1
|
Akbarian S, Sheikhi M, Khedri P, Baharifar N, Khalaf Shamsabadi F, Davidi MR, Khazaei HA, Assarian H, Sheikhi A. The correlation between humoral immune responses and severity of clinical symptoms in COVID-19 patients. Epidemiol Infect 2023; 151:e158. [PMID: 37694396 PMCID: PMC10548535 DOI: 10.1017/s0950268823001437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
The SARS-CoV-2 pandemic persists with global repercussions. Initial COVID-19 symptoms encompass pneumonia, fever, myalgia, and fatigue. The human immune system produces IgM and IgG antibodies in response to SARS-CoV-2. Despite previous research, a comprehensive understanding of the interplay between clinical manifestations and humoral immune responses remains elusive. This study aims to scrutinize this association. 134 COVID-19 patients were enrolled, and stratified into mild, moderate, and severe symptom groups. Serum IgM and IgG levels were assessed thrice at one-month intervals using ELISA. The findings reveal significant elevation in serum IgG levels in moderate compared to mild cases (P < 0.001). Additionally, IgG production was significantly heightened in severe cases compared to both mild (P < 0.0001) and moderate (P < 0.05) groups. IgM and IgG levels peaked initially and diminished over time. While anti-SARS-CoV-2 antibodies are expected to confer protection, the direct correlation between IgG levels and symptom severity may arise from delayed immune activation, resulting in an intense antibody response in severe cases. Given evidence linking delayed immune function with a dysregulated innate immune response, comprehensive data collection should encompass not only serum IgG and IgM, but also early measurement of type I interferons at symptom onset. This could provide a more thorough understanding of COVID-19 progression.
Collapse
Affiliation(s)
- Shadi Akbarian
- Department of Microbiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Mehdi Sheikhi
- Faculty of Medicine, Kazeroon Azad University, Kazeroon, Iran
| | - Parichehr Khedri
- Department of Microbiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Narges Baharifar
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | | | | | - Hossein Ali Khazaei
- Department of Immunology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidali Assarian
- Department of Microbiology, Dr. Assarian Pathobiology Lab, Dezful, Iran
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
2
|
Qiu J, Engelbrektson A, Song L, Park J, Murugan V, Williams S, Chung Y, Pompa-Mera EN, Sandoval-Ramirez JL, Mata-Marin JA, Gaytan-Martinez J, Troiani E, Sanguinetti M, Roncada P, Urbani A, Moretti G, Torres J, LaBaer J. Comparative Analysis of Antimicrobial Antibodies between Mild and Severe COVID-19. Microbiol Spectr 2023; 11:e0469022. [PMID: 37278651 PMCID: PMC10433851 DOI: 10.1128/spectrum.04690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
Patients with 2019 coronavirus disease (COVID-19) exhibit a broad spectrum of clinical presentations. A person's antimicrobial antibody profile, as partially shaped by past infection or vaccination, can reflect the immune system health that is critical to control and resolve the infection. We performed an explorative immunoproteomics study using microbial protein arrays displaying 318 full-length antigens from 77 viruses and 3 bacteria. We compared antimicrobial antibody profiles between 135 patients with mild COVID-19 disease and 215 patients with severe disease in 3 independent cohorts from Mexico and Italy. Severe disease patients were older with higher prevalence of comorbidities. We confirmed that severe disease patients elicited a stronger anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) response. We showed that antibodies against HCoV-229E and HcoV-NL63 but not against HcoV-HKU1 and HcoV-OC43 were also higher in those who had severe disease. We revealed that for a set of IgG and IgA antibodies targeting coronaviruses, herpesviruses, and other respiratory viruses, a subgroup of patients with the highest reactivity levels had a greater incidence of severe disease compared to those with mild disease across all three cohorts. On the contrary, fewer antibodies showed consistent greater prevalence in mild disease in all 3 cohorts. IMPORTANCE The clinical presentations of COVID-19 range from asymptomatic to critical illness that may lead to intensive care or even death. The health of the immune system, as partially shaped by past infections or vaccinations, is critical to control and resolve the infection. Using an innovative protein array platform, we surveyed antibodies against hundreds of full-length microbial antigens from 80 different viruses and bacteria in COVID-19 patients from different geographic regions with mild or severe disease. We not only confirmed the association of severe COVID-19 disease with higher reactivity of antibody responses to SARS-CoV-2 but also uncovered known and novel associations with antibody responses against herpesviruses and other respiratory viruses. Our study represents a significant step forward in understanding the factors contributing to COVID-19 disease severity. We also demonstrate the power of comprehensive antimicrobial antibody profiling in deciphering risk factors for severe COVID-19. We anticipate that our approach will have broad applications in infectious diseases.
