1
|
Nanda JD, Yeh TM, Satria RD, Jhan MK, Wang YT, Lin YL, Sufriyana H, Su ECY, Lin CF, Ho TS. Dengue virus non-structural protein 1 binding to thrombin as a dengue severity marker: Comprehensive patient analysis in south Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00230-5. [PMID: 39730269 DOI: 10.1016/j.jmii.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/26/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Previously we identified a complex of non-structural protein (NS) 1 - Thrombin (NST) in dengue infected patients. Here, we investigated how the concentration of NS1 and NST differ in various dengue severity levels as well as their demographic and clinical features. Several comorbid (hypertension, diabetes, and chronic renal failure) often found in dengue patients were also measured and analyzed. METHODS A total of 86 dengue patients (52 not severe and 34 severe), were enrolled and had their blood taken. Blood samples were further verified for clinical blood parameters, including liver and renal function tests and serologic assays (NS1 and NST). Patients' severity was grouped based on WHO 2009 classification, which separates patients into dengue without warning signs (DNWS), dengue with warning signs (DWWS), and severe dengue (SD). DWWS is explained as DNWS with warning signs (persistent abdominal pain, persistent vomiting, liver enlargement, bleeding (any kind), fatigue, and restlessness). SD are those with severe plasma leakage, severe bleeding, or severe organ impairment. Multivariate regression analysis was used to predict the role of NST on the dengue severity development and receiver operating characteristic (AUROC) test was utilized to evaluate separability. RESULTS The analysis revealed that NS1 significantly impacts the disease outcome (p 0.018, OR = 2.467 (1.171-5.197)) but not beyond the effect through NST (p 0.108, OR = 0.085 (0.004-1.719)). We also prove that NST was a better severity biomarker compared to NS1, as it can predict progression from DNWS to DWWS (AUC: NS1 = 0.771∗∗, NST = 0.81∗∗) and SD (AUC: NS1 = 0.607, NST = 0.754∗) significantly. CONCLUSIONS This finding suggests the importance of NST in mediating the NS1 effect to promote dengue severity progression and its promising capability as an acute stage dengue severity biomarker.
Collapse
Affiliation(s)
- Josephine Diony Nanda
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Departement of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Rahmat Dani Satria
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta, 55281, Indonesia
| | - Ming-Kai Jhan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yung-Ting Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Ya-Lan Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Herdiantri Sufriyana
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Medical Physiology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 110, Taiwan.
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan.
| |
Collapse
|
2
|
Cherie TJJ, Choong CSH, Abid MB, Weber MW, Yap ES, Seneviratne SL, Abeysuriya V, de Mel S. Immuno-Haematologic Aspects of Dengue Infection: Biologic Insights and Clinical Implications. Viruses 2024; 16:1090. [PMID: 39066252 PMCID: PMC11281699 DOI: 10.3390/v16071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Dengue infection is caused by the dengue virus (DENV) and is transmitted to humans by infected female Aedes aegypti and Aedes albopictus mosquitoes. There are nearly 100 million new dengue cases yearly in more than 120 countries, with a five-fold increase in incidence over the past four decades. While many patients experience a mild illness, a subset suffer from severe disease, which can be fatal. Dysregulated immune responses are central to the pathogenesis of dengue, and haematologic manifestations are a prominent feature of severe disease. While thrombocytopaenia and coagulopathy are major causes of bleeding in severe dengue, leucocyte abnormalities are emerging as important markers of prognosis. In this review, we provide our perspective on the clinical aspects and pathophysiology of haematologic manifestations in dengue. We also discuss the key gaps in our current practice and areas to be addressed by future research.
Collapse
Affiliation(s)
- Tan Jiao Jie Cherie
- Department of Medicine, National University Health System, Singapore 119228, Singapore;
| | - Clarice Shi Hui Choong
- Department of Haematology Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore;
| | - Muhammad Bilal Abid
- Division of Haematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.B.A.); (M.W.W.)
| | - Matthew W. Weber
- Division of Haematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.B.A.); (M.W.W.)
| | - Eng Soo Yap
- Department of Laboratory Medicine, National University Health System, Singapore 119228, Singapore;
| | - Suranjith L. Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London NW3 2PP, UK
- Nawaloka Hospital Research and Educational Foundation, Nawaloka Hospitals PLC, Colombo 00200, Sri Lanka
| | - Visula Abeysuriya
- Department of Immunology, Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sanjay de Mel
- Department of Haematology Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore;
| |
Collapse
|
3
|
Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med 2024; 30:484-498. [PMID: 38582622 DOI: 10.1016/j.molmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Perera DR, Ranadeva ND, Sirisena K, Wijesinghe KJ. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect Dis 2024; 10:20-56. [PMID: 38110348 DOI: 10.1021/acsinfecdis.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
5
|
Wu N, Ji J, Gou X, Hu P, Cheng Y, Liu Y, Wang Y, Zhang Q, Zuo L. DENV-2 NS1 promotes AMPK-LKB1 interaction to activate AMPK/ERK/mTOR signaling pathway to induce autophagy. Virol J 2023; 20:231. [PMID: 37821951 PMCID: PMC10568820 DOI: 10.1186/s12985-023-02166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
The global incidence of dengue fever has gradually increased in recent years, posing a serious threat to human health. In the absence of specific anti-dengue drugs, understanding the interaction of Dengue virus (DENV) with the host is essential for the development of effective therapeutic measures. Autophagy is often activated during DENV infection to promote viral replication, but the mechanism of how DENV's own proteins induce autophagy has not been clarified. In this study, we first preliminarily identified DENV-2 NS1 as the most likely viral protein for DENV-2-induced autophagy with the help of molecular docking techniques. Further experimental results confirmed that DENV-2 NS1 regulates DENV-2 infection of HUVEC-induced autophagy through the AMPK/ERK/mTOR signaling pathway. Mechanistically, DENV-2 NS1 mainly interacted with AMPK by means of its Wing structural domain, and NS1 bound to all three structural domains on the AMPKα subunit. Finally, the experimental results showed that DENV-2 NS1 promoted the interaction between LKB1 and AMPKα1 and thus activated AMPK by both increasing the expression of LKB1 and binding LKB1. In conclusion, the results of this study revealed that DENV-2 NS1 protein served as a platform for the interaction between AMPK and LKB1 after DENV-2 infection with HUVEC, and pulled AMPK and LKB1 together to form a complex. LKB1 to form a complex, promoting LKB1 action on the kinase structural domain of AMPKα1, which in turn promotes phosphorylation of the Thr172 site on the AMPK kinase structural domain and activates AMPK, thereby positively regulating the AMPK/ERK/mTOR signaling pathway and inducing autophagy. The present discovery improves our understanding of DENV-2-induced host autophagy and contributes to the development of anti-dengue drugs.
Collapse
Affiliation(s)
- Ning Wu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Jinzhong Ji
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Xiaoqin Gou
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Pan Hu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Yao Cheng
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Yuhang Liu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Yuanying Wang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Qilong Zhang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China.
| | - Li Zuo
- Department of Immunology, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China.
| |
Collapse
|
6
|
Ghetia C, Bhatt P, Mukhopadhyay C. Association of dengue virus non-structural-1 protein with disease severity: a brief review. Trans R Soc Trop Med Hyg 2022; 116:986-995. [PMID: 36125197 DOI: 10.1093/trstmh/trac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
Dengue virus (DENV) was discovered by P. M. Ashburn and Charles F. Craig in 1907. Evidence of dengue-like illness was observed before 1907 and DENV epidemics have been reported from different parts of the world since then, with increased morbidity rates every year. DENV typically causes a febrile illness that ranges from mild asymptomatic infection to fatal dengue haemorrhagic fever (DHF) and/or dengue shock syndrome (DSS). Host mechanisms through which mild infection progresses to the fatal forms are still unknown. Few factors have been associated to aid severe disease acquisition, DENV non-structural 1 (NS1) protein being one of them. NS1 is a highly conserved glycoprotein among the Flavivirus and is often used as a biomarker for dengue diagnosis. This review focuses on assessing the role of NS1 in severe dengue. In this review, hospital-based studies on the association of dengue NS1 with severe dengue from all over the world have been assessed and analysed and the majority of the studies positively correlate high NS1 levels with DHF/DSS acquisition. The review also discusses a few experimental studies on NS1 that have shown it contributes to dengue pathogenesis. This review assesses the role of NS1 and disease severity from hospital-based studies and aims to provide better insights on the kinetics and dynamics of DENV infection with respect to NS1 for a better understanding of the role of NS1 in dengue.
