1
|
Bela-Ong DB, Thompson KD, Kim HJ, Park SB, Jung TS. CD4 + T lymphocyte responses to viruses and virus-relevant stimuli in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109007. [PMID: 37625734 DOI: 10.1016/j.fsi.2023.109007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Fish diseases caused by viruses are a major threat to aquaculture. Development of disease protection strategies for sustainable fish aquaculture requires a better understanding of the immune mechanisms involved in antiviral defence. The innate and adaptive arms of the vertebrate immune system collaborate to mount an effective defence against viral pathogens. The T lymphocyte components of the adaptive immune system, comprising two major classes (helper T, Th or CD4+ and cytotoxic T lymphocytes, CTLs or CD8+ T cells), are responsible for cell-mediated immune responses. In particular, CD4+ T cells and their different subsets orchestrate the actions of various other immune cells during immune responses, making CD4+ T cells central drivers of responses to pathogens and vaccines. CD4+ T cells are also present in teleost fish. Here we review the literature that reported the use of antibodies against CD4 in a few teleost fish species and transcription profiling of Th cell-relevant genes in the context of viral infections and virus-relevant immunomodulation. Studies reveal massive CD4+ T cell proliferation and expression of key cytokines, transcription factors, and effector molecules that evoke mammalian Th cell responses. We also discuss gaps in the current understanding and evaluation of teleost CD4+ T cell responses and how development and application of novel tools and approaches to interrogate such responses could bridge these gaps. A greater understanding of fish Th cell responses will further illuminate the evolution of vertebrate adaptive immunity, inform strategies to address viral infections in aquaculture, and could further foster fish as model organisms.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-Ong
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland, United Kingdom
| | - Hyoung Jun Kim
- WOAH Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Seong Bin Park
- Coastal Research and Extension Center, Mississippi State University, Pascagula, MS, 39567, USA
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| |
Collapse
|
2
|
Simon Davis DA, Ritchie M, Hammill D, Garrett J, Slater RO, Otoo N, Orlov A, Gosling K, Price J, Yip D, Jung K, Syed FM, Atmosukarto II, Quah BJC. Identifying cancer-associated leukocyte profiles using high-resolution flow cytometry screening and machine learning. Front Immunol 2023; 14:1211064. [PMID: 37600768 PMCID: PMC10435879 DOI: 10.3389/fimmu.2023.1211064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Machine learning (ML) is a valuable tool with the potential to aid clinical decision making. Adoption of ML to this end requires data that reliably correlates with the clinical outcome of interest; the advantage of ML is that it can model these correlations from complex multiparameter data sets that can be difficult to interpret conventionally. While currently available clinical data can be used in ML for this purpose, there exists the potential to discover new "biomarkers" that will enhance the effectiveness of ML in clinical decision making. Since the interaction of the immune system and cancer is a hallmark of tumor establishment and progression, one potential area for cancer biomarker discovery is through the investigation of cancer-related immune cell signatures. Hence, we hypothesize that blood immune cell signatures can act as a biomarker for cancer progression. Methods To probe this, we have developed and tested a multiparameter cell-surface marker screening pipeline, using flow cytometry to obtain high-resolution systemic leukocyte population profiles that correlate with detection and characterization of several cancers in murine syngeneic tumor models. Results We discovered a signature of several blood leukocyte subsets, the most notable of which were monocyte subsets, that could be used to train CATboost ML models to predict the presence and type of cancer present in the animals. Conclusions Our findings highlight the potential utility of a screening approach to identify robust leukocyte biomarkers for cancer detection and characterization. This pipeline can easily be adapted to screen for cancer specific leukocyte markers from the blood of cancer patient.
