1
|
Dede M, van Dam A. Conjugation of visual enhancers in lateral flow immunoassay for rapid forensic analysis: A critical review. Anal Bioanal Chem 2025; 417:15-31. [PMID: 39384571 PMCID: PMC11695493 DOI: 10.1007/s00216-024-05565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
Collapse
Affiliation(s)
- Maria Dede
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
| | - Annemieke van Dam
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
- Department Forensic Science, Amsterdam University of Applied Sciences, Tafelbergweg 51, Amsterdam, 1105 BD, Netherlands
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
| |
Collapse
|
2
|
Wang Y, Yu Z, Ning Z, Li M, Li W, Zhong Y, Chen H, Zhang X, Tang X, Cheng X, Li L, Aigul A, Zan J. Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of GFAP in serum. Mikrochim Acta 2024; 191:325. [PMID: 38739279 DOI: 10.1007/s00604-024-06385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Glial fibrillary acidic protein (GFAP) in serum has been shown as a biomarker of traumatic brain injury (TBI) which is a significant global public health concern. Accurate and rapid detection of serum GFAP is critical for TBI diagnosis. In this study, a time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for the quantitative detection of serum GFAP. This TRFIS possessed excellent linearity ranging from 0.05 to 2.5 ng/mL for the detection of serum GFAP and displayed good linearity (Y = 598723X + 797198, R2 = 0.99), with the lowest detection limit of 16 pg/mL. This TRFIS allowed for quantitative detection of serum GFAP within 15 min and showed high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 4.0%. Additionally, this TRFIS was applied to detect GFAP in the serum samples from healthy donors and patients with cerebral hemorrhage, and the results of TRFIS could efficiently discern the patients with cerebral hemorrhage from the healthy donors. Our developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range and is suitable for rapid and quantitative determination of serum GFAP on-site.
Collapse
Affiliation(s)
- Yupeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Zhiyong Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhenqiu Ning
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minghui Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Weiping Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yizhe Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiqiang Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xialin Tang
- Department of Neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Xiao Cheng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Laiqing Li
- China-Uzbekistan Institute of Biomedical Industry Technology, Guangzhou, Guangdong, China
| | - Abduldayeva Aigul
- Research Institute of Preventive Medicine named Academician E. Dalenov, Astana Medical University, Astana, Kazakhstan
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Xu R, Xiang Y, Shen Z, Li G, Sun J, Lin P, Chen X, Huang J, Dong H, He Z, Liu W, Zhang L, Duan X, Su D, Zhao J, Marrazza G, Sun X, Guo Y. Portable multichannel detection instrument based on time-resolved fluorescence immunochromatographic test strip for on-site detecting pesticide residues in vegetables. Anal Chim Acta 2023; 1280:341842. [PMID: 37858545 DOI: 10.1016/j.aca.2023.341842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
In this work, a portable multichannel detection instrument based on time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for on-site detecting pesticide residues in vegetables. Its hardware consisted of a silicon photodiode and excitation light source array, a mainboard of the lower machine with STMicroelectronics 32 (STM32) and a linear stepping motor. While detecting, cardboard with 6-channel TRFIS was pulled into the cassette by the stepping motor. The peak area of the test (T) line and control (C) line of each TRFIS was sampled and calculated by software, then the concentration of the detected pesticide was obtained according to the ratio of the T to C value. This instrument could sample 6-channel TRFIS within 30 s simultaneously, and it exhibited excellent accuracy with a 2.5% average coefficient of variation for each channel (n = 12). In addition, the TRFIS was constructed by using europium oxide time-resolved fluorescent microspheres to label the monoclonal antibody against acetamiprid and form a fluorescent probe, which was fixed on the binding pad. The TRFIS was used for the detection of acetamiprid in celery cabbage, cauliflower and baby cabbage. This instrument was used to complete the qualitative and quantitative analysis of the TRFIS, so as to enhance the practical application of the detection method. This TRFIS possessed excellent linearity ranging from 0.25 mg kg-1 to 1.75 mg kg-1 for the detection of acetamiprid, and the limit of detection were 0.056-0.074 mg kg-1 in the different vegetable matrix. The platform combines the accuracy and portability of traditional test strips with the highly sensitive and efficient fluorescence intensity recognition function of detection equipment, which shows a great application prospect of multi-channel rapid detection of small molecule pollutants in the field.