Collapse
Affiliation(s)
- Ji Qiu
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Anna Engelbrektson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Lusheng Song
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jin Park
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Vel Murugan
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Stacy Williams
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Yunro Chung
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Ericka Nelly Pompa-Mera
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Hospital de Infectología, CMN “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Jose Antonio Mata-Marin
- Hospital de Infectología, CMN “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jesus Gaytan-Martinez
- Hospital de Infectología, CMN “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Maurizio Sanguinetti
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Roncada
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Andrea Urbani
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Moretti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Joshua LaBaer
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2022; 11:CD013652. [PMID: 36394900 PMCID: PMC9671206 DOI: 10.1002/14651858.cd013652.pub2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julia Geppert
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Katie Scandrett
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jacob Bigio
- Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dineshani Hettiarachchi
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yasith Mathangasinghe
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Praveen Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Brian S Buckley
- Cochrane Response, Cochrane, London, UK
- Department of Surgery, University of the Philippines, Manila, Philippines
| | | | | | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht , Netherlands
| | - Mariska Mg Leeflang
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Amsterdam, Netherlands
| | | | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Struyf
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Jarrom D, Elston L, Washington J, Prettyjohns M, Cann K, Myles S, Groves P. Effectiveness of tests to detect the presence of SARS-CoV-2 virus, and antibodies to SARS-CoV-2, to inform COVID-19 diagnosis: a rapid systematic review. BMJ Evid Based Med 2022; 27:33-45. [PMID: 33004426 DOI: 10.1136/bmjebm-2020-111511] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We undertook a rapid systematic review with the aim of identifying evidence that could be used to answer the following research questions: (1) What is the clinical effectiveness of tests that detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to inform COVID-19 diagnosis? (2) What is the clinical effectiveness of tests that detect the presence of antibodies to the SARS-CoV-2 virus to inform COVID-19 diagnosis? DESIGN AND SETTING Systematic review and meta-analysis of studies of diagnostic test accuracy. We systematically searched for all published evidence on the effectiveness of tests for the presence of SARS-CoV-2 virus, or antibodies to SARS-CoV-2, up to 4 May 2020, and assessed relevant studies for risks of bias using the QUADAS-2 framework. MAIN OUTCOME MEASURES Measures of diagnostic accuracy (sensitivity, specificity, positive/negative predictive value) were the main outcomes of interest. We also included studies that reported influence of testing on subsequent patient management, and that reported virus/antibody detection rates where these facilitated comparisons of testing in different settings, different populations or using different sampling methods. RESULTS 38 studies on SARS-CoV-2 virus testing and 25 studies on SARS-CoV-2 antibody testing were identified. We identified high or unclear risks of bias in the majority of studies, most commonly as a result of unclear methods of patient selection and test conduct, or because of the use of a reference standard that may not definitively diagnose COVID-19. The majority were in hospital settings, in patients with confirmed or suspected COVID-19 infection. Pooled analysis of 16 studies (3818 patients) estimated a sensitivity of 87.8% (95% CI 81.5% to 92.2%) for an initial reverse-transcriptase PCR test. For antibody tests, 10 studies reported diagnostic accuracy outcomes: sensitivity ranged from 18.4% to 96.1% and specificity 88.9% to 100%. However, the lack of a true reference standard for SARS-CoV-2 diagnosis makes it challenging to assess the true diagnostic accuracy of these tests. Eighteen studies reporting different sampling methods suggest that for virus tests, the type of sample obtained/type of tissue sampled could influence test accuracy. Finally, we searched for, but did not identify, any evidence on how any test influences subsequent patient management. CONCLUSIONS Evidence is rapidly emerging on the effectiveness of tests for COVID-19 diagnosis and management, but important uncertainties about their effectiveness and most appropriate application remain. Estimates of diagnostic accuracy should be interpreted bearing in mind the absence of a definitive reference standard to diagnose or rule out COVID-19 infection. More evidence is needed about the effectiveness of testing outside of hospital settings and in mild or asymptomatic cases. Implementation of public health strategies centred on COVID-19 testing provides opportunities to explore these important areas of research.