Collapse
Affiliation(s)
- David A. Simon Davis
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Melissa Ritchie
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Dillon Hammill
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jessica Garrett
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Robert O. Slater
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Naomi Otoo
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Anna Orlov
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Katharine Gosling
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Jason Price
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Desmond Yip
- Australian National University, Canberra, ACT, Australia
- Department of Medical Oncology, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Kylie Jung
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Farhan M. Syed
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Ines I. Atmosukarto
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ben J. C. Quah
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| |
Collapse
|
3
|
Wolf D, Barreras H, Copsel SN, Komanduri KV, Levy RB. Improved NK cell recovery following the use of PTCy or Treg expanded donors in experimental MHC-matched allogeneic BMT. Transplant Cell Ther 2022; 28:303.e1-303.e7. [DOI: 10.1016/j.jtct.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
4
|
Determination and Quantitation of Cytotoxic T Cell-Mediated Cell Death. Methods Mol Biol 2021; 2255:159-169. [PMID: 34033102 DOI: 10.1007/978-1-0716-1162-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cytotoxic T cell-induced cell death is well documented. Cytotoxic T cell releases various cytolytic proteins. The cytolytic proteins induce target cell death. T cell-induced cell death can be measured by the lytic assay. One of the well-known lytic assays uses radioactive tracer, Chromium-51 (51Cr), and detects the amount of 51Cr released from target cells. This assay can detect cell death and the efficiency of the T cell-induced cell death by coculture effector cells (T cells) and target cells. This assay can determine the kinetics of the cell lysis. The issue of this approach is the use of radioactive material. This chapter describes measuring T cell-induced cell death by determining the epigenetic remodeling and the release of cytolytic proteins. Determine the efficiency of T cell-induced cell death by using a flow cytometry-based detection method.
Collapse
|
5
|
Krueger PD, Goldberg MF, Hong SW, Osum KC, Langlois RA, Kotov DI, Dileepan T, Jenkins MK. Two sequential activation modules control the differentiation of protective T helper-1 (Th1) cells. Immunity 2021; 54:687-701.e4. [PMID: 33773107 PMCID: PMC8495663 DOI: 10.1016/j.immuni.2021.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Interferon-γ (IFN-γ)-producing CD4+ T helper-1 (Th1) cells are critical for protection from microbes that infect the phagosomes of myeloid cells. Current understanding of Th1 cell differentiation is based largely on reductionist cell culture experiments. We assessed Th1 cell generation in vivo by studying antigen-specific CD4+ T cells during infection with the phagosomal pathogen Salmonella enterica (Se), or influenza A virus (IAV), for which CD4+ T cells are less important. Both microbes induced T follicular helper (Tfh) and interleukin-12 (IL-12)-independent Th1 cells. During Se infection, however, the Th1 cells subsequently outgrew the Tfh cells via an IL-12-dependent process and formed subsets with increased IFN-γ production, ZEB2-transcription factor-dependent cytotoxicity, and capacity to control Se infection. Our results indicate that many infections induce a module that generates Tfh and poorly differentiated Th1 cells, which is followed in phagosomal infections by an IL-12-dependent Th1 cell amplification module that is critical for pathogen control.
Collapse
Affiliation(s)
- Peter D Krueger
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Michael F Goldberg
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Sung-Wook Hong
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Kevin C Osum
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Ryan A Langlois
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Dmitri I Kotov
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Thamotharampillai Dileepan
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA.
| |
Collapse
|
6
|
Grubor-Bauk B, Wijesundara DK, Masavuli M, Abbink P, Peterson RL, Prow NA, Larocca RA, Mekonnen ZA, Shrestha A, Eyre NS, Beard MR, Gummow J, Carr J, Robertson SA, Hayball JD, Barouch DH, Gowans EJ. NS1 DNA vaccination protects against Zika infection through T cell-mediated immunity in immunocompetent mice. SCIENCE ADVANCES 2019; 5:eaax2388. [PMID: 31844662 PMCID: PMC6905874 DOI: 10.1126/sciadv.aax2388] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
The causal association of Zika virus (ZIKV) with microcephaly, congenital malformations in infants, and Guillain-Barré syndrome in adults highlights the need for effective vaccines. Thus far, efforts to develop ZIKV vaccines have focused on the viral envelope. ZIKV NS1 as a vaccine immunogen has not been fully explored, although it can circumvent the risk of antibody-dependent enhancement of ZIKV infection, associated with envelope antibodies. Here, we describe a novel DNA vaccine encoding a secreted ZIKV NS1, that confers rapid protection from systemic ZIKV infection in immunocompetent mice. We identify novel NS1 T cell epitopes in vivo and show that functional NS1-specific T cell responses are critical for protection against ZIKV infection. We demonstrate that vaccine-induced anti-NS1 antibodies fail to confer protection in the absence of a functional T cell response. This highlights the importance of using NS1 as a target for T cell-based ZIKV vaccines.