Collapse
Affiliation(s)
- Rui Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Yaodong Xiang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Zheng Shen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Gaozhen Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiashuai Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Peiyu Lin
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Xiaofeng Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jingcheng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haowei Dong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Zhenying He
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Wenzheng Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Lu Zhang
- School of Food and Health, Zhejiang A&F University, No. 666 Wusu street, Hangzhou, 311300, China
| | - Xiaoyi Duan
- College of Chemical and Chemical Engineering, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Dianbin Su
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jicheng Zhao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| |
Collapse
|
4
|
Goux HJ, Vu BV, Wasden K, Alpadi K, Kumar A, Kalra B, Savjani G, Brosamer K, Kourentzi K, Willson RC. Development of a quantitative fluorescence lateral flow immunoassay (LFIA) prototype for point-of-need detection of anti-Müllerian hormone. Pract Lab Med 2023; 35:e00314. [PMID: 37181647 PMCID: PMC10172895 DOI: 10.1016/j.plabm.2023.e00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Anti-Müllerian Hormone (AMH) is a quantitative marker for ovarian reserve and is used to predict response during ovarian stimulation. Streamlining testing to the clinic or even to the physician's office would reduce inconvenience, turnaround time, patient stress and potentially also the total cost of testing, allowing for more frequent monitoring. In this paper, AMH is used as a model biomarker to describe the rational development and optimization of sensitive, quantitative, clinic-based rapid diagnostic tests. Design and Methods We developed a one-step lateral-flow europium (III) chelate-based fluorescent immunoassay (LFIA) for the detection of AMH on a portable fluorescent reader, optimizing the capture/detection antibodies, running buffer, and reporter conjugates. Results A panel of commercial calibrators was used to develop a standard curve to determine the analytical sensitivity (LOD = 0.41 ng/ml) and the analytical range (0.41-15.6 ng/ml) of the LFIA. Commercial controls were then tested to perform an initial evaluation of the prototype performance and showed a high degree of precision (Control I CV 2.18%; Control II CV 3.61%) and accuracy (Control I recovery 126%; Control II recovery 103%). Conclusions: This initial evaluation suggests that, in future clinical testing, the AMH LFIA will likely have the capability of distinguishing women with low ovarian reserve (<1 ng/ml AMH) from women with normal (1-4 ng/ml AMH) ovarian reserve. Furthermore, the LFIA demonstrated a wide linear range, indicating the assay's applicability to the detection of other health conditions such as PCOS, which requires AMH measurement at higher concentrations (>6 ng/ml).
Collapse
Affiliation(s)
- Heather J. Goux
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Binh V. Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Katherine Wasden
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | | | | | | - Kristen Brosamer
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Richard C. Willson
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
5
|
Nan X, Yang L, Cui Y. Lateral Flow Immunoassay for Proteins. Clin Chim Acta 2023; 544:117337. [PMID: 37044163 DOI: 10.1016/j.cca.2023.117337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Protein biomarkers are useful for disease diagnosis. Identification thereof using in vitro diagnostics such as lateral flow immunoassays (LFIAs) has attracted considerable attention due to their low cost and ease of use especially in the point of care setting. Current challenges, however, do remain with respect to material selection for each component in the device and the synergistic integration of these components to display detectable signals. This review explores the principle of LFIA for protein biomarkers, device components including biomaterials and labeling methods. Medical applications and commercial status are examined as well. This review highlights critical methodologies in the development of new LFIAs and their role in advancing healthcare worldwide.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
6
|
Dinga DK, Kasprzycka E, Assunção IP, Winterstein F, Alizade A, Caliskanyürek V, Blödorn D, Winkle J, Kynast U, Lezhnina M. High brightness red emitting polymer beads for immunoassays: Comparison between trifluoroacetylacetonates of Europium. Front Chem 2023; 11:1179247. [PMID: 37153529 PMCID: PMC10157089 DOI: 10.3389/fchem.2023.1179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Efficiently luminescing spherical polymer particles (beads) in the nanoscale regime of up to approximately 250 nm have become very valuable tools in bioanalytical assays. Eu3+- complexes imbedded in polymethacrylate and polystyrene in particular proved to be extraordinarily useful in sensitive immunochemical and multi-analyte assays, and histo- and cytochemistry. Their obvious advantages derive from both, the possibility to realize very high ratios of emitter complexes to target molecules, and the intrinsically long decay times of the Eu3+-complexes, which allows an almost complete discrimination against bothersome autofluorescence via time-gated measuring techniques; the narrow line emission in conjunction with large apparent Stokes shifts are additional benefits with regard to spectral separation of excitation and emission with optical filters. Last but not least, a reasonable strategy to couple the beads to the analytes is mandatory. We have thus screened a variety of complexes and ancillary ligands; the four most promising candidates evaluated and compared to each other were β-diketonates (trifluoroacetylacetonates, R-CO-CH-CO-CF3, R = - thienyl, -phenyl, -naphthyl and -phenanthryl); highest solubilities in polystyrene were obtained with trioctylphosphine co-ligands. All beads had overall quantum yields in excess of 80% as dried powders and lifetimes well beyond 600 µs. Core-shell particles were devised for the conjugation to model proteins (Avidine, Neutravidine). Their applicability was tested in biotinylated titer plates using time gated measurements and a Lateral Flow Assay as practical examples.
