN-positive eosinophils was significantly increased in the lamina propria in close proximity to myenteric ganglia in inflamed colon. The TNBS-induced inflammation caused significant damage to colonic architecture and inhibition of colonic motility. Treatment with SB3 antagonist attenuated inflammation-associated morphological damage in the colon, reduced infiltration of EDN-positive eosinophils and restored colonic motility to levels comparable to control and sham-treated guinea pigs. CONCLUSION & INFERENCES This is the first study demonstrating that inhibition of CCR3-eotaxin axis alleviates enteric neuropathy and restores functional changes in the gut associated with TNBS-induced colitis.
Collapse
Affiliation(s)
- R T Filippone
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - A M Robinson
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - V Jovanovska
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - R Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - V Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - J C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Vic., Australia
| | - K Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Regenerative, Medicine and Stem Cells Program, Department of Medicine Western Health, Melbourne University, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Vic., Australia
| |
Collapse
|
15
|
Arakawa S, Suzukawa M, Ohshima N, Tashimo H, Asari I, Matsui H, Kobayashi N, Shoji S, Nagase T, Ohta K. Expression of Siglec-8 is regulated by interleukin-5, and serum levels of soluble Siglec-8 may predict responsiveness of severe eosinophilic asthma to mepolizumab. Allergol Int 2018; 67S:S41-S44. [PMID: 29703694 DOI: 10.1016/j.alit.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/11/2018] [Accepted: 03/26/2018] [Indexed: 11/27/2022] Open
MESH Headings
- Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/blood
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Asthma/diagnosis
- Asthma/drug therapy
- Asthma/metabolism
- Biomarkers
- Eosinophilia/pathology
- Female
- Gene Expression
- Humans
- Interleukin-5/blood
- Interleukin-5/metabolism
- Lectins/blood
- Lectins/genetics
- Lectins/metabolism
- Male
- Middle Aged
- Respiratory Function Tests
Collapse
Affiliation(s)
- Sayaka Arakawa
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan; Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Maho Suzukawa
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
| | - Nobuharu Ohshima
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Tashimo
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan
| | - Isao Asari
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan
| | - Hirotoshi Matsui
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan
| | | | - Shunsuke Shoji
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Ohta
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Grace JO, Malik A, Reichman H, Munitz A, Barski A, Fulkerson PC. Reuse of public, genome-wide, murine eosinophil expression data for hypotheses development. J Leukoc Biol 2018; 104:185-193. [PMID: 29758095 DOI: 10.1002/jlb.1ma1117-444r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/12/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
The eosinophil (Eos) surface phenotype and activation state is altered after recruitment into tissues and after exposure to pro-inflammatory cytokines. In addition, distinct Eos functional subsets have been described, suggesting that tissue-specific responses for Eos contribute to organ homeostasis. Understanding the mechanisms by which Eos subsets achieve their tissue-specific identity is currently an unmet goal for the eosinophil research community. Publicly archived expression data can be used to answer original questions, test and generate new hypotheses, and serve as a launching point for experimental design. With these goals in mind, we investigated the effect of genetic background, culture methods, and tissue residency on murine Eos gene expression using publicly available, genome-wide expression data. Eos differentiated from cultures have a gene expression profile that is distinct from that of native homeostatic Eos; thus, researchers can repurpose published expression data to aid in selecting the appropriate culture method to study their gene of interest. In addition, we identified Eos lung- and gastrointestinal-specific transcriptomes, highlighting the profound effect of local tissue environment on gene expression in a terminally differentiated granulocyte even at homeostasis. Expanding the "toolbox" of Eos researchers to include public-data reuse can reduce redundancy, increase research efficiency, and lead to new biological insights.