Collapse
Affiliation(s)
- B. Grubor-Bauk
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
- Corresponding author.
| | - D. K. Wijesundara
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - M. Masavuli
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - P. Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - R. L. Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - N. A. Prow
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - R. A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. A. Mekonnen
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - A. Shrestha
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - N. S. Eyre
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - M. R. Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - S. A. Robertson
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. D. Hayball
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - D. H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - E. J. Gowans
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Mekonnen ZA, Grubor-Bauk B, English K, Leung P, Masavuli MG, Shrestha AC, Bertolino P, Bowen DG, Lloyd AR, Gowans EJ, Wijesundara DK. Single-Dose Vaccination with a Hepatotropic Adeno-associated Virus Efficiently Localizes T Cell Immunity in the Liver with the Potential To Confer Rapid Protection against Hepatitis C Virus. J Virol 2019; 93:e00202-19. [PMID: 31292249 PMCID: PMC6744243 DOI: 10.1128/jvi.00202-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) is a significant contributor to the global disease burden, and development of an effective vaccine is required to eliminate HCV infections worldwide. CD4+ and CD8+ T cell immunity correlates with viral clearance in primary HCV infection, and intrahepatic CD8+ tissue-resident memory T (TRM) cells provide lifelong and rapid protection against hepatotropic pathogens. Consequently, we aimed to develop a vaccine to elicit HCV-specific CD4+ and CD8+ T cells, including CD8+ TRM cells, in the liver, given that HCV primarily infects hepatocytes. To achieve this, we vaccinated wild-type BALB/c mice with a highly immunogenic cytolytic DNA vaccine encoding a model HCV (genotype 3a) nonstructural protein (NS5B) and a mutant perforin (pVAX-NS5B-PRF), as well as a recombinant adeno-associated virus (AAV) encoding NS5B (rAAV-NS5B). A novel fluorescent target array (FTA) was used to map immunodominant CD4+ T helper (TH) cell and cytotoxic CD8+ T cell epitopes of NS5B in vivo, which were subsequently used to design a KdNS5B451-459 tetramer and analyze NS5B-specific T cell responses in vaccinated mice in vivo The data showed that intradermal prime/boost vaccination with pVAX-NS5B-PRF was effective in eliciting TH and cytotoxic CD8+ T cell responses and intrahepatic CD8+ TRM cells, but a single intravenous dose of hepatotropic rAAV-NS5B was significantly more effective. As a T-cell-based vaccine against HCV should ideally result in localized T cell responses in the liver, this study describes primary observations in the context of HCV vaccination that can be used to achieve this goal.IMPORTANCE There are currently at least 71 million individuals with chronic HCV worldwide and almost two million new infections annually. Although the advent of direct-acting antivirals (DAAs) offers highly effective therapy, considerable remaining challenges argue against reliance on DAAs for HCV elimination, including high drug cost, poorly developed health infrastructure, low screening rates, and significant reinfection rates. Accordingly, development of an effective vaccine is crucial to HCV elimination. An HCV vaccine that elicits T cell immunity in the liver will be highly protective for the following reasons: (i) T cell responses against nonstructural proteins of the virus are associated with clearance of primary infection, and (ii) long-lived liver-resident T cells alone can protect against malaria infection of hepatocytes. Thus, in this study we exploit promising vaccination platforms to highlight strategies that can be used to evoke highly functional and long-lived T cell responses in the liver for protection against HCV.