Collapse
Affiliation(s)
- Daniel K. Dinga
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Ewa Kasprzycka
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Israel P. Assunção
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Franziska Winterstein
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Amina Alizade
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Volkan Caliskanyürek
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | | | | | - Ulrich Kynast
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
- *Correspondence: Marina Lezhnina, ; Ulrich Kynast,
| | - Marina Lezhnina
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
- Quantum Analysis GmbH, Münster, Germany
- *Correspondence: Marina Lezhnina, ; Ulrich Kynast,
| |
Collapse
|
7
|
Cui X, Liu L, Li J, Liu Y, Liu Y, Hu D, Zhang R, Huang S, Jiang Z, Wang Y, Qu Y, Pang SW, Lam RHW. A Microfluidic Platform Revealing Interactions between Leukocytes and Cancer Cells on Topographic Micropatterns. BIOSENSORS 2022; 12:963. [PMID: 36354472 PMCID: PMC9687854 DOI: 10.3390/bios12110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Immunoassay for detailed analysis of immune-cancer intercellular interactions can achieve more promising diagnosis and treatment strategies for cancers including nasopharyngeal cancer (NPC). In this study, we report a microfluidic live-cell immunoassay integrated with a microtopographic environment to meet the rising demand for monitoring intercellular interactions in different tumor microenvironments. The developed assay allows: (1) coculture of immune cells and cancer cells on tunable (flat or micrograting) substrates, (2) simultaneous detection of different cytokines in a wide working range of 5-5000 pg/mL, and (3) investigation of migration behaviors of mono- and co-cultured cells on flat/grating platforms for revealing the topography-induced intercellular and cytokine responses. Cytokine monitoring was achieved on-chip by implementing a sensitive and selective microbead-based sandwich assay with an antibody on microbeads, target cytokines, and the matching fluorescent-conjugated detection antibody in an array of active peristaltic mixer-assisted cytokine detection microchambers. Moreover, this immunoassay requires a low sample volume down to 0.5 μL and short assay time (30 min) for on-chip cytokine quantifications. We validated the biocompatibility of the co-culture strategy between immune cells and NPC cells and compared the different immunological states of undifferentiated THP-1 monocytic cells or PMA-differentiated THP-1 macrophages co-culturing with NP460 and NPC43 on topographical and planar substrates, respectively. Hence, the integrated microfluidic platform provides an efficient, broad-range and precise on-chip cytokine detection approach, eliminates the manual sampling procedures and allows on-chip continuous cytokine monitoring without perturbing intercellular microenvironments on different topographical ECM substrates, which has the potential of providing clinical significance in early immune diagnosis, personalized immunotherapy, and precision medicine.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 519070, China
| | - Lelin Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou 311100, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Ruolin Zhang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Siping Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongning Jiang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yuchao Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yun Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Stella W. Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
- Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
8
|
Sarkar S, Gogoi M, Mahato M, Joshi AB, Baruah AJ, Kodgire P, Boruah P. Biosensors for detection of prostate cancer: a review. Biomed Microdevices 2022; 24:32. [PMID: 36169742 DOI: 10.1007/s10544-022-00631-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Abhijeet Balwantrao Joshi
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Arup Jyoti Baruah
- Department of General Surgery, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Prashant Kodgire
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Polina Boruah
- Department of Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong-793018, Meghalaya, India
| |
Collapse
|
9
|
Improving the Fluorescence Intensity of Lanthanide-doped Microspheres via Incorporation of Lauryl Methacrylate: Synthesis and Their Application in C-reactive Protein Detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yi M, He P, Li J, Zhang J, Lin L, Wang L, Zhao L. A portable toolbox based on time-resolved fluoroimmunoassay and immunomagnetic separation for Cronobacter sakazakii on-site detection in dairy. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ji Y, Hu L, Xiong W, Wang Y, Yang F, Shi M, Zhang H, Shao J, Lu C, Fang D, Deng H, Bian Z, Tang G, Liu S, Fan Z, Liu S. Highly sensitive time-resolved fluoroimmunoassay for the quantitative onsite detection of Alternaria longipes in tobacco. J Appl Microbiol 2022; 132:1250-1259. [PMID: 34312955 DOI: 10.1111/jam.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