Collapse
Affiliation(s)
- Charmi Ghetia
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
7
|
Benfrid S, Park K, Dellarole M, Voss JE, Tamietti C, Pehau‐Arnaudet G, Raynal B, Brûlé S, England P, Zhang X, Mikhailova A, Hasan M, Ungeheuer M, Petres S, Biering SB, Harris E, Sakuntabhai A, Buchy P, Duong V, Dussart P, Coulibaly F, Bontems F, Rey FA, Flamand M. Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep 2022; 23:e53600. [PMID: 35607830 PMCID: PMC10549233 DOI: 10.15252/embr.202153600] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/05/2023] Open
Abstract
The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.
Collapse
Affiliation(s)
- Souheyla Benfrid
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Université Paris Descartes SorbonneParis CitéFrance
- Present address:
Laboratoire de Santé AnimaleANSES, INRA, ENVA, UMR 1161Université Paris‐EstMaisons‐AlfortFrance
| | - Kyu‐Ho Park
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Applied Molecular VirologyInstitut Pasteur KoreaSeongnam‐siKorea
| | - Mariano Dellarole
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Virus Biophysics LaboratoryBionanosciences Research Center (CIBION)National Scientific and Technical Research Council (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - James E Voss
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Carole Tamietti
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | | | - Bertrand Raynal
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Sébastien Brûlé
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Patrick England
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Xiaokang Zhang
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Anastassia Mikhailova
- HIV Inflammation et PersistanceInstitut PasteurParisFrance
- Present address:
Division of Molecular NeurobiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and ServiceCB UTechSParisFrance
| | | | - Stéphane Petres
- Production and Purification of Recombinant Proteins FacilityInstitut PasteurParisFrance
| | - Scott B Biering
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | - Eva Harris
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | - Philippe Buchy
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
- Present address:
GlaxoSmithKline Vaccines R&DSingaporeSingapore
| | - Veasna Duong
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Philippe Dussart
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Fasséli Coulibaly
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - François Bontems
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Département de Biologie et Chimie StructuralesInstitut de Chimie des Substances Naturelles, CNRS UPR2301Gif‐sur‐YvetteFrance
| | - Félix A Rey
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | - Marie Flamand
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| |
Collapse
|
8
|
Tien SM, Chang PC, Lai YC, Chuang YC, Tseng CK, Kao YS, Huang HJ, Hsiao YP, Liu YL, Lin HH, Chu CC, Cheng MH, Ho TS, Chang CP, Ko SF, Shen CP, Anderson R, Lin YS, Wan SW, Yeh TM. Therapeutic efficacy of humanized monoclonal antibodies targeting dengue virus nonstructural protein 1 in the mouse model. PLoS Pathog 2022; 18:e1010469. [PMID: 35486576 PMCID: PMC9053773 DOI: 10.1371/journal.ppat.1010469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/24/2022] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection. DENV comprising four serotypes has a complicated pathogenesis and remains an unresolved global health problem. To date, supportive therapy is the mainstay for treatment of dengue patients. Despite a licensed Sanofi vaccine and ongoing clinical trials, more effective vaccines and/or licensed therapeutic drugs are required. Therapeutic mAbs are a potential tool to treat many epidemic diseases because of their high target specificity. Humanized anti-NS1 mAbs can recognize the NS1 from all four serotypes of DENV without danger of inducing ADE. In the DENV infection mouse model, we demonstrate that humanized NS1 mAbs have therapeutic benefits such as reducing DENV-induced prolonged bleeding time and skin hemorrhage. In vitro mechanistic studies showed a reduction of NS1-induced vascular permeability and an increase in cytolysis of DENV-infected cells. Our results showed that humanized anti-NS1 mAbs show strong potential for development toward clinical use.
Collapse
Affiliation(s)
- Sen-Mao Tien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Chun Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc. Tainan, Taiwan
| | - Yen-Chung Lai
- Leadgene Biomedical, Inc. Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chun Chuang
- Leadgene Biomedical, Inc. Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Yu-San Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Jyun Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Peng Hsiao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsing-Han Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- SIDSCO Biomedical Co., Ltd. Kaohsiung, Taiwan
| | - Chien-Chou Chu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Miao-Huei Cheng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Fen Ko
- Development Center for Biotechnology, Taipei, Taiwan
| | - Che-Piao Shen
- Development Center for Biotechnology, Taipei, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| |
Collapse
|
9
|
Huang HJ, Yang M, Chen HW, Wang S, Chang CP, Ho TS, Kao YS, Tien SM, Lin HH, Chang PC, Lai YC, Hsiao YP, Liu YL, Chao CH, Anderson R, Yeh TM, Lin YS, Wan SW. A novel chimeric dengue vaccine candidate composed of consensus envelope protein domain III fused to C-terminal-modified NS1 protein. Vaccine 2022; 40:2299-2310. [DOI: 10.1016/j.vaccine.2022.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
|
10
|
Lebeau G, Lagrave A, Ogire E, Grondin L, Seriacaroupin S, Moutoussamy C, Mavingui P, Hoarau JJ, Roche M, Krejbich-Trotot P, Desprès P, Viranaicken W. Viral Toxin NS1 Implication in Dengue Pathogenesis Making It a Pivotal Target in Development of Efficient Vaccine. Vaccines (Basel) 2021; 9:vaccines9090946. [PMID: 34579183 PMCID: PMC8471935 DOI: 10.3390/vaccines9090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
The mosquito-borne viral disease dengue is a global public health problem causing a wide spectrum of clinical manifestations ranging from mild dengue fever to severe dengue with plasma leakage and bleeding which are often fatal. To date, there are no specific medications to treat dengue and prevent the risk of hemorrhage. Dengue is caused by one of four genetically related but antigenically distinct serotypes DENV-1–DENV-4. The growing burden of the four DENV serotypes has intensified both basic and applied research to better understand dengue physiopathology. Research has shown that the secreted soluble hexameric form of DENV nonstructural protein-1 (sNS1) plays a significant role in the pathogenesis of severe dengue. Here, we provide an overview of the current knowledge about the role of sNS1 in the immunopathogenesis of dengue disease. We discuss the potential use of sNS1 in future vaccine development and its potential to improve dengue vaccine efficiency, particularly against severe dengue illness.
Collapse
|
11
|
Mizoe A, Sakaue J, Takahara N. Why does activated partial thromboplastin time prolongation occur in severe fever with thrombocytopenia syndrome? BMJ Case Rep 2020; 13:13/10/e235447. [PMID: 33033003 DOI: 10.1136/bcr-2020-235447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is caused by infection with SFTS virus and this mortality rate is 16.2% to 30%. An 85-year-old male patient presented to the emergency department of the hospital with primary complaints of fever and consciousness disturbance. Haemophagocytic syndrome and prolonged activated partial thromboplastin time (APTT) without associated prolonged prothrombin time were observed, suggesting SFTS, which was eventually diagnosed. APTT-only prolongation has been reported previously with SFTS, but the mechanism is unknown. The absence of coagulation factors was determined by a cross-mixing study. In addition, examination of intrinsic coagulation factors showed reduced factor XI activity. These results suggest that factor XI is causally related to APTT-only prolongation in SFTS.
Collapse
Affiliation(s)
- Atsushi Mizoe
- Department of Internal Medicine, Ako City Hospital, Ako, Hyogo, Japan
| | - Junya Sakaue
- Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan
| | - Noriko Takahara
- Department of Internal Medicine, Ako City Hospital, Ako, Hyogo, Japan
| |
Collapse
|
12
|
Intradermal Delivery of Dendritic Cell-Targeting Chimeric mAbs Genetically Fused to Type 2 Dengue Virus Nonstructural Protein 1. Vaccines (Basel) 2020; 8:vaccines8040565. [PMID: 33019498 PMCID: PMC7712967 DOI: 10.3390/vaccines8040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.