Collapse
Affiliation(s)
- Zelalem A Mekonnen
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Kieran English
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Makutiro G Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Ashish C Shrestha
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Patrick Bertolino
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - David G Bowen
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
- Collaborative Transplantation Research Group, Bosch Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Wolf D, Bader CS, Barreras H, Copsel S, Pfeiffer BJ, Lightbourn CO, Altman NH, Komanduri KV, Levy RB. Superior immune reconstitution using Treg-expanded donor cells versus PTCy treatment in preclinical HSCT models. JCI Insight 2018; 3:121717. [PMID: 30333311 DOI: 10.1172/jci.insight.121717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Posttransplant cyclophosphamide (PTCy) has been found to be effective in ameliorating acute graft-versus-host disease (GVHD) in patients following allogeneic hematopoietic stem cell transplantation (aHSCT). Adoptive transfer of high numbers of donor Tregs in experimental aHSCT has shown promise as a therapeutic modality for GVHD regulation. We recently described a strategy for in vivo Treg expansion targeting two receptors: TNFRSF25 and CD25. To date, there have been no direct comparisons between the use of PTCy and Tregs regarding outcome and immune reconstitution within identical groups of transplanted mice. Here, we assessed these two strategies and found both decreased clinical GVHD and improved survival long term. However, recipients transplanted with Treg-expanded donor cells (TrED) exhibited less weight loss early after HSCT. Additionally, TrED recipients demonstrated less thymic damage, significantly more recent thymic emigrants, and more rapid lymphoid engraftment. Three months after HSCT, PTCy-treated and TrED recipients showed tolerance to F1 skin allografts and comparable immune function. Overall, TrED was found superior to PTCy with regard to weight loss early after transplant and initial lymphoid engraftment. Based on these findings, we speculate that morbidity and mortality after transplant could be diminished following TrED transplant into aHSCT recipients, and, therefore, that TrED could provide a promising clinical strategy for GVHD prophylaxis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Krishna V Komanduri
- Sylvester Comprehensive Cancer Center.,Department of Microbiology & Immunology.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert B Levy
- Sylvester Comprehensive Cancer Center.,Department of Microbiology & Immunology.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Induction of Genotype Cross-Reactive, Hepatitis C Virus-Specific, Cell-Mediated Immunity in DNA-Vaccinated Mice. J Virol 2018; 92:JVI.02133-17. [PMID: 29437963 DOI: 10.1128/jvi.02133-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
A universal hepatitis C virus (HCV) vaccine should elicit multiantigenic, multigenotypic responses, which are more likely to protect against challenge with the range of genotypes and subtypes circulating in the community. A vaccine cocktail and vaccines encoding consensus HCV sequences are attractive approaches to achieve this goal. Consequently, in a series of mouse vaccination studies, we compared the immunogenicity of a DNA vaccine encoding a consensus HCV nonstructural 5B (NS5B) protein to that of a cocktail of DNA plasmids encoding the genotype 1b (Gt1b) and Gt3a NS5B proteins. To complement this study, we assessed responses to a multiantigenic cocktail regimen by comparing a DNA vaccine cocktail encoding Gt1b