AIMS Alternaria longipes is a causal agent of brown spot of tobacco, which remains a serious threat to tobacco production. Herein, we established a detection method for A. longipes in tobacco samples based on the principle of time-resolved fluoroimmunoassay, in order to fulfil the requirement of rapid, sensitive and accurate detection in situ. METHODS AND RESULTS A monoclonal antibody against A. longipes was generated, and its purity and titration were assessed using western blot and ELISA. The size of europium (III) nanospheres was measured to confirm successful antibody conjugation. The method described here can detect A. longipes protein lysates as low as 0.78 ng ml-1 , with recovery rates ranging from 85.96% to 99.67% in spiked tobacco. The specificity was also confirmed using a panel of microorganisms. CONCLUSIONS The fluorescent strips allow rapid and sensitive onsite detection of A. longipes in tobacco samples, with high accuracy, specificity, and repeatability. SIGNIFICANCE AND IMPACT OF THE STUDY This novel detection method provides convenience of using crude samples without complex procedures, and therefore allows rapid onsite detection by end users and quick responses towards A. longipes, which is critical for disease control and elimination of phytopathogens.
Collapse
Affiliation(s)
- Yuan Ji
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Wei Xiong
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Mowen Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Haiyan Zhang
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Jimin Shao
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Canhua Lu
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Dunhuang Fang
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shili Liu
- Department of Medical Microbiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| |
Collapse
|
12
|
Özyurt C, Uludağ İ, İnce B, Sezgintürk MK. Biosensing strategies for diagnosis of prostate specific antigen. J Pharm Biomed Anal 2022. [DOI: 10.1016/j.jpba.2021.114535
expr 871894585 + 891234880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
13
|
Danthanarayana AN, Brgoch J, Willson RC. Photoluminescent Molecules and Materials as Diagnostic Reporters in Lateral Flow Assays. ACS APPLIED BIO MATERIALS 2022; 5:82-96. [PMID: 35014811 PMCID: PMC9798899 DOI: 10.1021/acsabm.1c01051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lateral flow assay (LFA) is a point-of-care diagnostic test commonly available in an over-the-counter format because of its simplicity, speed, low cost, and portability. The reporter particles in these assays are among their most significant components because they perform the diagnostic readout and dictate the test's sensitivity. Today, gold nanoparticles are frequently used as reporters, but recent work focusing on photoluminescent-based reporter technologies has pushed LFAs to better performance. These efforts have focused specifically on reporters made of organic fluorophores, quantum dots, lanthanide chelates, persistent luminescent phosphors, and upconversion phosphors. In most cases, photoluminescent reporters show enhanced sensitivity compared to conventional gold nanoparticle-based assays. Here, we examine the advantages and disadvantages of these different reporters and highlight their potential benefits in LFAs. Our assessment shows that photoluminescent-based LFAs can not only reach lower detection limits than LFAs with traditional reporters, but they also can be capable of quantitative and multiplex analyte detection. As a result, the photoluminescent reporters make LFAs well-suited for medical diagnostics, the food and agricultural industry, and environmental testing.
Collapse
Affiliation(s)
| | - Jakoah Brgoch
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Richard C Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
14
|
Park SB, Shin JH. Pressed Lateral Flow Assay Strips for Flow Delay-Induced Signal Enhancement in Lateral Flow Assay Strips. BIOCHIP JOURNAL 2022; 16:480-489. [PMID: 36320437 PMCID: PMC9607699 DOI: 10.1007/s13206-022-00085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/29/2022] [Accepted: 09/24/2022] [Indexed: 12/29/2022]
Abstract
This paper proposes that the signal intensity of a lateral flow assay (LFA) strip can be increased by pressing the top of the strip, effectively reducing its flow rate. The reduced flow rate allows more time for antigen-antibody interactions to occur, resulting in increased signal intensity and an improved detection limit. To assess the potential of the pressed LFA (pLFA) strip, C-reactive protein (CRP) diluted in phosphate-buffered saline (PBS) and serum is detected, affording signal enhancement and a lowered limit of detection. Additionally, to show that the signal enhancement by pressure-induced flow delay applies to existing LFA products, commercially available COVID-19 antigen test strips are pressed, and signal enhancement is observed. Lastly, we show that the signal intensity of COVID-19 LFA kits can be increased by approximately two-fold at maximum by applying pressure on top of the manufactured product. This study suggests that pressed LFA strips can be used to reduce the chances of determining ambiguous signals as false-negative results and can potentially improve the detection sensitivity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13206-022-00085-w.