Collapse
|
13
|
Aguilar-Briseño JA, Moser J, Rodenhuis-Zybert IA. Understanding immunopathology of severe dengue: lessons learnt from sepsis. Curr Opin Virol 2020; 43:41-49. [PMID: 32896675 DOI: 10.1016/j.coviro.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction leading to vascular permeability and plasma leakage are characteristic features of severe dengue and sepsis. However, the mechanisms underlying these immune-pathologies remain unclear. The risk of severe dengue and sepsis development depend on patient-related and pathogen-related factors. Additionally, comorbidities increase the risk of severe disease and their incidence hampers correct diagnosis and treatments. To date, there is no efficient therapy to combat severe dengue and sepsis. Here, we discuss the differences and similarities between the pathogenesis of severe dengue and that of bacterial sepsis. We identify gaps in knowledge that need to be better understood in order to move towards the rational development and/or usage of therapeutic strategies to ameliorate severe dengue disease.
Collapse
Affiliation(s)
- José A Aguilar-Briseño
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Jill Moser
- Departments of Critical Care, Pathology & Medical Biology, Medical Biology Section, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
14
|
Assessment of aPTT-based clot waveform analysis for the detection of haemostatic changes in different types of infections. Sci Rep 2020; 10:14186. [PMID: 32843693 PMCID: PMC7447776 DOI: 10.1038/s41598-020-71063-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/02/2020] [Indexed: 01/23/2023] Open
Abstract
Infections cause varying degrees of haemostatic dysfunction which can be detected by clot waveform analysis (CWA), a global haemostatic marker. CWA has been shown to predict poor outcomes in severe infections with disseminated intravascular coagulopathy. The effect of less severe bacterial and viral infections on CWA has not been established. We hypothesized that different infections influence CWA distinctively. Patients admitted with bacterial infections, dengue and upper respiratory tract viral infections were recruited if they had an activated partial thromboplastin time (aPTT) measured on admission. APTT-based CWA was performed on Sysmex CS2100i automated analyser using Dade Actin FSL reagent. CWA parameters [(maximum velocity (min1), maximum acceleration (min2) and maximum deceleration (max2)] were compared against control patients. Infected patients (n = 101) had longer aPTT than controls (n = 112) (34.37 ± 7.72 s vs 27.80 ± 1.59 s, p < 0.001), with the mean (± SD) aPTT longest in dengue infection (n = 36) (37.99 ± 7.93 s), followed by bacterial infection (n = 52) (33.96 ± 7.33 s) and respiratory viral infection (n = 13) (29.98 ± 3.92 s). Compared to controls (min1; min2; max2) (5.53 ± 1.16%/s; 0.89 ± 0.19%/s2; 0.74 ± 0.16%/s2), bacterial infection has higher CWA results (6.92 ± 1.60%/s; 1.04 ± 0.28%/s2; 0.82 ± 0.24%/s2, all p < 0.05); dengue infection has significantly lower CWA values (3.93 ± 1.32%/s; 0.57 ± 0.17%/s2; 0.43 ± 0.14%/s2, all p < 0.001) whilst respiratory virus infection has similar results (6.19 ± 1.32%/s; 0.95 ± 0.21%/s2; 0.73 ± 0.18%/s2, all p > 0.05). CWA parameters demonstrated positive correlation with C-reactive protein levels (min1: r = 0.54, min2: r = 0.44, max2: r = 0.34; all p < 0.01). Different infections affect CWA distinctively. CWA could provide information on the haemostatic milieu triggered by infection and further studies are needed to better define its application in this area.
Collapse
|
15
|
Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, Limthongkul J, Midoeng P, Warit S, Ubol S. Nanodelivery system enhances the immunogenicity of dengue-2 nonstructural protein 1, DENV-2 NS1. Vaccine 2020; 38:6814-6825. [PMID: 32829977 DOI: 10.1016/j.vaccine.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Nonstructural protein 1 (NS1) of dengue virus (DENV) is currently recognized as a dengue vaccine candidate. Unfortunately, most of non-replicating immunogens typically stimulate unsatisfactory immune responses, thus, the additional adjuvant is required. In this study, C-terminal truncated DENV-2 NS1 loaded in N,N,N, trimethyl chitosan nanoparticles (NS11-279TMC NPs) was prepared through the ionic gelation method. The immunogenicity of NS11-279TMC NPs was investigated using human ex vivo as well as the murine model. Through a human ex vivo model, it was demonstrated in this study that not only can TMC particles effectively deliver NS11-279 protein into monocyte-derived dendritic cells (MoDCs), but also potently stimulate those cells, resulting in increased expression of maturation marker (CD83), costimulating molecules (CD80, CD86 and HLA-DR) and markedly secreted various types of innate immune cytokines/chemokines. Moreover, mice administered with NS11-279TMC NPs strongly elicited both antibody and T cell responses, produced higher levels of IgG, IgG1, IgG2a and potently activated CD8+ T cells, as compared to mice administered with soluble NS11-279. Importantly, we further demonstrated that anti-NS11-279 antibody induced by this platform of NS11-279 effectively eliminated DENV-2 infected cells through antibody dependent complement-mediated cytotoxicity. Significantly, anti-DENV2 NS11-279 antibody exerted cross-antiviral activity against DENV-1 and -4 but not against DENV-3 infected cells. These findings demonstrate that TMC exerts a desirable adjuvant for enhancing delivery and antigenicity of NS1 based dengue vaccine.
Collapse
Affiliation(s)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand.
| | | | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand.
| | - Saradee Warit
- Tuberculosis Research Laboratory, Medical Molecular Biology Research Unit, BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand..
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
16
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
17
|
Yeh CY, Lu BZ, Liang WJ, Shu YC, Chuang KT, Chen PL, Ko WC, Ko NY. Trajectories of hepatic and coagulation dysfunctions related to a rapidly fatal outcome among hospitalized patients with dengue fever in Tainan, 2015. PLoS Negl Trop Dis 2019; 13:e0007817. [PMID: 31805088 PMCID: PMC6894745 DOI: 10.1371/journal.pntd.0007817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/29/2019] [Indexed: 11/18/2022] Open
Abstract
Background Hepatic dysfunction and coagulopathy are common in acute dengue illness. We analyzed the trajectories of the above parameters in the survivors and fatal patients in the outbreak in Tainan, 2015. Methods A retrospective study was conducted using data from a tertiary hospital between January and December 2015. Multilevel modeling (MLM) was used to identify the changes in aminotransferase (AST), alanine aminotransferase (ALT), activated partial thromboplastin time (aPTT), and platelet counts from Day 0 to Day 7 of the onset of dengue infection. The machine-learning algorithm was used by purity measure assumption to calculate the accuracy of serum transaminases and coagulation variables to discriminate between the fatal and survival groups. Results There were 4,069 dengue patients, of which 0.9% died in one week after illness onset (i.e., early mortality). Case fatality rate was the highest for those aged ≥70 years. Both AST and ALT values of the fatal group were significantly higher than those of the survivor group from Day 3 (AST median, 624 U/L vs. 60 U/L, p < 0.001; ALT median, 116 U/L vs. 29 U/L, p = 0.01) of illness onset and peaked on Day 6 (AST median, 9805 U/L vs. 90 U/L, p < 0.001; ALT median, 1504 U/L vs. 49 U/L, p < 0.001). AST ≥ 203 U/L, ALT ≥ 55 U/L, AST2/ALT criteria ≥337.35, or AST/platelet count ratio index (APRI) ≥ 19.18 on Day 3 of dengue infection had a high true positive rate, 90%, 78%, 100%, or 100%, respectively, of early mortality. The platelet counts of the fatal group declined significantly than those of the survivor group since Day 3 of illness onset (median, 19 x103/μl vs. 91 x103/μl, p < 0.01), and aPTT values of the fatal group significantly prolonged longer since Day 5 (median, 68.7 seconds vs. 40.1 seconds, p < 0.001). Conclusions AST, ALT, and platelet counts should be monitored closely from Day 0 to Day 3 of dengue infection, and aPTT be followed up on Day 5 of infection to identify the individuals at risk for early mortality. Dengue fever (DF) is currently one of the most severe public health problems. Clinical presentations of dengue are diverse and non-specific, often with unpredictable clinical progression and outcome. Hepatic dysfunction and abnormal coagulation factors are common in acute dengue illness, reflected by abnormal alanine aminotransferase (AST), aspartate aminotransferase (ALT), activated partial thromboplastin time (aPTT), and platelet counts. However, there is no information available about the monitoring frequency required, which could help identify those dengue patients who are likely to die, especially during epidemic outbreaks with limited healthcare resources. We examined all the laboratory-confirmed dengue patients who admitted to the major tertiary hospital in Tainan during the 2015 dengue outbreak, and the different trajectories of hepatic function and coagulation factors between survivors and rapidly fatal dengue patients were analyzed. Although there were no differences in AST, ALT, aPTT, and platelet counts between the survivor and fatal groups on the day DF symptoms first appeared, the differences increased from the early stages of infection and became more prominent during the early stages of the illness. The necessity of monitoring the AST, ALT, aPTT, and platelet count frequently during the febrile phase is emphasized by this study.