Collapse
Affiliation(s)
- David Jarrom
- Health Technology Wales, Velindre NHS Trust, Cardiff, UK
| | - Lauren Elston
- Health Technology Wales, Velindre NHS Trust, Cardiff, UK
| | | | | | - Kimberley Cann
- Health Technology Wales, Velindre NHS Trust, Cardiff, UK
- Local Public Health Team, Cwm Taf Morgannwg University Health Board, Abercynon, Rhondda Cynon Taf, UK
| | - Susan Myles
- Health Technology Wales, Velindre NHS Trust, Cardiff, UK
| | - Peter Groves
- Health Technology Wales, Velindre NHS Trust, Cardiff, UK
| |
Collapse
|
5
|
Tang Y, Sun J, Yuan Y, Yao F, Zheng B, Yang G, Xie W, Ye G, Li Z, Jiao X, Li Y. Surveillance of SARS-CoV-2 antibodies of patients in the local affected area during Wuhan lockdown. BMC Infect Dis 2022; 22:10. [PMID: 34983429 PMCID: PMC8724638 DOI: 10.1186/s12879-021-07010-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Serosurveillance is crucial in estimating the range of SARS-CoV-2 infections, predicting the possibility of another wave, and deciding on a vaccination strategy. To understand the herd immunity after the COVID-19 pandemic, the seroprevalence was measured in 3062 individuals with or without COVID-19 from the clinic. METHODS The levels of SARS-CoV-2 antibody IgM and IgG were measured by the immuno-colloidal gold method. A fusion fragment of nucleocapsid and spike protein was detected by a qualitative test kit with sensitivity (89%) and specificity (98%). RESULTS The seroprevalence rate for IgM and IgG in all outpatients was 2.81% and 7.51%, respectively. The sex-related prevalence rate of IgG was significantly higher (P < 0.05) in women than men. The highest positive rate of IgM was observed in individuals < 20 years of age (3.57%), while the highest seroprevalence for IgG was observed in persons > 60 years of age (8.61%). Positive rates of IgM and IgG in the convalescent patients were 31.82% and 77.27%, respectively, which was significantly higher than individuals with suspected syndromes or individuals without any clinical signs (P < 0.01). Seroprevalence for IgG in medical staff was markedly higher than those in residents. No significant difference of seroprevalence was found among patients with different comorbidities (P > 0.05). CONCLUSIONS The low positive rate of the SARS-CoV-2 IgM and nucleic acid (NA) test indicated that the SARS-CoV-2 outbreak is subsiding after 3 months, and the possibility of reintroduction of the virus from an unidentified natural reservoir is low. Seroprevalence provides information for humoral immunity and vaccine in the future.