Collapse
Affiliation(s)
- Se Been Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - Joong Ho Shin
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan, 48513 Republic of Korea ,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| |
Collapse
|
15
|
Özyurt C, Uludağ İ, İnce B, Sezgintürk MK. Biosensing strategies for diagnosis of prostate specific antigen. J Pharm Biomed Anal 2021; 209:114535. [PMID: 34954466 DOI: 10.1016/j.jpba.2021.114535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023]
Abstract
Almost from the time of its discovery, the prostate specific antigen (PSA) has been one of the most accurate and most extensively studied indicators of prostate cancer (PC). Because of advancements in biosensing systems and technology, PSA analysis methods have been substantially updated and enhanced as compared to their first instances. With the development of techniques in biosensor technology, the number of PSA biosensors that can be used in the biomedical sector is increasing year by year. Many different recognition elements and transducers have been used in the development of biosensor systems that exhibit high sensitivity, selectivity, and specificity. Here in this review, we provide a current overview of the different approaches to PSA detection.
Collapse
Affiliation(s)
- Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - İnci Uludağ
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Bahar İnce
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
16
|
Xia G, Wang J, Liu Z, Bai L, Ma L. Effect of sample volume on the sensitivity of lateral flow assays through computational modeling. Anal Biochem 2021; 619:114130. [PMID: 33600781 DOI: 10.1016/j.ab.2021.114130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assays (LFAs) are extensively used in qualitative detection because of their convenience, low cost, fast results, and ease of operation. However, the sample volume used in a lateral flow assay is usually determined experimentally. We test and find that the flow velocity is influenced by sample volume, using fluorescent microspheres as label particles, when analyte concentration is fixed in a sandwich LFA. A model is developed based on mass-action kinetics and advection-diffusion-reaction equation, combing the conjugate pad and nitrocellulose membrane. The model shows predictions from 10 to 120 μL, and predicts accurately the experimental results from 50 to 120 μL where the fluid can flow to the test line. Over all, the model can provide predictions over a wide range of sample volumes for sensitivity analysis. On the basis of the model, the sensitivity of the LFA can be improved according to the sample volume added in the experiment.
Collapse
Affiliation(s)
- Guo Xia
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Jiangtao Wang
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zhijian Liu
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Lihao Bai
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Long Ma
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| |
Collapse
|
17
|
Mahmoudinobar F, Britton D, Montclare JK. Protein-based lateral flow assays for COVID-19 detection. Protein Eng Des Sel 2021; 34:gzab010. [PMID: 33991088 PMCID: PMC8194834 DOI: 10.1093/protein/gzab010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
To combat the enduring and dangerous spread of COVID-19, many innovations to rapid diagnostics have been developed based on proteinprotein interactions of the SARS-CoV-2 spike and nucleocapsid proteins to increase testing accessibility. These antigen tests have most prominently been developed using the lateral flow assay (LFA) test platform which has the benefit of administration at point-of-care, delivering quick results, lower cost, and does not require skilled personnel. However, they have gained criticism for an inferior sensitivity. In the last year, much attention has been given to creating a rapid LFA test for detection of COVID-19 antigens that can address its high limit of detection while retaining the advantages of rapid antibodyantigen interaction. In this review, a summary of these proteinprotein interactions as well as the challenges, benefits, and recent improvements to protein based LFA for detection of COVID-19 are discussed.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Chemistry New York University, New York, NY 10003, USA
- Department of Biomaterials New York University College of Dentistry, New York, NY 10010, USA
- Department of Radiology New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
18
|
Salminen T, Mehdi F, Rohila D, Kumar M, Talha SM, Prakash JAJ, Khanna N, Pettersson K, Batra G. Ultrasensitive and Robust Point-of-Care Immunoassay for the Detection of Plasmodium falciparum Malaria. Anal Chem 2020; 92:15766-15772. [PMID: 33228352 DOI: 10.1021/acs.analchem.0c02748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum malaria is widespread in the tropical and subtropical regions of the world. There is ongoing effort to eliminate malaria from endemic regions, and sensitive point-of-care (POC) diagnostic tests are required to support this effort. However, current POC tests are not sufficiently sensitive to detect P. falciparum in asymptomatic individuals. After extensive optimization, we have developed a highly sensitive and robust POC test for the detection of P. falciparum infection. The test is based on upconverting nanophosphor-based lateral flow (UCNP-LF) immunoassay. The developed UCNP-LF test was validated using whole blood reference panels containing samples at different parasite densities covering eight strains of P. falciparum from different geographical areas. The limit of detection was compared to a WHO-prequalified rapid diagnostic test (RDT). The UCNP-LF achieved a detection limit of 0.2-2 parasites/μL, depending on the strain, which is 50- to 250-fold improvement in analytical sensitivity over the conventional RDTs. The developed UCNP-LF is highly stable even at 40 °C for at least 5 months. The extensively optimized UCNP-LF assay is as simple as the conventional malaria RDTs and requires 5 μL of whole blood as sample. Results can be read after 20 min from sample addition, with a simple photoluminescence reader. In the absence of a reader device at the testing site, the strips after running the test can be transported and read at a central location with access to a reader. We have found that the test and control line signals are stable for at least 10 months after running the test. The UCNP-LF has potential for diagnostic testing of both symptomatic and asymptomatic individuals.