Collapse
Affiliation(s)
- Chun-Yin Yeh
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
- Department of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Ze Lu
- Department of Mathematics, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jie Liang
- Department of Artificial Intelligence, CTBC Business School, Tainan, Taiwan
| | - Yu-Chen Shu
- Department of Mathematics, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ta Chuang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (PLC); (NYK)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Ying Ko
- Department of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (PLC); (NYK)
| |
Collapse
|
18
|
Mishra B, Raghuraman R, Agarwal A, Aduri R. Finding small molecules with pan-serotype activity to target Dengue non-structural protein 1. Virusdisease 2019; 30:477-489. [PMID: 31890750 PMCID: PMC6917674 DOI: 10.1007/s13337-019-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus which causes Dengue fever and severe Dengue. It exists as four antigenically different serotypes that are further classified into genotypes with varying degrees of pathogenicity. The non-structural protein 1 (NS1) of DENV has an important role in viral replication and its pathogenesis. NS1 is also considered as an important diagnostic marker for Dengue pathogenesis. To the best of our knowledge, there are no attempts to explore small molecule drugs to target the NS1 of all the serotypes. Here, we have taken the DENV 2 NS1 crystal structure as a reference to model the NS1 structure of the other three serotypes. Once the active site of the NS1 is identified, virtual screening of plant flavonoids is carried out against the NS1 of all the four serotypes. The top 200 molecules in the library with high binding affinities are further analysed to find the common ones having comparable affinities to all the four serotypes. The predicted common flavonoids are subjected to ADMET profiling to further select the most potential molecules that can be used to target NS1 of all the four serotypes.
Collapse
Affiliation(s)
- Bibhudutta Mishra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| | - Raaghavi Raghuraman
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| | - Arjun Agarwal
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| |
Collapse
|
19
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
20
|
Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J Interferon Cytokine Res 2019; 38:69-80. [PMID: 29443656 DOI: 10.1089/jir.2017.0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection with dengue virus (DENV) can lead to a wide spectrum of clinical presentations, ranging from asymptomatic infection to death. It is estimated that the disease manifests only in 90 million cases out of the total 390 million yearly infections. Even though research has not yet elucidated which are the precise pathophysiological mechanisms that trigger severe forms of dengue, the infection elicits a critical immune response significant for dengue pathogenesis development. Understanding how the immune response to DENV is established and how it can resolve the infection or turn into an immunopathology is of great importance in DENV research. Currently, studies have extensively debated 2 hypotheses involving immune response: antibody-dependent enhancement and cytokine storm. However, despite its undeniable importance in severe forms of the disease, these 2 hypotheses are based on a primed immune status resulting from previous heterologous infection, abstaining them from explaining the severe forms of dengue in naive immune subjects, for example. Thus, it seems that a more intricate arrangement of causes and conditions must be achieved to severe dengue to occur. Among them, the cytokine network signature elicited, in association with viral aspects deserves special attention regarding the establishment of infection and evolution to pathogenesis. In this work, we intend to shed light on how those elements contribute to severe dengue development.
Collapse
Affiliation(s)
- Diogo Kuczera
- 1 Laboratório de Virologia Molecular, Instituto Carlos Chagas , ICC/Fiocruz/PR, Curitiba, Brazil
| | - João Paulo Assolini
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda Tomiotto-Pellissier
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
21
|
Kao YS, Yu CY, Huang HJ, Tien SM, Wang WY, Yang M, Anderson R, Yeh TM, Lin YS, Wan SW. Combination of Modified NS1 and NS3 as a Novel Vaccine Strategy against Dengue Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:1909-1917. [PMID: 31451673 DOI: 10.4049/jimmunol.1900136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
Abstract
Dengue virus (DENV) causes a range of illness, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV nonstructural protein (NS) 1 has been considered to be a desirable vaccine candidate for its ability to induce Ab and complement-dependent cytolysis of DENV-infected cells as well as to block the pathogenic effects of NS1. However a potential drawback of NS1 as a vaccine is that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by antigenic cross-reactivity. Therefore, we modified the DENV NS1 by replacing the C-terminal cross-reactive epitopes with the corresponding region of Japanese encephalitis virus NS1 to generate a chimeric DJ NS1 protein. Active immunization with DJ NS1 induced a strong Ab response. To enhance cellular immunity, we further combined DJ NS1 with DENV NS3 to immunize mice and showed activation of Ag-specific CD4+ and CD8+ T cells in addition to Ab responses. We further detected NS3-specific CTL activities as well as CD107a expression of effector cells. Importantly, the protective effects attributed by DJ NS1 and NS3 immunization were demonstrated in a DENV-infected mouse model by reduced viral titers, soluble NS1 levels, mouse tail bleeding time, and vascular leakage at skin injection sites. Collectively, the results from this study reveal the humoral and cellular immune responses and the protective effects conferred by DJ NS1 and NS3 immunization in the mouse model of DENV infection and provide a potential strategy for dengue vaccine design.
Collapse
Affiliation(s)
- Yu-San Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 701, Taiwan
| | - Hong-Jyun Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Sen-Mao Tien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wan-Yu Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Martyr Yang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; and
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; and
| | - Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; and .,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| |
Collapse
|
22
|
Abstract
This is a selective review of recent publications on dengue clinical features, epidemiology, pathogenesis, and vaccine development placed in a context of observations made over the past half century. Four dengue viruses (DENVs) are transmitted by urban cycle mosquitoes causing diseases whose nature and severity are influenced by interacting factors such as virus, age, immune status of the host, and human genetic variability. A phenomenon that controls the kinetics of DENV infection, antibody-dependent enhancement, best explains the correlation of the vascular permeability syndrome with second heterotypic DENV infections and infection in the presence of passively acquired antibodies. Based on growing evidence in vivo and in vitro, the tissue-damaging DENV non-structural protein 1 (NS1) is responsible for most of the pathophysiological features of severe dengue. This review considers the contribution of hemophagocytic histiocytosis syndrome to cases of severe dengue, the role of movement of humans in dengue epidemiology, and modeling and planning control programs and describes a country-wide survey for dengue infections in Bangladesh and efforts to learn what controls the clinical outcome of dengue infections. Progress and problems with three tetravalent live-attenuated vaccines are reviewed. Several research mysteries remain: why is the risk of severe disease during second heterotypic DENV infection so low, why is the onset of vascular permeability correlated with defervescence, and what are the crucial components of protective immunity?
Collapse
Affiliation(s)
- Scott Halstead
- Emeritus Professor, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
23
|
Reyes-Sandoval A, Ludert JE. The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis. Front Immunol 2019; 10:1651. [PMID: 31379848 PMCID: PMC6657369 DOI: 10.3389/fimmu.2019.01651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
24
|
Mutiara, Koh SCL, Bachtiar A, Hariman H. The Vascular Endothelium in Patients with Dengue Haemorrhagic Fever. Open Access Maced J Med Sci 2019; 7:2221-2225. [PMID: 31592071 PMCID: PMC6765093 DOI: 10.3889/oamjms.2019.621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND: Dengue fever is the most serious consequence of mosquito-borne infection worldwide. The pathophysiology of DHF in human is complex, which involve endothelial cell activation and impaired endothelial barrier leading to plasma leakage triggering the activation of the haemostatic system. The increased vascular permeability may lead to hypovolemia, hypotension and shock, which is life-threatening. AIM: The objective of the study was to determine the effects of dengue haemorrhagic fever on the vascular endothelium. METHODS: Fifty patients (males 34, females 16), were recruited, Grade 1 (n = 41), Grade 2 (n = 6), Grade 3 (n = 2) and Grade 4 (n = 1) DHF. Blood sampling was performed at the febrile, defervescence and convalescent phases for the determination of haemoglobin, haematocrit, platelets, prothrombin fragment F1 + 2, Von Willebrand Factor (VWF), vascular endothelial growth factor (VEGF) and D-dimer levels. Fifteen normal subjects were recruited to serve as normal controls. RESULTS: The patients aged between 4 and 54 years old. Grades 1 & 2 DHF showed no significant differences in the parameters studied. However, thrombocytopenia, elevated F1 + 2, VWF, VEGF and D-dimer levels were evident in febrile, defervescence and convalescent phases suggesting endothelial activation and plasma leakage. Pleural effusion was observed only in severe DHF. The three patients with Grades 3 and 4 DHF had similar study results. No mortality was recorded in the study. CONCLUSION: In dengue haemorrhagic fever, the vascular endothelium is activated, causing plasma leakage triggering the activation of the haemostatic system creating a hypercoagulable and enhanced fibrinolytic state evident by marked fibrinolysis.