and Gt3a NS3, NS4, and NS5B proteins to a single-genotype NS3/4/5B DNA vaccine. To thoroughly evaluate in vivo cytotoxic T lymphocyte (CTL) and T helper (Th) cell responses against Gt1b and Gt3a HCV peptide-pulsed target cells, we exploited a novel fluorescent-target array (FTA). FTA and enzyme-linked immunosorbent spot (ELISpot) analyses collectively indicated that the cocktail regimens elicited higher responses to Gt1b and Gt3a NS5B proteins than those with the consensus vaccine, while the multiantigenic DNA cocktail significantly increased the responses to NS3 and NS5B compared to those elicited by the single-genotype vaccines. Thus, a DNA cocktail vaccination regimen is more effective than a consensus vaccine or a monovalent vaccine at increasing the breadth of multigenotypic T cell responses, which has implications for the development of vaccines for communities where multiple HCV genotypes circulate.IMPORTANCE Despite the development of highly effective direct-acting antivirals (DAA), infections with hepatitis C virus (HCV) continue, particularly in countries where the supply of DAA is limited. Furthermore, patients who eliminate the virus as a result of DAA therapy can still be reinfected. Thus, a vaccine for HCV is urgently required, but the heterogeneity of HCV strains makes the development of a universal vaccine difficult. To address this, we developed a novel cytolytic DNA vaccine which elicits robust cell-mediated immunity (CMI) to the nonstructural (NS) proteins in vaccinated animals. We compared the immune responses against genotypes 1 and 3 that were elicited by a consensus DNA vaccine or a DNA vaccine cocktail and showed that the cocktail induced higher levels of CMI to the NS proteins of both genotypes. This study suggests that a universal HCV vaccine can most readily be achieved by use of a DNA vaccine cocktail.
Collapse
|
10
|
Tempany JC, Zhou JH, Hodgkin PD, Bryant VL. Superior properties of CellTrace Yellow™ as a division tracking dye for human and murine lymphocytes. Immunol Cell Biol 2017; 96:149-159. [PMID: 29363164 PMCID: PMC6446909 DOI: 10.1111/imcb.1020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/08/2023]
Abstract
The discovery of cell division tracking properties of 5‐(and‐6)‐carboxyfluorescein diacetate succinimidyl ester (CFSE) by Lyons and Parish in 1994 led to a broad range of new methods and numerous important biological discoveries. After labeling, CFSE is attached to free amine groups and intracellular proteins in the cytoplasm and nucleus of a cell, and halves in fluorescence intensity with each round of cell division, enabling enumeration of the number of divisions a cell has undergone. A range of popular division tracking dyes were subsequently developed, including CellTrace Violet (CTV), making available the green fluorescent channel previously occupied by CFSE. More recently, CellTrace Yellow (CTY) and CellTrace Far Red (CTFR), each with unique fluorescence properties, were introduced. In a comparison, we found that the fluorescence values of both dyes were well separated from autofluorescence, and enabled a greater number of divisions to be identified than CTV, before this limit was reached. These new dyes provided clear and well‐separated peaks for both murine and human B lymphocytes, and should find wide application. The range of excitation/emission spectra available for division tracking dyes now also facilitates multiplexing, that is, the labeling of cells with different combinations of dyes to give a unique fluorescence signature, allowing single cell in vitro and in vivo tracking. The combinatorial possibilities are significantly increased with these additional dyes.