Collapse
Affiliation(s)
- Yueting Tang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jiayu Sun
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yumeng Yuan
- Shantou University Medical College, Shantou, Guangdong, China
| | - Fen Yao
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bokun Zheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Gui Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Wen Xie
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Guangming Ye
- Center for Clinical Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyang Jiao
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
6
|
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct Target Ther 2021; 6:316. [PMID: 34433805 PMCID: PMC8386162 DOI: 10.1038/s41392-021-00731-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) presents us with a serious public health crisis. To combat the virus and slow its spread, wider testing is essential. There is a need for more sensitive, specific, and convenient detection methods of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Advanced detection can greatly improve the ability and accuracy of the clinical diagnosis of COVID-19, which is conducive to the early suitable treatment and supports precise prophylaxis. In this article, we combine and present the latest laboratory diagnostic technologies and methods for SARS-CoV-2 to identify the technical characteristics, considerations, biosafety requirements, common problems with testing and interpretation of results, and coping strategies of commonly used testing methods. We highlight the gaps in current diagnostic capacity and propose potential solutions to provide cutting-edge technical support to achieve a more precise diagnosis, treatment, and prevention of COVID-19 and to overcome the difficulties with the normalization of epidemic prevention and control.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Deng Q, Ye G, Pan Y, Xie W, Yang G, Li Z, Li Y. High Performance of SARS-Cov-2N Protein Antigen Chemiluminescence Immunoassay as Frontline Testing for Acute Phase COVID-19 Diagnosis: A Retrospective Cohort Study. Front Med (Lausanne) 2021; 8:676560. [PMID: 34336884 PMCID: PMC8317577 DOI: 10.3389/fmed.2021.676560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023] Open
Abstract
Objectives: COVID-19 emerged and rapidly spread throughout the world. Testing strategies focussing on patients with COVID-19 require assays that are high-throughput, low-risk of infection, and with small sample volumes. Antigen surveillance can be used to identify exposure to pathogens and measure acute infections. Methods: A total of 914 serum samples, collected from 309 currently infected COVID-19 patients, 48 recovered ones, and 410 non-COVID-19 patients, were used to measure N protein antigen levels by a chemilumineseent immunoassay. Diagnostic performances were analyzed in different periods after onset. Results: There was a high level of N protein antigen in COVID-19 patients (0.56 COI), comparing to the recovered patients (0.12 COI) and controls (0.19 COI). In receiver-operating characteristic curve analysis, the area under the curve of serum N protein antigen was 0.911 in the first week after onset. In this period, Sensitivity and specificity of serologic N protein antigen testing was 76.27 and 98.78%. Diagnosis performance of specific antibodies became better from the third week after onset. Subgroup analysis suggested that severe patients had higher levels of antigens than mild patients. Conclusions: High level of serum antigen suggested early infection and serious illness. Serum N protein antigen testing by chemiluminescence immunoassay is considered as a viable assay used to improve diagnostic sensitivity for current patients.
Collapse
Affiliation(s)
- Qiaoling Deng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guangming Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wen Xie
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Gui Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Melo-Vallès A, Ballesté-Delpierre C, Vila J. Review of the Microbiological Diagnostic Approaches of COVID-19. Front Public Health 2021; 9:592500. [PMID: 33987157 PMCID: PMC8110909 DOI: 10.3389/fpubh.2021.592500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
On March 12, the World Health Organization declared a pandemic following the exponential increase of SARS-CoV-2 cases. The rapid spread of the virus is due to both its high infectivity and the free circulation of unrecognized infectious cases. Thus, diagnostic testing is a key element to prevent further dissemination of the virus. Urged by WHO's call, laboratories worldwide have been working on nucleic acid tests protocols and immunoassays that became available, albeit poorly validated, within a comparatively short time. Since then, external studies evaluating these diagnostic tests have been published. The present study is a review of the COVID-19 diagnostic approaches, discussing both direct and indirect microbiological diagnoses. A compendium of the literature on commercial assays kits available to date is provided together with the conclusions drawn as well as RT-PCR protocols published by the WHO. Briefly, diagnostic accuracy varies according to time elapsed since symptom onset and evolves together with understanding of the COVID-19 disease. Taking into account all these variables will allow determining the most adequate diagnostic test to use and how to optimize diagnostic testing for COVID-19.