Collapse
Affiliation(s)
- Mutiara
- Murni Teguh Memorial Hospital and Faculty of Medicine, University of North Sumatera, Medan, Indonesia
| | - Stephen C L Koh
- Department of Clinical Pathology, Faculty of Medicine, University of North Sumatera, Haj Adam Malik Hospital, Medan, Indonesia
| | - Adang Bachtiar
- Department of Public Health Program, Cipto Mangunkusuma Hospital, University of Indonesia, Jakarta, Indonesia
| | - Herman Hariman
- Department of Clinical Pathology, Faculty of Medicine, University of North Sumatera, Haj Adam Malik Hospital, Medan, Indonesia
| |
Collapse
|
25
|
Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 2018; 25:58. [PMID: 30037331 PMCID: PMC6057007 DOI: 10.1186/s12929-018-0462-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023] Open
Abstract
Dengue virus (DENV) infection is the most common mosquito-transmitted viral infection. DENV infection can cause mild dengue fever or severe dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS). Hemorrhage and vascular leakage are two characteristic symptoms of DHF/DSS. However, due to the limited understanding of dengue pathogenesis, no satisfactory therapies to treat nor vaccine to prevent dengue infection are available, and the mortality of DHF/DSS is still high. DENV nonstructural protein 1 (NS1), which can be secreted in patients’ sera, has been used as an early diagnostic marker for dengue infection for many years. However, the roles of NS1 in dengue-induced vascular leakage were described only recently. In this article, the pathogenic roles of DENV NS1 in hemorrhage and vascular leakage are reviewed, and the possibility of using NS1 as a therapeutic target and vaccine candidate is discussed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
26
|
Castro-Orozco R, Castro-García LR, Gómez-Camargo DE. [Phylogenetic analysis of South American sequences of the nonstructural protein-1 (ns1) of dengue serotype 2 associated with severe clinical bleeding]. Rev Salud Publica (Bogota) 2018; 18:459-469. [PMID: 28453108 DOI: 10.15446/rsap.v18n3.44078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 02/22/2016] [Indexed: 11/09/2022] Open
Abstract
Objective The objective of this in silico study was to compare nucleotide and amino acids DENV-2-NS1 sequences isolated from febrile patients, with and without disease severity, from different South American countries. Matherials and Methods A bayesian MCMC phylogenetic analysis was carried out using 28 complete sequences of the gene NS1 of the DENV-2 serotype (1 056 bp), using MrBayes v.3.2.0 software, with the model SYM+G (2.5 million generations). We also carried out a phylogenetic analysis with Neighbor-Joining method (Jukes-Cantor model). In addition, the amino acids sequences were aligned and compared with each other, using Clustal W included in MEGA v.5.2 software. Results In the amino acids sequences associated with bleeding, the most frequent substitution was isoleucine → threonine at posicion 93. These sequences showed a high percentage (94.6 %) of amino acid homology in comparison with the percentage of amino acids homology (74 %) of DENV-2 isolates not associated with bleeding. Five clades were identified that group the vast majority of the DENV-2-NS1 sequences analyzed (19/24; 79.2 %) with posterior probability values greater than or equal to 58 %. Seven sequences (87.5 %) associated with bleeding were phylogenetically related within clades 4 and 5, the posterior probability values were 58 % and 97 %, respectively. Conclusion Neither phylogenetic characteristics nor differences between amino acids of the DENV-2-NS1 sequences studied were found that could be associated directly with severity of the disease.
Collapse
|
27
|
Lê VB, Riteau B, Alessi MC, Couture C, Jandrot-Perrus M, Rhéaume C, Hamelin MÈ, Boivin G. Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections. Br J Pharmacol 2017; 175:388-403. [PMID: 29105740 DOI: 10.1111/bph.14084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. EXPERIMENTAL APPROACH Pharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection. KEY RESULTS In vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH2 showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition. CONCLUSION AND IMPLICATIONS These data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections.
Collapse
Affiliation(s)
- Vuong Ba Lê
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Béatrice Riteau
- UMR INSERM U1062/INRA 1260/AMU, Aix Marseille University, Marseille, France
| | | | - Christian Couture
- Department of Anatomy-Pathology, Laval University Institute of Cardiology and Pneumology, Quebec City, Quebec, Canada
| | | | - Chantal Rhéaume
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Marie-Ève Hamelin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Yaraş YS, Gündüz AB, Sağlam G, Ölçer S, Civitçi F, Baris İ, Yaralioğlu G, Urey H. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 29127692 DOI: 10.1117/1.jbo.22.11.117001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements.
Collapse
Affiliation(s)
- Yusuf Samet Yaraş
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Ali Bars Gündüz
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Gökhan Sağlam
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Selim Ölçer
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| | - Fehmi Civitçi
- Istanbul Technical University, Department of Electronics and Communication Engineering, Faculty of E, Turkey
| | - İbrahim Baris
- Koc University, College of Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Göksenin Yaralioğlu
- Ozyegin University, Faculty of Engineering, Department of Electrical and Electronics Engineering, Is, Turkey
| | - Hakan Urey
- Koc University, College of Engineering, Department of Electrical and Electronics Engineering, Istanb, Turkey
| |
Collapse
|
29
|
Wan SW, Chen PW, Chen CY, Lai YC, Chu YT, Hung CY, Lee H, Wu HF, Chuang YC, Lin J, Chang CP, Wang S, Liu CC, Ho TS, Lin CF, Lee CK, Wu-Hsieh BA, Anderson R, Yeh TM, Lin YS. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2834-2844. [PMID: 28904127 DOI: 10.4049/jimmunol.1601523] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 08/14/2017] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Pei-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chin-Yu Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Chung Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ting Chu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yi Hung
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Han Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsuan Franziska Wu
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jessica Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chih-Peng Chang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shuying Wang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Betty A Wu-Hsieh
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; and.,Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
30
|
Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Sci Rep 2017; 7:6975. [PMID: 28765561 PMCID: PMC5539099 DOI: 10.1038/s41598-017-07308-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Dengue is the most common mosquito-transmitted viral infection for which an improved vaccine is still needed. Although nonstructural protein-1 (NS1) immunization can protect mice against dengue infection, molecular mimicry between NS1 and host proteins makes NS1-based vaccines challenging to develop. Based on the epitope recognized by the anti-NS1 monoclonal Ab (mAb) 33D2 which recognizes a conserved NS1 wing domain (NS1-WD) region but not host proteins, we synthesized a modified NS1-WD peptide to immunize mice. We found that both mAb 33D2 and modified NS1-WD peptide immune sera could induce complement-dependent lysis of dengue-infected but not un-infected cells in vitro. Furthermore, either active immunization with the modified NS1-WD peptide or passive transfer of mAb 33D2 efficiently protected mice against all serotypes of dengue virus infection. More importantly, dengue patients with more antibodies recognized the modified NS1-WD peptide had less severe disease. Thus, the modified NS1-WD peptide is a promising dengue vaccine candidate.