Collapse
Affiliation(s)
- Jessica C Tempany
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie Hs Zhou
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Bryant
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Zorgi NE, Galisteo AJ, Sato MN, do Nascimento N, de Andrade HF. Immunity in the spleen and blood of mice immunized with irradiated Toxoplasma gondii tachyzoites. Med Microbiol Immunol 2016; 205:297-314. [PMID: 26732075 DOI: 10.1007/s00430-015-0447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/21/2015] [Indexed: 01/14/2023]
Abstract
Toxoplasma gondii infection induces a strong and long-lasting immune response that is able to prevent most reinfections but allows tissue cysts. Irradiated, sterilized T. gondii tachyzoites are an interesting vaccine, and they induce immunity that is similar to infection, but without cysts. In this study, we evaluated the cellular immune response in the blood and spleen of mice immunized with this preparation by mouth (v.o.) or intraperitoneally (i.p.) and analyzed the protection after challenge with viable parasites. BALB/c mice were immunized with three i.p. or v.o. doses of irradiated T. gondii tachyzoites. Oral challenge with ten cysts of the ME-49 or VEG strain at 90 days after the last dose resulted in high levels of protection with low parasite burden in the immunized animals. There were higher levels of specific IgG, IgA and IgM antibodies in the serum, and the i.p. immunized mice had higher levels of the high-affinity IgG and IgM antibodies than the orally immunized mice, which had more high-affinity IgA antibodies. B cells (CD19(+)), plasma cells (CD138(+)) and the CD4(+) and CD8(+) T cell populations were increased in both the blood and spleen. Cells from the spleen of the i.p. immunized mice also showed antigen-induced production of interleukin-10 (IL-10), interferon gamma (IFN-γ) and interleukin 4 (IL-4). The CD4(+) T cells, B cells and likely CD8(+) T cells from the spleens of the i.p. immunized mice proliferated with a specific antigen. The protection was correlated with the spleen and blood CD8(+) T cell, high-affinity IgG and IgM and antigen-induced IL-10 and IL-4 production. Immunization with irradiated T. gondii tachyzoites induces an immune response that is mediated by B cells and CD4(+) and CD8(+) T cells, with increased humoral and cellular immune responses that are necessary for host protection after infection. The vaccine is similar to natural infection, but free of tissue cysts; this immunity restrains infection at challenge and can be an attractive and efficient model for vaccine development in toxoplasmosis.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Protozoan/blood
- B-Lymphocytes/immunology
- Blood/immunology
- Cell Proliferation
- Cytokines/metabolism
- Disease Models, Animal
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Injections, Intraperitoneal
- Male
- Mice, Inbred BALB C
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- Toxoplasma/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Nahiara Esteves Zorgi
- Departamento de Parasitologia, Instituto de Ciências Biomédica, USP, Av. Prof. Lineu Prestes, 1374, Edifício Biomédicas II Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 1° Andar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Andrés Jimenez Galisteo
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 1° Andar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Maria Notomi Sato
- Departamento de Dermatologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 3° Andar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Nanci do Nascimento
- Laboratório de Biologia Molecular, Instituto de Pesquisas Energéticas e Nucleares, IPEN, Rua Travessa 400, Cidade Universitária, São Paulo, SP, CEP: 05508-900, Brazil
| | - Heitor Franco de Andrade
- Departamento de Parasitologia, Instituto de Ciências Biomédica, USP, Av. Prof. Lineu Prestes, 1374, Edifício Biomédicas II Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil.
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, FMUSP, USP, Av. Dr. Enéas de Carvalho Aguiar, 470, 1° Andar, São Paulo, SP, CEP: 05403-000, Brazil.
- Department of Pathology, Faculty of Medicine, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Wijesundara DK, Ranasinghe C, Jackson RJ, Lidbury BA, Parish CR, Quah BJC. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination. PLoS One 2014; 9:e105366. [PMID: 25170620 PMCID: PMC4149432 DOI: 10.1371/journal.pone.0105366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/18/2014] [Indexed: 01/05/2023] Open
Abstract
Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.