Collapse
Affiliation(s)
- Ada Melo-Vallès
- Bachelor of Human Biology, Fourth Grade Student, Life and Health Sciences Faculty, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Jordi Vila
- ISGlobal Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Department of Clinical Microbiology, Centre for Biomedical Diagnosis, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
9
|
Huang J, Zhang L, Wu S, Lu J, Li F, Cheng Y, Zhang Q, Li G, Yu H, Le Z, He X, Ding Y, Candotti D, Xie X, Zhang J. Mass SARS-CoV-2 molecular and serological screening of medical staff and patients in Hangzhou, China: no evidence of RNA detection, low seroprevalence, and limited exposure risk in the hospital setting. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:552. [PMID: 33987250 DOI: 10.21037/atm-20-7163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To assess and limit the SARS-CoV-2 exposure risk from symptomless individuals in the hospital setting, molecular and serological screening of staff and patients attending a tertiary hospital in China was conducted. Methods SARS-CoV-2 RNA was tested by quantitative RT-PCR. Anti-SARS-CoV-2 IgM and IgG were screened initially with two lateral flow immunoassays (LFIs) and further confirmed with three chemiluminescence immunoassays (CLIAs). The assay performance was assessed using archived samples from 32 confirmed COVID-19 cases and 80 healthy individuals. Results Between April 24 and May 8, 2020, 16,043 subjects (7,392 medical staff, 4,714 inpatients, 1,209 chaperones, 1,705 outpatients, and 1,023 fever clinic patients) were screened. No subject tested positive for viral RNA. Seventy-three (0.46%) tested positive for IgM or IgG on the initial LFI screening, of whom 63 were investigated with CLIAs: 2 (0.01%) were confirmed as seroreactive and 18 (0.11%) were indeterminate. Unconfirmed seroreactivity was significantly more frequent in fever clinic patients. The CLIAs showed similar (95.0-100%) IgM or IgG specificity but higher IgG sensitivity (93.75-96.88% vs. 31.25-81.25%) than the LFIs. The confirmed seropositive cases included a previously discharged COVID-19 patient and an undiagnosed symptomless patient showing detectable IgM and IgG over 35 days of follow-up. No transmission was evidenced within the corresponding family cluster. Conclusions Low SARS-CoV-2 prevalence and limited exposure risk were observed. Seroprevalence varied between 0.012% and 0.12% according to the testing algorithm and the confirmation criteria used, indicating that quality standards for serological tests are needed. Protective immunity in asymptomatic COVID-19 patients who recovered needs to be investigated further, but the associated risk of transmission appeared limited.
Collapse
Affiliation(s)
- Jun Huang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Lu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengying Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulan Cheng
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guiling Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhian Le
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaowen He
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Ding
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Daniel Candotti
- National Institute of Blood Transfusion/INTS, Department of Blood Borne Agents, National Reference Center for Infectious Risks in Blood Transfusion, Paris, France
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Schwarz T, Heiss K, Mahendran Y, Casilag F, Kurth F, Sander LE, Wendtner CM, Hoechstetter MA, Müller MA, Sekul R, Drosten C, Stadler V, Corman VM. SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients. Front Immunol 2021; 12:629185. [PMID: 33833755 PMCID: PMC8021850 DOI: 10.3389/fimmu.2021.629185] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The WHO declared the COVID-19 outbreak a public health emergency of international concern. The causative agent of this acute respiratory disease is a newly emerged coronavirus, named SARS-CoV-2, which originated in China in late 2019. Exposure to SARS−CoV−2 leads to multifaceted disease outcomes from asymptomatic infection to severe pneumonia, acute respiratory distress and potentially death. Understanding the host immune response is crucial for the development of interventional strategies. Humoral responses play an important role in defending viral infections and are therefore of particular interest. With the aim to resolve SARS-CoV-2-specific humoral immune responses at the epitope level, we screened clinically well-characterized sera from COVID-19 patients with mild and severe disease outcome using high-density peptide microarrays covering the entire proteome of SARS-CoV-2. Moreover, we determined the longevity of epitope-specific antibody responses in a longitudinal approach. Here we present IgG and IgA-specific epitope signatures from COVID-19 patients, which may serve as discriminating prognostic or predictive markers for disease outcome and/or could be relevant for intervention strategies.