Collapse
Affiliation(s)
- Jillian O Grace
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Astha Malik
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J Allergy Clin Immunol 2017; 141:1774-1785.e7. [PMID: 28734845 DOI: 10.1016/j.jaci.2017.06.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a cell-surface protein expressed selectively on human eosinophils, mast cells, and basophils, making it an ideal target for the treatment of diseases involving these cell types. However, the effective delivery of therapeutic agents to these cells requires an understanding of the dynamics of Siglec-8 surface expression. OBJECTIVES We sought to determine whether Siglec-8 is endocytosed in human eosinophils and malignant mast cells, identify mechanisms underlying its endocytosis, and demonstrate whether a toxin can be targeted to Siglec-8-bearing cells to kill these cells. METHODS Siglec-8 surface dynamics were examined by flow cytometry using peripheral blood eosinophils, mast cell lines, and Siglec-8-transduced cells in the presence of inhibitors targeting components of endocytic pathways. Siglec-8 intracellular trafficking was followed by confocal microscopy. The ribosome-inhibiting protein saporin was conjugated to a Siglec-8-specific antibody to examine the targeting of an agent to these cells through Siglec-8 endocytosis. RESULTS Siglec-8 endocytosis required actin rearrangement, tyrosine kinase and protein kinase C activities, and both clathrin and lipid rafts. Internalized Siglec-8 localized to the lysosomal compartment. Maximal endocytosis in Siglec-8-transduced HEK293T cells required an intact immunoreceptor tyrosine-based inhibitory motif. Siglec-8 was also shuttled to the surface via a distinct pathway. Sialidase treatment of eosinophils revealed that Siglec-8 is partially masked by sialylated cis ligands. Targeting saporin to Siglec-8 consistently caused extensive cell death in eosinophils and the human mast cell leukemia cell line HMC-1.2. CONCLUSIONS Therapeutic payloads can be targeted selectively to eosinophils and malignant mast cells by exploiting this Siglec-8 endocytic pathway.
Collapse
|
18
|
Abstract
INTRODUCTION Diagnosing eosinophilic asthma is important, because uncontrolled eosinophilic airway inflammation is associated with reduced response to glucocorticoids and increased risk of severe exacerbations. AREAS COVERED Currently, the diagnosis of eosinophilic asthma is based on measurements of sputum eosinophils, which is time consuming and requires specific technical expertise. Therefore, biomarkers such as blood eosinophils, FeNO, serum IgE and periostin are being used as surrogates. These biomarkers can be used separately or in combination, and their accuracy to detect sputum eosinophilia depends on cut-off values. The demonstration of eosinophils in sputum is no guarantee for response to treatment with current biological agents targeting Type 2 inflammation, because several molecular pathways may lead to eosinophilic inflammation. In the near future, the results of large trials using 'omics' technologies will certainly identify new, more 'upstream' biomarkers of eosinophilic inflammation, that will ultimately lead to the ideal targeted treatment for patients with eosinophilic asthma. Expert commentary: Of currently used surrogate markers to diagnose eosinophilic asthma, blood eosinophils and FeNO have the highest diagnostic accuracy, in particular if used in combination to rule in or rule out eosinophilic asthma. For patients who cannot be classified by these biomarkers alone, the clinical profile may be of help.
Collapse
Affiliation(s)
- Hanneke Coumou
- a Department of Respiratory Medicine, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Elisabeth H Bel
- a Department of Respiratory Medicine, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
19
|
Carr TF, Berdnikovs S, Simon HU, Bochner BS, Rosenwasser LJ. Eosinophilic bioactivities in severe asthma. World Allergy Organ J 2016; 9:21. [PMID: 27386041 PMCID: PMC4924237 DOI: 10.1186/s40413-016-0112-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
Asthma is clearly related to airway or blood eosinophilia, and asthmatics with significant eosinophilia are at higher risk for more severe disease. Eosinophils actively contribute to innate and adaptive immune responses and inflammatory cascades through the production and release of diverse chemokines, cytokines, lipid mediators and other growth factors. Eosinophils may persist in the blood and airways despite guidelines-based treatment. This review details eosinophil effector mechanisms, surface markers, and clinical outcomes associated with eosinophilia and asthma severity. There is interest in the potential of eosinophils or their products to predict treatment response with biotherapeutics and their usefulness as biomarkers. This is important as monoclonal antibodies are targeting cytokines and eosinophils in different lung environments for treating severe asthma. Identifying disease state-specific eosinophil biomarkers would help to refine these strategies and choose likely responders to biotherapeutics.
Collapse
Affiliation(s)
| | - Sergejs Berdnikovs
- />Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Hans-Uwe Simon
- />Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Bruce S. Bochner
- />Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | |
Collapse
|
20
|
Abstract
Current therapies for eosinophilic disorders are limited. Most treatment approaches remain empirical, are not supported by data from controlled clinical trials, involve the off-label use of agents developed for treatment of other diseases, and tend to rely heavily on the use of glucocorticoids and other agents with significant toxicity. Great progress has been made in the discovery, preclinical development, and clinical testing of a variety of biologics and small molecules that have the potential to directly or indirectly influence eosinophils, eosinophilic inflammation, and the consequences of eosinophil activation.
