1
|
Lteif M, Pallardy M, Turbica I. Antibodies internalization mechanisms by dendritic cells and their role in therapeutic antibody immunogenicity. Eur J Immunol 2024; 54:e2250340. [PMID: 37985174 DOI: 10.1002/eji.202250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Internalization and processing by antigen-presenting cells such as dendritic cells (DCs) are critical steps for initiating a T-cell response to therapeutic antibodies. Consequences are the production of neutralizing antidrug antibodies altering the clinical response, the presence of immune complexes, and, in some rare cases, hypersensitivity reactions. In recent years, significant progress has been made in the knowledge of cellular uptake mechanisms of antibodies in DCs. The uptake of antibodies could be directly related to their immunogenicity by regulating the quantity of materials entering the DCs in relation to antibody structure. Here, we summarize the latest insights into cellular uptake mechanisms and pathways in DCs. We highlight the approaches to study endocytosis, the impact of endocytosis routes on T-cell response, and discuss the link between how DCs internalize therapeutic antibodies and the potential mechanisms that could give rise to immunogenicity. Understanding these processes could help in developing assays to evaluate the immunogenicity potential of biotherapeutics.
Collapse
Affiliation(s)
- Maria Lteif
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Isabelle Turbica
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
2
|
Tondi S, Siena E, Essaghir A, Bozzetti B, Bechtold V, Scaillet A, Clemente B, Marrocco M, Sammicheli C, Tavarini S, Micoli F, Oldrini D, Pezzicoli A, Di Fede M, Brazzoli M, Ulivieri C, Schiavetti F. Molecular Signature of Monocytes Shaped by the Shigella sonnei 1790-Generalized Modules for Membrane Antigens Vaccine. Int J Mol Sci 2024; 25:1116. [PMID: 38256189 PMCID: PMC10816432 DOI: 10.3390/ijms25021116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Shigellosis, an acute gastroenteritis infection caused by Shigella species, remains a public health burden in developing countries. Recently, many outbreaks due to Shigella sonnei multidrug-resistant strains have been reported in high-income countries, and the lack of an effective vaccine represents a major hurdle to counteract this bacterial pathogen. Vaccine candidates against Shigella sonnei are under clinical development, including a Generalized Modules for Membrane Antigens (GMMA)-based vaccine. The mechanisms by which GMMA-based vaccines interact and activate human immune cells remain elusive. Our previous study provided the first evidence that both adaptive and innate immune cells are targeted and functionally shaped by the GMMA-based vaccine. Here, flow cytometry and confocal microscopy analysis allowed us to identify monocytes as the main target population interacting with the S. sonnei 1790-GMMA vaccine on human peripheral blood. In addition, transcriptomic analysis of this cell population revealed a molecular signature induced by 1790-GMMA mostly correlated with the inflammatory response and cytokine-induced processes. This also impacts the expression of genes associated with macrophages' differentiation and T cell regulation, suggesting a dual function for this vaccine platform both as an antigen carrier and as a regulator of immune cell activation and differentiation.
Collapse
Affiliation(s)
- Serena Tondi
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Emilio Siena
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
| | - Ahmed Essaghir
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
| | - Benoît Bozzetti
- Preclinical Research & Development, GSK, 1330 Rixensart, Belgium
| | - Viviane Bechtold
- Preclinical Research & Development, GSK, 1330 Rixensart, Belgium
| | - Aline Scaillet
- Preclinical Research & Development, GSK, 1330 Rixensart, Belgium
| | - Bruna Clemente
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
| | - Mariateresa Marrocco
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | - Simona Tavarini
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| | - Davide Oldrini
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| | | | - Martina Di Fede
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
| | - Michela Brazzoli
- Preclinical Research & Development, GSK, 53100 Siena, Italy; (S.T.)
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
3
|
Jarvi NL, Balu-Iyer SV. A mechanistic marker-based screening tool to predict clinical immunogenicity of biologics. COMMUNICATIONS MEDICINE 2023; 3:174. [PMID: 38066254 PMCID: PMC10709359 DOI: 10.1038/s43856-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The efficacy and safety of therapeutic proteins are undermined by immunogenicity driven by anti-drug antibodies. Immunogenicity risk assessment is critically necessary during drug development, but current methods lack predictive power and mechanistic insight into antigen uptake and processing leading to immune response. A key mechanistic step in T-cell-dependent immune responses is the migration of mature dendritic cells to T-cell areas of lymphoid compartments, and this phenomenon is most pronounced in the immune response toward subcutaneously delivered proteins. METHODS The migratory potential of monocyte-derived dendritic cells is proposed to be a mechanistic marker for immunogenicity screening. Following exposure to therapeutic protein in vitro, dendritic cells are analyzed for changes in activation markers (CD40 and IL-12) in combination with levels of the chemokine receptor CXCR4 to represent migratory potential. Then a transwell assay captures the intensity of dendritic cell migration in the presence of a gradient of therapeutic protein and chemokine ligands. RESULTS Here, we show that an increased ability of the therapeutic protein to induce dendritic cell migration along a gradient of chemokine CCL21 and CXCL12 predicts higher immunogenic potential. Expression of the chemokine receptor CXCR4 on human monocyte-derived dendritic cells, in combination with activation markers CD40 and IL-12, strongly correlates with clinical anti-drug antibody incidence. CONCLUSIONS Mechanistic understanding of processes driving immunogenicity led to the development of a predictive tool for immunogenicity risk assessment of therapeutic proteins. These predictive markers could be adapted for immunogenicity screening of other biological modalities.