Collapse
Affiliation(s)
- Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | | | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens-Martin Wendtner
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Manuela A Hoechstetter
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research, Associated Partner Charité, Berlin, Germany
| | | | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research, Associated Partner Charité, Berlin, Germany
| |
Collapse
|
11
|
Whitcombe AL, McGregor R, Craigie A, James A, Charlewood R, Lorenz N, Dickson JM, Sheen CR, Koch B, Fox-Lewis S, McAuliffe G, Roberts SA, Morpeth SC, Taylor S, Webb RH, Jack S, Upton A, Ussher JE, Moreland NJ. Comprehensive analysis of SARS-CoV-2 antibody dynamics in New Zealand. Clin Transl Immunology 2021; 10:e1261. [PMID: 33747511 PMCID: PMC7955949 DOI: 10.1002/cti2.1261] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Circulating antibodies are important markers of previous infection and immunity. Questions remain with respect to the durability and functionality of SARS-CoV-2 antibodies. This study explored antibody responses in recovered COVID-19 patients in a setting where the probability of re-exposure is effectively nil, owing to New Zealand's successful elimination strategy. METHODS A triplex bead-based assay that detects antibody isotype (IgG, IgM and IgA) and subclass (IgG1, IgG2, IgG3 and IgG4) responses against Nucleocapsid (N) protein, the receptor binding domain (RBD) and Spike (S) protein of SARS-CoV-2 was developed. After establishing baseline levels with pre-pandemic control sera (n = 113), samples from PCR-confirmed COVID-19 patients with mild-moderate disease (n = 189) collected up to 8 months post-infection were examined. The relationship between antigen-specific antibodies and neutralising antibodies (NAbs) was explored with a surrogate neutralisation assay that quantifies inhibition of the RBD/hACE-2 interaction. RESULTS While most individuals had broad isotype and subclass responses to each antigen shortly after infection, only RBD and S protein IgG, as well as NAbs, were relatively stable over the study period, with 99%, 96% and 90% of samples, respectively, having responses over baseline 4-8 months post-infection. Anti-RBD antibodies were strongly correlated with NAbs at all time points (Pearson's r ≥ 0.87), and feasibility of using finger prick sampling to accurately measure anti-RBD IgG was demonstrated. CONCLUSION Antibodies to SARS-CoV-2 persist for up to 8 months following mild-to-moderate infection. This robust response can be attributed to the initial exposure without immune boosting given the lack of community transmission in our setting.
Collapse
Affiliation(s)
- Alana L Whitcombe
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| | - Reuben McGregor
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| | | | - Alex James
- Te Punaha Matatini and School of Mathematics and Statistics University of Canterbury Christchurch New Zealand
| | | | - Natalie Lorenz
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| | - James Mj Dickson
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - Campbell R Sheen
- Protein Science and Engineering Callaghan Innovation Christchurch New Zealand
| | - Barbara Koch
- Protein Science and Engineering Callaghan Innovation Christchurch New Zealand
| | | | | | - Sally A Roberts
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
- LabPLUS Auckland City Hospital Auckland New Zealand
| | | | | | - Rachel H Webb
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
- Starship Children's Hospital and Kidz First Children's Hospital Auckland New Zealand
| | - Susan Jack
- Public Health South Southern District Health Board Dunedin New Zealand
| | - Arlo Upton
- Southern Community Laboratories Dunedin New Zealand
| | - James E Ussher
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
- Southern Community Laboratories Dunedin New Zealand
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| | - Nicole J Moreland
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| |
Collapse
|
12
|
Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scand J Immunol 2020; 93:e12967. [PMID: 32875598 DOI: 10.1111/sji.12967] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