Collapse
Affiliation(s)
- Teppo Salminen
- Department of Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland
| | - Farha Mehdi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Deepak Rohila
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Manjit Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sheikh M Talha
- Department of Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland
| | - John Antony Jude Prakash
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Navin Khanna
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kim Pettersson
- Department of Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland
| | - Gaurav Batra
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
19
|
Kumar Y, Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr Rev Food Sci Food Saf 2020; 20:900-923. [PMID: 33443804 DOI: 10.1111/1541-4337.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/30/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
The authentication of animal species is an important issue due to an increasing trend of adulteration and mislabeling of animal species in processed meat products. Polymerase chain reaction is the most sensitive and specific technique for nucleic acid-based animal species detection. However, it is a time-consuming technique that requires costly thermocyclers and sophisticated labs. In recent times, there is a need of on-site detection by point-of-care (POC) testing methods and devices under low-resource settings. These POC devices must be affordable, sensitive, specific, user-friendly, rapid and robust, equipment free, and delivered to the end users. POC devices should also confirm the concept of micro total analysis system. This review discusses POC testing methods and devices that have been developed for meat species identification. Recent developments in lateral flow assay-based devices for the identification of animal species in meat products are also reviewed. Advancements in increasing the efficiency of lateral flow detection are also discussed.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| | - Kairam Narsaiah
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| |
Collapse
|
20
|
Augustine R, Das S, Hasan A, S A, Abdul Salam S, Augustine P, Dalvi YB, Varghese R, Primavera R, Yassine HM, Thakor AS, Kevadiya BD. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. J Clin Med 2020; 9:E3372. [PMID: 33096742 PMCID: PMC7589650 DOI: 10.3390/jcm9103372] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The aggressive outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as COVID-19 (coronavirus disease-2019) pandemic demands rapid and simplified testing tools for its effective management. Increased mass testing and surveillance are crucial for controlling the disease spread, obtaining better pandemic statistics, and developing realistic epidemiological models. Despite the advantages of nucleic acid- and antigen-based tests such as accuracy, specificity, and non-invasive approaches of sample collection, they can only detect active infections. Antibodies (immunoglobulins) are produced by the host immune system within a few days after infection and persist in the blood for at least several weeks after infection resolution. Antibody-based tests have provided a substitute and effective method of ultra-rapid detection for multiple contagious disease outbreaks in the past, including viral diseases such as SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome). Thus, although not highly suitable for early diagnosis, antibody-based methods can be utilized to detect past infections hidden in the population, including asymptomatic ones. In an active community spread scenario of a disease that can provide a bigger window for mass detections and a practical approach for continuous surveillance. These factors encouraged researchers to investigate means of improving antibody-based rapid tests and employ them as reliable, reproducible, sensitive, specific, and economic tools for COVID-19 mass testing and surveillance. The development and integration of such immunoglobulin-based tests can transform the pandemic diagnosis by moving the same out of the clinics and laboratories into community testing sites and homes. This review discusses the principle, technology, and strategies being used in antibody-based testing at present. It also underlines the immense prospect of immunoglobulin-based testing and the efficacy of repeated planned deployment in pandemic management and post-pandemic sustainable screenings globally.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Suvarthi Das
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA;
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Abhilash S
- Department of Microbiology, Majlis Arts and Science College, Puramannur, Malappuram, Kerala 676552, India;
| | - Shaheen Abdul Salam
- Department of Biosciences, MES College Marampally, Aluva, Ernakulam, Kerala 683107, India;
| | - Priya Augustine
- Department of Zoology, Providence Women’s College, Kozhikode, Kerala 673009, India;
| | - Yogesh Bharat Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | | | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | - Bhavesh D. Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| |