Collapse
|
31
|
Chen CH, Huang YC, Kuo KC, Li CC. Clinical features and dynamic ordinary laboratory tests differentiating dengue fever from other febrile illnesses in children. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:614-620. [PMID: 28712817 DOI: 10.1016/j.jmii.2016.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dengue fever is not easily to be diagnosed before presentation of the classic symptoms. The study aimed to investigate the clinical features and dynamic laboratory tests in pediatric patients to facilitate dengue diagnosis. METHODS This retrospective study examined the medical records of all pediatric patients who were clinically suspected to have dengue from June to December 2014. Laboratory-positive dengue cases were confirmed by detecting non-structural protein NS1, reverse transcription-polymerase chain reaction of dengue virus, and dengue-specific IgM seroconversion. RESULTS Of the 317 pediatric cases clinically suspected of dengue, 205 were laboratory-positive and 112 were laboratory-negative. In laboratory-positive cases, the most common clinical manifestation was skin rash in 156 (76.1%). Leukopenia occurred on days 1-5; thrombocytopenia, on days 2-7; prolonged activated partial thromboplastin time (aPTT), on days 1-4; and elevated transaminase levels, on days 3-11; and low CRP, on days 0-14. The specificity and positive predictive value (PPV) of combining of rash, itching and petechiae increased up to 100%. The PPV of combining of leukopenia, thrombocytopenia, and elevated transaminase levels reached 100% on day 2 as well as days 6-8. CONCLUSION Leukopenia, thrombocytopenia, elevated aPTT, elevated transaminase levels, and low CRP could be used to differentiate dengue fever from other febrile illnesses. During dengue epidemics, combinations of the symptoms and laboratory findings are helpful to physicians for accurate diagnosis of dengue fever.
Collapse
Affiliation(s)
- Chih-Ho Chen
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chuan Huang
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Che Kuo
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Chung-Chen Li
- Ping Tung Christian Hospital, Department of Pediatrics, Taiwan.
| |
Collapse
|
32
|
Narayan R, Raja S, Kumar S, Sambasivam M, Jagadeesan R, Arunagiri K, Krishnasamy K, Palani G. A novel indirect ELISA for diagnosis of dengue fever. Indian J Med Res 2017; 144:128-133. [PMID: 27834337 PMCID: PMC5116886 DOI: 10.4103/0971-5916.193300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives: Dengue fever (DF) is associated with significant morbidity and mortality in the tropical and sub-tropical regions of the world. Since there are no effective antiviral drugs for treatment, clinicians often rely on the accurate diagnosis of dengue fever to begin supportive therapy at early stages of the illness. The objective of this study was to develop an in-house dengue virus serotype 2 (DENV-2) non-structural protein- 5 (NS5) based indirect ELISA. Methods: DENV-2 was raised in Vero cells and the viral proteins were separated and subsequently the NS5 protein was eluted. Serum samples from primary and secondary dengue fever patients; and acute and convalescent samples from Japanese encephalitis (JE) and West Nile virus (WNV) cases were used to validate the ELISA. Results: The assay was found to be 100 per cent specific in detecting DENV-2 specific antibodies from patient's serum. However, in terms of sensitivity, the assay could detect IgM antibodies only from 90 per cent of the primary dengue samples. The IgM/IgG ratio of the primary and secondary samples was 7.24 and 0.64, respectively. Interpretation & conclusions: The results indicate that the DENV-2 NS5 ELISA is dengue group specific and can be used to differentiate dengue infection from other circulating Flavivirus infections. This NS5 ELISA can also be used to distinguish between primary and secondary dengue fever on the basis of IgM/IgG ratios. Further studies with larger sample sizes and different DENV serotypes are required to validate the ELISA.
Collapse
Affiliation(s)
- Rohan Narayan
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| | - Senthil Raja
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| | - Senthil Kumar
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| | - Mohana Sambasivam
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| | - Raja Jagadeesan
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| | - Kavita Arunagiri
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| | - Kaveri Krishnasamy
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| | - Gunasekaran Palani
- Department of Virology, King Institute of Preventive Medicine & Research, Chennai, India
| |
Collapse
|
33
|
Sutthangkul J, Amparyup P, Eum JH, Strand MR, Tassanakajon A. Anti-melanization mechanism of the white spot syndrome viral protein, WSSV453, via interaction with shrimp proPO-activating enzyme, PmproPPAE2. J Gen Virol 2017; 98:769-778. [DOI: 10.1099/jgv.0.000729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jantiwan Sutthangkul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Jai-Hoon Eum
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Non-Canonical Roles of Dengue Virus Non-Structural Proteins. Viruses 2017; 9:v9030042. [PMID: 28335410 PMCID: PMC5371797 DOI: 10.3390/v9030042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.
Collapse
|
35
|
Perdomo-Celis F, Salgado DM, Narváez CF. Magnitude of viremia, antigenemia and infection of circulating monocytes in children with mild and severe dengue. Acta Trop 2017; 167:1-8. [PMID: 27986543 DOI: 10.1016/j.actatropica.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/11/2023]
Abstract
Dengue is a major public health problem in tropical regions around the world. Viral and immune host factors determine the clinical courses of the infection. We analyzed the dynamics of viremia (by real-time polymerase chain reactions), antigenemia (through detection of the viral non-structural protein [NS]-1 by enzyme-linked immunosorbent assays) and the frequency of virus-infected peripheral blood mononuclear cells (PBMCs) (by multiparametric flow cytometry) in children with primary or secondary dengue virus (DENV) infection in mild to severe cases. Additionally, we evaluated the association of these factors with clinical severity and laboratory parameters. The levels of viremia and antigenemia peaked during the early days of illness and these viral parameters were correlated (rho=0.37, P=0.003). Circulating monocytes were the most naturally infected subset within the PBMCs population, with kinetics similar to those of viremia and antigenemia. The levels of viremia and antigenemia were higher in children with primary infections than in those with secondary infections (P≤0.04). Although there were no associations between the three evaluated factors and clinical severity, the levels of plasma NS1 and the frequency of dengue virus-infected monocytes correlated with prolonged coagulation times. In short, the viremia, antigenemia and infected monocytes were detected early and were not related to clinical severity. The magnitude of antigenemia and infected circulating monocytes was associated with coagulation disorders.
Collapse
Affiliation(s)
| | - Doris M Salgado
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia; Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia
| | - Carlos F Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia.
| |
Collapse
|
36
|
Hsieh CC, Cia CT, Lee JC, Sung JM, Lee NY, Chen PL, Kuo TH, Chao JY, Ko WC. A Cohort Study of Adult Patients with Severe Dengue in Taiwanese Intensive Care Units: The Elderly and APTT Prolongation Matter for Prognosis. PLoS Negl Trop Dis 2017; 11:e0005270. [PMID: 28060934 PMCID: PMC5245902 DOI: 10.1371/journal.pntd.0005270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/19/2017] [Accepted: 12/19/2016] [Indexed: 01/09/2023] Open
Abstract
Background There was a large dengue outbreak in Taiwan in 2015, in which the ages of the affected individuals were higher than those in other countries. The aim of this study was to explore the characteristics and prognostic factors for adults with severe dengue in intensive care units (ICUs). Methods All adults admitted to ICUs with dengue virus infection (DENV) at a medical center from July 1, 2015 to December 31, 2015 were enrolled. DENV was diagnosed by the presence of serum NS1 antigen, IgM antibodies to dengue virus, or dengue virus RNA by real-time reverse transcriptase polymerase chain reaction. Demographic data, clinical features, and lab data were collected, and a multivariate Cox model was used to identify the predictive factors for in-hospital mortality. Results Seventy-five patients admitted to ICUs with laboratory-confirmed DENV were enrolled (mean age 72.3±9.3 years). The most common comorbidities included hypertension (72.0%), diabetes (43.7%), and chronic kidney disease (22.7%). The in-hospital case fatality rate (CFR) was 41.3%. The patients who died were predominantly female, had higher disease severity at ICU admission, shorter ICU/hospital stay, longer initial activated partial thromboplastin time (APTT), and higher initial serum aspartate transaminase levels. Cardiac arrest before ICU admission (hazard ratio [HR]: 6.26 [1.91–20.54]), prolonged APTT (>48 seconds; HR: 3.91 [1.69–9.07]), and the presence of acute kidney injury on admission (HR: 2.48 [1.07–5.74]), were independently associated with in-hospital fatality in the Cox multivariate analysis. Conclusion During the 2015 dengue outbreak in Taiwan, the patients with severe dengue in ICUs were characterized by old age, multiple comorbidities, and a high CFR. Organ failure (including cardiac failure, and renal failure) and coagulation disturbance (prolongation of initial APTT) were independent predictive factors for in-hospital fatality. Severe forms of dengue fever (DF) are usually considered as a pediatric disease in southern Asia and are graded from dengue hemorrhagic fever (DHF) to dengue with shock syndrome (DSS). However, the age of affected individuals is increasing in Singapore, Thailand, Mainland China, Taiwan and many other countries. Limited data are available on the elderly with DF in intensive care units (ICUs). DF in the elderly is an emerging infectious disease and poses a new clinical challenge to physicians. We enrolled the patients with laboratory-confirmed dengue in our ICU during the 2015 dengue outbreak in Taiwan. These patients were characterized by old age, multiple comorbidities, and a high case fatality rate (CFR). All of the patients were classified as severe dengue, and the in-hospital CFR was 41.3%. Renal failure and cardiac arrest were associated with fatality. In addition to organ failure, initial prolonged activated partial thromboplastin time (APTT) in our study was consistent with an independent predictive factor for in-hospital fatality. Previous studies have also reported that prolongation of APTT is a clinical predictor of dengue virus infection (DENV) or DHF. Our results highlight that APTT prolongation may be a prognostic factor in critically ill adults with severe dengue.