Collapse
Affiliation(s)
- Nicole L Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
4
|
Di Ianni A, Barbero L, Fraone T, Cowan K, Sirtori FR. Preclinical risk assessment strategy to mitigate the T-cell dependent immunogenicity of protein biotherapeutics: State of the art, challenges and future perspectives. J Pharm Biomed Anal 2023; 234:115500. [PMID: 37311374 DOI: 10.1016/j.jpba.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Protein therapeutics hold a prominent role and have brought significant diversity in efficacious medicinal products. Not just monoclonal antibodies and different antibody formats (pegylated antigen-binding fragments, bispecifics, antibody-drug conjugates, single chain variable fragments, nanobodies, dia-, tria- and tetrabodies), but also purified blood products, growth factors, recombinant cytokines, enzyme replacement factors, fusion proteins are all good instances of therapeutic proteins that have been developed in the past decades and approved for their value in oncology, immune-oncology, and autoimmune diseases discovery programs. Although there was an ingrained belief that fully humanized proteins were expected to have limited immunogenicity, adverse effects associated with immune responses to biological therapies raised some concern in biotech companies. Consequently, drug developers are designing strategies to assess potential immune responses to protein therapeutics during both the preclinical and clinical phases of development. Despite the many factors that can contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) immunogenicity seems to play a crucial role in the development of anti-drug antibodies (ADAs) to biologics. A broad range of methodologies to predict and rationally assess Td immune responses to protein drugs has been developed. This review aims to briefly summarize the preclinical immunogenicity risk assessment strategy to mitigate the risk of potential immunogenic candidates coming towards clinical phases, discussing the advantages and limitations of these technologies, and suggesting a rational approach for assessing and mitigating Td immunogenicity.
Collapse
Affiliation(s)
- Andrea Di Ianni
- University of Turin, Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Luca Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Tiziana Fraone
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Kyra Cowan
- New Biological Entities, Drug Metabolism and Pharmacokinetics (NBE-DMPK), Research and Development, Merck KGaA, Frankfurterstrasse 250, 64293 Darmstadt, Germany
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy.
| |
Collapse
|
5
|
Swanson MD, Rios S, Mittal S, Soder G, Jawa V. Immunogenicity Risk Assessment of Spontaneously Occurring Therapeutic Monoclonal Antibody Aggregates. Front Immunol 2022; 13:915412. [PMID: 35967308 PMCID: PMC9364768 DOI: 10.3389/fimmu.2022.915412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregates of therapeutic proteins have been associated with increased immunogenicity in pre-clinical models as well as in human patients. Recent studies to understand aggregates and their immunogenicity risks use artificial stress methods to induce high levels of aggregation. These methods may be less biologically relevant in terms of their quantity than those that occur spontaneously during processing and storage. Here we describe the immunogenicity risk due to spontaneously occurring therapeutic antibody aggregates using peripheral blood mononuclear cells (PBMC) and a cell line with a reporter gene for immune activation: THP-1 BLUE NFκB. The spontaneously occurring therapeutic protein aggregates were obtained from process intermediates and final formulated drug substance from stability retains. Spontaneously occurring aggregates elicited innate immune responses for several donors in a PBMC assay with cytokine and chemokine production as a readout for immune activation. Meanwhile, no significant adaptive phase responses to spontaneously occurring aggregate samples were detected. While the THP-1 BLUE NFκB cell line and PBMC assays both responded to high stress induced aggregates, only the PBMC from a limited subset of donors responded to processing-induced aggregates. In this case study, levels of antibody aggregation occurring at process relevant levels are lower than those induced by stirring and may pose lower risk in vivo. Our methodologies can further inform additional immunogenicity risk assessments using a pre-clinical in vitro risk assessment approach utilizing human derived immune cells.
Collapse
Affiliation(s)
- Michael D. Swanson
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
- *Correspondence: Michael D. Swanson,
| | - Shantel Rios
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Sarita Mittal
- Analytical R&D, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - George Soder
- Analytical R&D, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Vibha Jawa
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
6
|
Zeunik R, Ryuzoji AF, Peariso A, Wang X, Lannan M, Spindler LJ, Knierman M, Copeland V, Patel C, Wen Y. Investigation of immune responses to oxidation, deamidation, and isomerization in therapeutic antibodies using preclinical immunogenicity risk assessment assays. J Pharm Sci 2022; 111:2217-2229. [DOI: 10.1016/j.xphs.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
|