Collapse
|
21
|
Bayoumy S, Hyytiä H, Leivo J, Talha SM, Huhtinen K, Poutanen M, Hynninen J, Perheentupa A, Lamminmäki U, Gidwani K, Pettersson K. Glycovariant-based lateral flow immunoassay to detect ovarian cancer-associated serum CA125. Commun Biol 2020; 3:460. [PMID: 32826955 PMCID: PMC7442799 DOI: 10.1038/s42003-020-01191-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer antigen 125 (CA125) is a widely used biomarker in monitoring of epithelial ovarian cancer (EOC). Due to insufficient cancer specificity of CA125, its diagnostic use is severely compromised. Abnormal glycosylation of CA125 is a unique feature of ovarian cancer cells and could improve differential diagnosis of the disease. Here we describe the development of a quantitative lateral flow immunoassay (LFIA) of aberrantly glycosylated CA125 which is widely superior to the conventional CA125 immunoassay (CA125IA). With a 30 min read-out time, the LFIA showed 72% sensitivity, at 98% specificity using diagnostically challenging samples with marginally elevated CA125 (35–200 U/mL), in comparison to 16% sensitivity with the CA125IA. We envision the clinical use of the developed LFIA to be based on the substantially enhanced disease specificity against the many benign conditions confounding the diagnostic evaluation and against other cancers. Sherif Bayoumy et al. report a lateral flow immunoassay (LFIA) to quantify aberrantly glycosylated CA125 to diagnose epithelial ovarian cancer. Their method has a 30-minute read-out time, high sensitivity and specificity, and can distinguish ovarian cancer from benign endometriosis and other cancers.
Collapse
Affiliation(s)
- Sherif Bayoumy
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Heidi Hyytiä
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland.,PerkinElmer Finland Oy, Turku, Finland
| | - Janne Leivo
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Sheikh M Talha
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Department of Pathology, Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Antti Perheentupa
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland.
| |
Collapse
|
22
|
Mahmoudi T, de la Guardia M, Baradaran B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115842] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Zhao W, Tian S, Huang L, Liu K, Dong L, Guo J. A smartphone-based biomedical sensory system. Analyst 2020; 145:2873-2891. [PMID: 32141448 DOI: 10.1039/c9an02294e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disease diagnostics, food safety monitoring and environmental quality monitoring are the key means to safeguard human health. However, conventional detection devices for health care are costly, bulky and complex, restricting their applications in resource-limited areas of the world. With the rapid development of biosensors and the popularization of smartphones, smartphone-based sensing systems have emerged as novel detection devices that combine the sensitivity of biosensors and diverse functions of smartphones to provide a rapid, low-cost and convenient detection method. In these systems, a smartphone is used as a microscope to observe and count cells, as a camera to record fluorescence images, as an analytical platform to analyze experimental data, and as an effective tool to connect detection devices and online doctors. These systems are widely used for cell analysis, biochemical analysis, immunoassays, and molecular diagnosis, which are applied in the fields of disease diagnostics, food safety monitoring and environmental quality monitoring. Therefore, we discuss four types of smartphone-based sensing systems in this review paper, specifically in terms of the structure, performance and efficiency of these systems. Finally, we give some suggestions for improvement and future prospective trends.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Xu F, Jin Z, Zou S, Chen C, Song Q, Deng S, Xiao W, Zhang X, Jia A, Tang Y. EuNPs-mAb fluorescent probe based immunochromatographic strip for rapid and sensitive detection of porcine epidemic diarrhea virus. Talanta 2020; 214:120865. [PMID: 32278431 PMCID: PMC7111840 DOI: 10.1016/j.talanta.2020.120865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Abstract
Porcine epidemic diarrhea (PED), induced by porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets, resulting in significant economic losses in the pig industries. In this study, an immunochromatographic assay (ICA) based on a EuNPs-mAb fluorescent probe was developed and optimized for rapid detection of PEDV. The limit of detection (LOD) of the ICA was 0.218 μg/mL (2.725 × 103 TCID50/mL) and its linear detection range was 0.03125-8 μg/mL (3.91 × 102-105 TCID50/mL). The ICA was also validated for the detection of PEDV in swine stool samples. 60 swine stool samples from southern China were analyzed by the ICA and RT-PCR, and the results showed that the coincidence rate of the ICA to RT-PCR was 86.67%, which was significantly higher than that of AuNPs based ICA. The ICA is sensitive and specific and can achieve on-site rapid detection of swine stool samples. Therefore, the ICA has a great potential for PED diagnosis and prevention.