Collapse
Affiliation(s)
- Chih-Cheng Hsieh
- Division of Critical Care Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cong-Tat Cia
- Division of Critical Care Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Chieh Lee
- Division of Critical Care Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Junne-Ming Sung
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Te-Hui Kuo
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department and Graduate Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Abstract
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Alienys Izquierdo
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC, Perng GC, Yeh TM. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis 2016; 10:e0004828. [PMID: 27409803 PMCID: PMC4943727 DOI: 10.1371/journal.pntd.0004828] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/16/2016] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is the most common mosquito-borne flavivirus; it can either cause mild dengue fever or the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). One of the characteristic features of DHF/DSS is vascular leakage; although DENV nonstructural protein 1 (NS1) has been proved to induce vascular leakage after binding to Toll-like receptor 4, the down-stream mechanism has not yet been fully understood. In the sera of DENV-infected patients, the concentrations of DENV NS1 and inflammatory cytokine macrophage migration inhibitory factor (MIF) are positively correlated with disease severity, but whether DENV NS1 induces vascular leakage through MIF secretion remains unknown. We demonstrated that recombinant NS1 induced vascular leakage and MIF secretion both in human endothelial cell line HMEC-1 and in mice. Furthermore, these phenomena were inhibited in the presence of anti-NS1 antibodies both in vitro and in vivo. DENV NS1 also induced LC3-I to LC3-II conversion and p62 degradation in endothelial cell line, which indicated the formation of autophagy. To clarify whether MIF or autophagy mediated DENV NS1-induced vascular leakage, various inhibitors were applied. The results showed that DENV NS1-induced vascular leakage and VE-cadherin disarray were blocked in the presence of MIF inhibitors, anti-MIF-antibodies or autophagy inhibitors. An Atg5 knockdown clone further confirmed that autophagy formation of endothelial cells was required in NS1-induced vascular leakage. Furthermore, DENV NS1-induced LC3 puncta were also decreased in the presence of MIF inhibitors, indicating that MIF mediated DENV NS1-induced autophagy. Taken together, the results suggest a potential mechanism of DENV-induced vascular leakage and provide possible therapeutic targets against DHF/DSS.
Collapse
Affiliation(s)
- Hong-Ru Chen
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yee-Shin Lin
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Hsiao-Sheng Liu
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Chuan Liu
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Guey-Chuen Perng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Trai-Ming Yeh
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- * E-mail:
| |
Collapse
|
39
|
Alayli F, Scholle F. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 2016; 496:227-236. [PMID: 27348054 DOI: 10.1016/j.virol.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022]
Abstract
Dengue virus (DV) has become the most prevalent arthropod borne virus due to globalization and climate change. It targets dendritic cells during infection and leads to production of pro-inflammatory cytokines and chemokines. Several DV non-structural proteins (NS) modulate activation of human dendritic cells. We investigated the effect of DV NS1 on human monocyte-derived dendritic cells (mo-DCs) during dengue infection. NS1 is secreted into the serum of infected individuals where it interacts with various immune mediators and cell types. We purified secreted DV1 NS1 from supernatants of 293T cells that over-express the protein. Upon incubation with mo-DCs, we observed NS1 uptake and enhancement of early DV1 replication. As a consequence, mo-DCs that were pre-exposed to NS1 produced more pro-inflammatory cytokines in response to subsequent DV infection compared to DCs exposed to heat-inactivated NS1 (HNS1). Therefore the presence of exogenous NS1 is able to modulate dengue infection in mo-DCs.
Collapse
Affiliation(s)
- Farah Alayli
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
40
|
Abstract
Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of medicine, Imperial College London, London, UK; Oxford University Clinical research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Juthathip Mongkolsapaya
- Department of medicine, Imperial College London, London, UK; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Gavin Screaton
- Department of medicine, Imperial College London, London, UK
| |
Collapse
|
41
|
Alcalá AC, Medina F, González-Robles A, Salazar-Villatoro L, Fragoso-Soriano RJ, Vásquez C, Cervantes-Salazar M, del Angel RM, Ludert JE. The dengue virus non-structural protein 1 (NS1) is secreted efficiently from infected mosquito cells. Virology 2016; 488:278-87. [DOI: 10.1016/j.virol.2015.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
|
42
|
Chuang YC, Lin J, Lin YS, Wang S, Yeh TM. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. THE JOURNAL OF IMMUNOLOGY 2015; 196:1218-26. [PMID: 26712948 DOI: 10.4049/jimmunol.1500057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
Dengue virus (DENV) infection is the most common mosquito-borne viral disease, and it can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks of DHF/DSS. However, the mechanism underlying hemorrhage in DHF/DSS remains elusive. In previous studies, plasminogen (Plg) cross-reactive Abs, which can recognize DENV nonstructural protein (NS) 1, have been found in dengue patients. However, it is unclear whether these Abs are indeed induced by DENV NS1. Thus, we immunized mice with recombinant NS1 from both bacteria and drosophila to determine whether NS1 can induce Plg cross-reactive Abs. The results from the NS1-immunized mouse sera indicated that NS1 immunization induced Abs that could cross-react with Plg. To study the effects of these NS1-induced Plg cross-reactive Abs on fibrinolysis, we isolated several Plg cross-reactive anti-NS1 mAbs from these mice and found that some of them could enhance Plg activation. In addition, epitope mapping with a phage-displayed random peptide library revealed that one of these mAbs (2A5) could recognize NS1 C-terminal residues 305-311, which share sequence homology with Plg residues 590-597. A synthetic peptide of NS1 residues 305-311 could inhibit the binding of both 2A5 and its Fab to Plg and its enhanced activation. Thus, our results suggest that DENV NS1 can induce Plg cross-reactive Abs through molecular mimicry, which can enhance Plg activation and may contribute to the pathogenesis of DHF/DSS.
Collapse
Affiliation(s)
- Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701; and
| | - Jessica Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701; and Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701
| | - Shuying Wang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701; and Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701; and
| |
Collapse
|
43
|
Halstead SB. Comment on “Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity” and “Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination”. Sci Transl Med 2015; 7:318le4. [DOI: 10.1126/scitranslmed.aad4863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators. Mediators Inflamm 2015; 2015:313842. [PMID: 25999666 PMCID: PMC4427128 DOI: 10.1155/2015/313842] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/22/2015] [Indexed: 01/15/2023] Open
Abstract
Dengue is an infectious disease caused by dengue virus (DENV). In general, dengue is a self-limiting acute febrile illness followed by a phase of critical defervescence, in which patients may improve or progress to a severe form. Severe illness is characterized by hemodynamic disturbances, increased vascular permeability, hypovolemia, hypotension, and shock. Thrombocytopenia and platelet dysfunction are common in both cases and are related to the clinical outcome. Different mechanisms have been hypothesized to explain DENV-associated thrombocytopenia, including the suppression of bone marrow and the peripheral destruction of platelets. Studies have shown DENV-infected hematopoietic progenitors or bone marrow stromal cells. Moreover, anti-platelet antibodies would be involved in peripheral platelet destruction as platelets interact with endothelial cells, immune cells, and/or DENV. It is not yet clear whether platelets play a role in the viral spread. Here, we focus on the mechanisms of thrombocytopenia and platelet dysfunction in DENV infection. Because platelets participate in the inflammatory and immune response by promoting cytokine, chemokine, and inflammatory mediator secretion, their relevance as "immune-like effector cells" will be discussed. Finally, an implication for platelets in plasma leakage will be also regarded, as thrombocytopenia is associated with clinical outcome and higher mortality.