Collapse
|
21
|
Varricchi G, Bagnasco D, Borriello F, Heffler E, Canonica GW. Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol 2016; 16:186-200. [PMID: 26859368 PMCID: PMC4768650 DOI: 10.1097/aci.0000000000000251] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Human eosinophils were first identified and named by Paul Ehrlich in 1879 on the basis of the cell's granular uptake of eosin. Although eosinophils represent approximately 1% of peripheral blood leukocytes, they have the propensity to leave the blood stream and migrate into inflamed tissues. Eosinophils and their mediators are critical effectors to asthma and eosinophilic granulomatosis with polyangiitis (EGPA). Eosinophils are equipped with a large number of cell-surface receptors and produce specific cytokines and chemokines. RECENT FINDINGS Eosinophils are the major source of interleukin-5 and highly express the interleukin-5Rα on their surface. Clinical trials evaluating monoclonal antibodies to interleukin-5 (mepolizumab and reslizumab) and its receptor interleukin-5Rα (benralizumab) have been or are underway in patients with eosinophilic asthma, EGPA and chronic obstructive pulmonary disease (COPD). Overall, targeting interleukin-5/interleukin-5Rα is associated with a marked decrease in blood and sputum eosinophilia, the number of exacerbations and improvement of some clinical parameters in adult patients with severe eosinophilic asthma. Pilot studies suggest that mepolizumab might be a glucocorticoid-sparing treatment in patients with EGPA. A preliminary study found that benralizumab did not reduce the exacerbations and did modify lung function in patients with eosinophilic COPD. SUMMARY The review examines recent advances in the biology of eosinophils and how targeting the interleukin-5 pathway might offer benefit to some patients with severe asthma, EGPA, and COPD. Interleukin-5/interleukin-5Rα-targeted treatments offer promises to patients with eosinophilic respiratory disorders.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples
| | - Diego Bagnasco
- Respiratory Diseases and Allergy Clinic, DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S. Martino Genoa, Genoa
| | - Francesco Borriello
- Department of Translational Medical Sciences, University of Naples Federico II, Naples
| | - Enrico Heffler
- Department of Clinical and Experimental Medicine, Respiratory Disease and Allergology, University of Catania, Catania, Italy
| | - Giorgio W. Canonica
- Respiratory Diseases and Allergy Clinic, DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S. Martino Genoa, Genoa
| |
Collapse
|
22
|
Legrand F, Klion AD. Biologic therapies targeting eosinophils: current status and future prospects. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 3:167-74. [PMID: 25754717 DOI: 10.1016/j.jaip.2015.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/14/2023]
Abstract
The recent explosion in the number of biologic therapies in clinical development for the treatment of eosinophilic disorders is unprecedented. As these agents become available for clinical use, the selection of the most appropriate agent for a given patient will become increasingly complicated. The aims of this review were 2-fold: (1) to present the lessons learned from clinical trials using the first generation of eosinophil-targeted biologics (anti-IL-5 antibodies) and (2) to discuss the advantages and potential limitations of currently available and novel targeted therapies to treat eosinophilic disorders.
Collapse
Affiliation(s)
- Fanny Legrand
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Amy D Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda.
| |
Collapse
|
23
|
Abstract
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodelling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or 'primed', or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins, have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAbs) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
24
|
Radonjic-Hoesli S, Valent P, Klion AD, Wechsler ME, Simon HU. Novel targeted therapies for eosinophil-associated diseases and allergy. Annu Rev Pharmacol Toxicol 2014; 55:633-56. [PMID: 25340931 DOI: 10.1146/annurev-pharmtox-010814-124407] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eosinophil-associated diseases often present with life-threatening manifestations and/or chronic organ damage. Currently available therapeutic options are limited to a few drugs that often have to be prescribed on a lifelong basis to keep eosinophil counts under control. In the past 10 years, treatment options and outcomes in patients with clonal eosinophilic and other eosinophilic disorders have improved substantially. Several new targeted therapies have emerged, addressing different aspects of eosinophil expansion and inflammation. In this review, we discuss available and currently tested agents as well as new strategies and drug targets relevant to both primary and secondary eosinophilic diseases, including allergic disorders.