Collapse
Affiliation(s)
- Fei Xu
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Zhiyuan Jin
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Siyi Zou
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Chaoqun Chen
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Qifang Song
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Shengchao Deng
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Wei Xiao
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Xiaoli Zhang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China.
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry & Veterinary, PR China.
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China; Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
25
|
Yoo SJ, Shim HS, Yoon S, Moon HW. Evaluation of high-throughput digital lateral flow immunoassays for the detection of influenza A/B viruses from clinical swab samples. J Med Virol 2019; 92:1040-1046. [PMID: 31696947 DOI: 10.1002/jmv.25626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Abstract
We evaluated the performance of new high-throughput digital lateral flow immunoassays (LFIAs) detecting influenza antigens and compared them with those of the widely used digital LFIA and the rapid nucleic acid amplification test (NAAT). We tested 199 clinical nasopharyngeal (nasal) swab samples using three LFIA tests (BD Veritor Plus, STANDARD F Influenza A/B FIA, and ichroma TRIAS) and the rapid NAAT (ID NOW Influenza A & B2). Agreements and clinical performances (sensitivity and specificity) were evaluated based on the results of reverse transcriptase-polymerase chain reaction (RT-PCR) and verification panel. The agreement of each test with RT-PCR was moderate to almost perfect. The sensitivity of ID NOW was significantly higher than that of LFIAs (P = .0005, .0044, and .0026 for influenza A and P = .0044, .0026, and .0044 for influenza B, respectively). The specificities were not significantly different between the four tests (P > .05). However, the reference panel suggests that ichroma TRIAS test is more sensitive than the other two LFIA tests. All three LFIA assays performed similarly with no false positives against influenza A. For influenza B, ichroma TRIAS had 2 of 166 false positives whereas there were no false positives for the other two LFIA tests. Influenza antigen digital LFIAs have advantages in terms of the workflow when simultaneous tests are required. Rapid NAAT has higher sensitivity, while new antigen LFIAs are efficient and high-throughput. It is recommended that users select appropriate methods and algorithms according to the number of specimens and laboratory conditions in each clinical laboratory.
Collapse
Affiliation(s)
- Soo J Yoo
- Department of Laboratory Medicine, Sanggye Paik Hospital, Inje University, Seoul, Korea
| | - Hee S Shim
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Sumi Yoon
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Hee-Won Moon
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay. Anal Biochem 2019; 588:113468. [PMID: 31585097 DOI: 10.1016/j.ab.2019.113468] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023]
Abstract
Interleukin 6 (IL-6) is an interleukin that acts as both a proinflammatory and anti-inflammatory cytokine. It can be used as a potential diagnostic biomarker for sepsis. The aim of this study was to establish an easy-to-use detection kit for rapid, quantitative and on-site detection of IL-6. To develop the new IL-6 quantitative detecting kit, a double-antibody sandwich immunofluorescent assay was employed based on europium nanoparticles (Eu-np) combined with lateral flow immunoassay (LFIA). The performance of the new developed kit was evaluated in the aspects of parallel analysis, linearity, sensitivity, precision, accuracy, specificity and clinical sample analysis. Two-hundred and fourteen serum samples were used to carry out the clinical sample analysis. The new IL-6 quantitative detecting kit exhibited a wide linear range (2-500 pg/mL) and a good sensitivity (0.37 pg/mL). The intra-assay coefficient of variation (CV) and the inter-assay CV were 5.92%-8.87% and 7.59%-9.04%, respectively. The recovery rates ranged from 102% to 106%. Furthermore, a high correlation (n = 214, r = 0.9756, p < 0.01) was obtained when compared with SIEMENS CLIA IL-6 kit. Thus, the new quantitative method for detecting IL-6 has been successfully established. The results indicated that the newly-developed strip based on Eu-np combined with LFIA was a facile, fast, highly sensitive, low-cost, reliable biosensor and suitable for rapid and point-of-care test (POCT) for IL-6 in serum.
Collapse
|
27
|
Mahmoudi T, de la Guardia M, Shirdel B, Mokhtarzadeh A, Baradaran B. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|