Collapse
|
45
|
Fernandes LG, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Leptospira interrogans reduces fibrin clot formation by modulating human thrombin activity via exosite I. Pathog Dis 2015; 73:ftv001. [PMID: 25834144 DOI: 10.1093/femspd/ftv001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 01/08/2023] Open
Abstract
Pathogenic bacteria of the genus Leptospira are the etiological agents of leptospirosis, a disease that affects humans and animals worldwide. Although there are an increasing number of studies on the biology of Leptospira, the mechanisms of pathogenesis are not yet understood. We report in this work that Leptospira interrogans FIOCRUZ L1-130 virulent, M20 culture attenuated and the saprophyte L. biflexa Patoc 1 strains do not bind prothrombin. Leptospiral binding to thrombin was detected with the virulent, followed by culture-attenuated M20, and practically none was observed with the saprophyte strain. The interaction of Leptospira with thrombin mostly occurs via exosite I, with a minor participation of catalytic site, as determined by employing the thrombin inhibitors hirugen, hirudin and argatroban. Leptospira interrogans binding to thrombin inhibits its catalytic activity reducing fibrin clot formation in thrombin-catalyzed reaction of fibrinogen. This inhibition was more efficient with the virulent FIOCRUZ L1-130 than with the M20 culture attenuated, while none was seen with the saprophyte strain, suggesting that this binding might be important for bacterial virulence. This is the first study reporting the binding of pathogenic Leptospira to thrombin promoting a decrease in fibrin clotting that could lead to hemorrhage, helping bacteria dissemination.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo 05508-900, Brazil
| | - Zenaide M de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de MedicinaVeterinária e Zootecnia da Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de MedicinaVeterinária e Zootecnia da Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo 05508-900, Brazil
| |
Collapse
|
46
|
Sutthangkul J, Amparyup P, Charoensapsri W, Senapin S, Phiwsaiya K, Tassanakajon A. Suppression of shrimp melanization during white spot syndrome virus infection. J Biol Chem 2015; 290:6470-81. [PMID: 25572398 DOI: 10.1074/jbc.m114.605568] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453.
Collapse
Affiliation(s)
- Jantiwan Sutthangkul
- From the Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- From the Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, the National Center for Genetic Engineering and Biotechnology, National Science and Technology, Development Agency, Klong Luang, Pathumthani 12120, Thailand, and
| | - Walaiporn Charoensapsri
- the National Center for Genetic Engineering and Biotechnology, National Science and Technology, Development Agency, Klong Luang, Pathumthani 12120, Thailand, and the Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Saengchan Senapin
- the National Center for Genetic Engineering and Biotechnology, National Science and Technology, Development Agency, Klong Luang, Pathumthani 12120, Thailand, and the Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Kornsunee Phiwsaiya
- the National Center for Genetic Engineering and Biotechnology, National Science and Technology, Development Agency, Klong Luang, Pathumthani 12120, Thailand, and the Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Anchalee Tassanakajon
- From the Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,
| |
Collapse
|
47
|
Cakmak O, Ermek E, Kilinc N, Bulut S, Baris I, Kavakli IH, Yaralioglu GG, Urey H. A cartridge based sensor array platform for multiple coagulation measurements from plasma. LAB ON A CHIP 2015; 15:113-120. [PMID: 25353144 DOI: 10.1039/c4lc00809j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper proposes a MEMS-based sensor array enabling multiple clot-time tests for plasma in one disposable microfluidic cartridge. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge. This enables simple and low-cost cartridge designs and avoids reliability problems associated with electrical connections. The cartridge consists of microfluidic channels and MEMS microcantilevers placed in each channel. The microcantilevers are made of electroplated nickel. They are actuated remotely using an external electro-coil and the read-out is also conducted remotely using a laser. The phase difference between the cantilever oscillation and the coil drive is monitored in real time. During coagulation, the viscosity of the blood plasma increases resulting in a change in the phase read-out. The proposed assay was tested on human and control plasma samples for PT and aPTT measurements. PT and aPTT measurements from control plasma samples are comparable with the manufacturer's datasheet and the commercial reference device. The measurement system has an overall 7.28% and 6.33% CV for PT and aPTT, respectively. For further implementation, the microfluidic channels of the cartridge were functionalized for PT and aPTT tests by drying specific reagents in each channel. Since simultaneous PT and aPTT measurements are needed in order to properly evaluate the coagulation system, one of the most prominent features of the proposed assay is enabling parallel measurement of different coagulation parameters. Additionally, the design of the cartridge and the read-out system as well as the obtained reproducible results with 10 μl of the plasma samples suggest an opportunity for a possible point-of-care application.
Collapse
Affiliation(s)
- O Cakmak
- Koç University, Mechanical Engineering, Rumeli Feneri Yolu, 34450 Sariyer, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Salazar MI, del Angel RM, Lanz-Mendoza H, Ludert JE, Pando-Robles V. The role of cell proteins in dengue virus infection. J Proteomics 2014; 111:6-15. [DOI: 10.1016/j.jprot.2014.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
|
49
|
Vervaeke P, Vermeire K, Liekens S. Endothelial dysfunction in dengue virus pathology. Rev Med Virol 2014; 25:50-67. [PMID: 25430853 DOI: 10.1002/rmv.1818] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/07/2014] [Accepted: 10/14/2014] [Indexed: 02/04/2023]
Abstract
Dengue virus (DENV) is a leading cause of illness and death, mainly in the (sub)tropics, where it causes dengue fever and/or the more serious diseases dengue hemorrhagic fever and dengue shock syndrome that are associated with changes in vascular permeability. Despite extensive research, the pathogenesis of DENV is still poorly understood and, although endothelial cells represent the primary fluid barrier of the blood vessels, the extent to which these cells contribute to DENV pathology is still under debate. The primary target cells for DENV are dendritic cells and monocytes/macrophages that release various chemokines and cytokines upon infection, which can activate the endothelium and are thought to play a major role in DENV-induced vascular permeability. However, recent studies indicate that DENV also replicates in endothelial cells and that DENV-infected endothelial cells may directly contribute to viremia, immune activation, vascular permeability and immune targeting of the endothelium. Also, the viral non-structural protein-1 and antibodies directed against this secreted protein have been reported to be involved in endothelial cell dysfunction. This review provides an extensive overview of the effects of DENV infection on endothelial cell physiology and barrier function.
Collapse
Affiliation(s)
- Peter Vervaeke
- KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | | | | |
Collapse
|
50
|
Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J Virol 2014; 88:13759-68. [PMID: 25231318 DOI: 10.1128/jvi.02166-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Dengue virus (DENV) is the most common cause of viral hemorrhagic fever, and it may lead to life-threating dengue hemorrhagic fever and shock syndrome (DHF/DSS). Because most cases of DHF/DSS occur in patients with secondary DENV infection, anti-DENV antibodies are generally considered to play a role in the pathogenesis of DHF/DSS. Previously, we have found that antithrombin antibodies (ATAs) with both antithrombotic and profibrinolytic activities are present in the sera of dengue patients. However, the mechanism by which these autoantibodies are induced is unclear. In this study, we demonstrated that antibodies induced by DENV immunization in mice and rabbits could bind to DENV antigens as well as to human thrombin and plasminogen (Plg). The binding of anti-DENV antibodies to thrombin and Plg was inhibited by preadsorption with DENV nonstructural protein 1. In addition, affinity-purified ATAs from DENV-immunized rabbit sera could inhibit thrombin activity and enhance Plg activation both in vitro and in vivo. Taken together, our results suggest that molecular mimicry between DENV and coagulation factors can induce the production of autoantibodies with biological effects similar to those of ATAs found in dengue patients. These coagulation-factor cross-reactive anti-DENV antibodies can interfere with the balance of coagulation and fibrinolysis, which may lead to the tendency of DHF/DSS patients to bleed. IMPORTANCE Dengue virus (DENV) infection is the most common mosquito-borne viral disease in tropical and subtropical areas. Over 50 million DENV infection cases develop each year, and more than 2.5 billion people are at risk of dengue-induced hemorrhagic fever and shock syndrome. Currently, there is no vaccine or drug treatment for DENV. In the present study, we demonstrated that DENV immunization could induce thrombin and plasminogen (Plg) cross-reactive antibodies, which were able to inhibit thrombin activity and enhance Plg activation. These results suggest that molecular mimicry between DENV antigens, thrombin, and Plg may elicit antibodies that disturb hemostasis. The selection of appropriate candidate antigens for use in DENV vaccines should prevent these potentially dangerous autoimmune responses.
Collapse
|