Collapse
|
25
|
Knipping K, Colson D, Soulaines P, Redegeld F, Garssen J, Dupont C. Serum immunoglobulin free light chain levels are higher in girls than boys during eosinophilic oesophagitis. Acta Paediatr 2014; 103:766-74. [PMID: 24698291 DOI: 10.1111/apa.12651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/18/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
AIM Eosinophilic oesophagitis (EO) is an emerging worldwide disease, closely associated with male gender and allergic disorders. This study investigated the distribution of allergy markers in a cohort of children with EO. METHODS We analysed allergy markers in 91 children (62 males and 29 females) with EO and a control group of 45 age-matched children who had non-EO gastrointestinal allergic symptoms. The markers analysed were serum cow's milk-specific and hen's egg-specific IgE, thymic stromal lymphopoietin (TSLP), thymus-regulated and activation-regulated chemokine (TARC/CCL17) and immunoglobulin free light chain (Ig-fLC). RESULTS In the EO group, cow's milk-specific IgE levels were detectable in 41.9% of males and 62.1% of females and hen's egg-specific levels in 25% of males and 26.9% of females. There was no gender difference in increased TSLP or TARC levels. Kappa Ig-fLC were increased in 5.6% of males and 20.8% of females (p = 0.058) and lambda Ig-fLC in 1.9% of males and 33.3% of females (p = 0.000). No gender differences were found in the control group. CONCLUSION Our findings suggest that serum TSLP might be a potential marker of EO and TARC of non-EO gastrointestinal food allergies. In EO, serum Ig-fLC appeared higher in females, adding another gender difference to the biology of EO.
Collapse
Affiliation(s)
- Karen Knipping
- Nutricia Research; Utrecht The Netherlands
- Division of Pharmacology; Faculty of Science; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | | | | | - Frank Redegeld
- Division of Pharmacology; Faculty of Science; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Johan Garssen
- Nutricia Research; Utrecht The Netherlands
- Division of Pharmacology; Faculty of Science; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | | |
Collapse
|
26
|
Affiliation(s)
- M. W. Johansson
- Department of Biomolecular Chemistry; University of Wisconsin; Madison WI USA
| |
Collapse
|
27
|
|
28
|
The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Curr Opin Allergy Clin Immunol 2013; 13:106-11. [PMID: 23160308 DOI: 10.1097/aci.0b013e32835b594a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Siglec-8 and Siglec-F are single pass transmembrane inhibitory receptors found on the surface of human and mouse eosinophils, respectively, but very little is known about their physiologic glycan ligands. This article reviews the latest knowledge on this topic and outlines the strategies being used to further define the production and glycobiochemical nature of these molecules in the lung. RECENT FINDINGS Both Siglec-8 and Siglec-F recognize the same glycan structure, namely 6'-sulfated sialyl Lewis X, as determined using glycan array technologies. Studies have identified α2,3-linked sialylated glycoprotein structures localized to mouse airway epithelium in tissue sections, where their constitutive expression requires the specific sialyltransferase St3gal3. Expression of these ligands in lung is enhanced during allergic inflammation and by cytokines such as IL-13, and is maintained in primary air-liquid interface cultures of mouse lung epithelium. Further characterization suggests that they are high molecular weight sialylated proteins, putatively mucins. By combining analytic glycomics, glycoproteomic mapping, and further in-vitro eosinophil experimentation including the ability of candidate structures to enhance eosinophil apoptosis, a finely detailed appreciation of the structural requirements for productive Siglec-8 and Siglec-F engagement should soon emerge. SUMMARY An enhanced understanding of Siglec-F, Siglec-8, and their ligands should improve our understanding of endogenous lung pathways limiting the survival of eosinophils within the airway in diseases such as asthma. Knowledge of this biology may also result in novel opportunities for drug development involving glycans and glycomimetics that selectively bind to Siglec-8 and induce eosinophil death.
Collapse
|
29
|
Hamilton RG. Evolution in immunological methods used in research and in the clinical diagnosis and management of human allergic diseases. J Immunol Methods 2012; 383:1-3. [DOI: 10.1016/j.jim.2012.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 06/15/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|