Collapse
Affiliation(s)
- Danushka K. Wijesundara
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ronald J. Jackson
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Brett A. Lidbury
- Alternatives to Animals through Bioinformatics Group, Dept Genome Biology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Christopher R. Parish
- Cancer and Vascular Biology Group, Dept Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Benjamin J. C. Quah
- Cancer and Vascular Biology Group, Dept Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
13
|
Quah BJC, Wijesundara DK, Ranasinghe C, Parish CR. The use of fluorescent target arrays for assessment of T cell responses in vivo. J Vis Exp 2014:e51627. [PMID: 24998253 DOI: 10.3791/51627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability to monitor T cell responses in vivo is important for the development of our understanding of the immune response and the design of immunotherapies. Here we describe the use of fluorescent target array (FTA) technology, which utilizes vital dyes such as carboxyfluorescein succinimidyl ester (CFSE), violet laser excitable dyes (CellTrace Violet: CTV) and red laser excitable dyes (Cell Proliferation Dye eFluor 670: CPD) to combinatorially label mouse lymphocytes into > 250 discernable fluorescent cell clusters. Cell clusters within these FTAs can be pulsed with major histocompatibility (MHC) class-I and MHC class-II binding peptides and thereby act as target cells for CD8(+) and CD4(+) T cells, respectively. These FTA cells remain viable and fully functional, and can therefore be administered into mice to allow assessment of CD8(+) T cell-mediated killing of FTA target cells and CD4(+) T cell-meditated help of FTA B cell target cells in real time in vivo by flow cytometry. Since > 250 target cells can be assessed at once, the technique allows the monitoring of T cell responses against several antigen epitopes at several concentrations and in multiple replicates. As such, the technique can measure T cell responses at both a quantitative (e.g. the cumulative magnitude of the response) and a qualitative (e.g. functional avidity and epitope-cross reactivity of the response) level. Herein, we describe how these FTAs are constructed and give an example of how they can be applied to assess T cell responses induced by a recombinant pox virus vaccine.
Collapse
Affiliation(s)
- Benjamin J C Quah
- Department of Immunology, John Curtin School of Medical Research, Australian National University;
| | - Danushka K Wijesundara
- Department of Immunology, John Curtin School of Medical Research, Australian National University
| | - Charani Ranasinghe
- Department of Immunology, John Curtin School of Medical Research, Australian National University
| | - Christopher R Parish
- Department of Immunology, John Curtin School of Medical Research, Australian National University
| |
Collapse
|
14
|
Tong L, Schuhmacher C, Assenmacher M, Zänker K, Jähn P. Multiplex and functional detection of antigen-specific human T cells by ITRA--indirect T cell recognition assay. J Immunol Methods 2014; 404:13-23. [PMID: 24333463 DOI: 10.1016/j.jim.2013.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 12/24/2022]
Abstract
The identification and functional characterization of pathogen-specific T cells plays a critical role in immunological research and diagnostics. In addition to the present standard technologies such as intracellular cytokine staining (ICS), enzyme-linked immunospot (ELISPOT) and peptide-major-histocompatibility-complex (MHC) multimer staining, we aimed to develop a multiplex detection assay, which provides fast in vitro functional data for both human CD4 and CD8 T cells with different antigen specificities in one sample. In this study, we have exploited the expression of CD83 on B cells to develop the cell array-based indirect T cell recognition assay (ITRA). In detail, B cells are pulsed with different pathogen peptide pools and fluorescently barcoded. Thereafter the B cells are pooled and co-cultured with autologous T cells. Subsequently each B cell population is analyzed via flow cytometry for CD83 expression, which indicates antigen-specific interaction with CD4 T cells. Moreover, we revealed donor dependent variations of cytotoxic activity of pathogen-specific CD4 T cells and CD8 T cells, evidenced by specific lysis of peptide-pulsed B cells. Taken together, ITRA is a novel antigen presenting cell (APC) array based method to analyze the presence and function of various antigen-specific T cells in one sample. It has the potential to be used in the future for epitope/antigen screening in research and for analysis of anti-tumor, anti-pathogen or autoimmune T cell responses in patient samples.
Collapse
Affiliation(s)
- Lan Tong
- Department of Human Medicine, Institute of Immunology, University Witten/Herdecke, 58453 Witten, Germany
| | - Carolin Schuhmacher
- Department of Research and Development, Miltenyi Biotec GmbH, Bergisch Gladbach 51429, Germany
| | - Mario Assenmacher
- Department of Research and Development, Miltenyi Biotec GmbH, Bergisch Gladbach 51429, Germany
| | - Kurt Zänker
- Department of Human Medicine, Institute of Immunology, University Witten/Herdecke, 58453 Witten, Germany
| | - Peter Jähn
- Department of Research and Development, Miltenyi Biotec GmbH, Bergisch Gladbach 51429, Germany
| |
Collapse
|