The lymphopenia as a major immunological abnormality occurs in the majority of severe COVID-19 patients, which is strongly associated with mortality rate. A low proportion of lymphocytes may express the main receptor for SARS-CoV-2, called angiotensin-converting enzyme 2 (ACE2). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also use ACE2-independent pathways to enter lymphocytes. Both SARS-CoV-2- and immune-mediated mechanisms may contribute to the occurrence of lymphopenia through influencing the lymphocyte production, survival or tissue re-distribution. The metabolic and biochemical changes can also affect the production and survival of lymphocytes in COVID-19 patients. Lymphopenia can cause general immunosuppression and promote cytokine storm, both of them play an important role in the viral persistence, viral replication, multi-organ failure and eventually death. Here, a comprehensive view concerning the possible mechanisms that may lead to the lymphocyte reduction in COVID-19 patients is provided, while highlighting the potential intervention approaches to prevent lymphopenia.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parvin Nozari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pejman Mokhtari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Hueston L, Kok J, Guibone A, McDonald D, Hone G, Goodwin J, Carter I, Basile K, Sandaradura I, Maddocks S, Sintchenko V, Gilroy N, Chen S, Dwyer DE, O’Sullivan MVN. The Antibody Response to SARS-CoV-2 Infection. Open Forum Infect Dis 2020; 7:ofaa387. [PMID: 32989419 PMCID: PMC7499696 DOI: 10.1093/ofid/ofaa387] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies has become an important tool, complementing nucleic acid tests (NATs) for diagnosis and for determining the prevalence of coronavirus disease 2019 (COVID-19) in population serosurveys. The magnitude and persistence of antibody responses are critical for assessing the duration of immunity. METHODS A SARS-CoV-2-specific immunofluorescent antibody (IFA) assay for immunoglobulin G (IgG), immunoglobulin A (IgA), and immunoglobulin M (IgM) was developed and prospectively evaluated by comparison to the reference standard of NAT on respiratory tract samples from individuals with suspected COVID-19. Neutralizing antibody responses were measured in a subset of samples using a standard microneutralization assay. RESULTS A total of 2753 individuals were eligible for the study (126 NAT-positive; prevalence, 4.6%). The median "window period" from illness onset to appearance of antibodies (range) was 10.2 (5.8-14.4) days. The sensitivity and specificity of either SARS-CoV-2 IgG, IgA, or IgM when collected ≥14 days after symptom onset were 91.3% (95% CI, 84.9%-95.6%) and 98.9% (95% CI, 98.4%-99.3%), respectively. The negative predictive value was 99.6% (95% CI, 99.3%-99.8%). The positive predictive value of detecting any antibody class was 79.9% (95% CI, 73.3%-85.1%); this increased to 96.8% (95% CI, 90.7%-99.0%) for the combination of IgG and IgA. CONCLUSIONS Measurement of SARS-CoV-2-specific antibody by IFA is an accurate method to diagnose COVID-19. Serological testing should be incorporated into diagnostic algorithms for SARS-CoV-2 infection to identify additional cases where NAT was not performed and resolve cases where false-negative and false-positive NATs are suspected. The majority of individuals develop robust antibody responses following infection, but the duration of these responses and implications for immunity remain to be established.
Collapse
Affiliation(s)
- Linda Hueston
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - Jen Kok
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - Ayla Guibone
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - Damien McDonald
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - George Hone
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - James Goodwin
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - Ian Carter
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - Kerri Basile
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
| | - Indy Sandaradura
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
- Department of Infectious Diseases, Westmead Hospital, Westmead, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Susan Maddocks
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
- Department of Infectious Diseases, Westmead Hospital, Westmead, Australia
| | - Vitali Sintchenko
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Nicole Gilroy
- Department of Infectious Diseases, Westmead Hospital, Westmead, Australia
| | - Sharon Chen
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dominic E Dwyer
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Matthew V N O’Sullivan
- New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, Australia
- Department of Infectious Diseases, Westmead Hospital, Westmead, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Ishay Y, Kessler A, Schwarts A, Ilan Y. Antibody response to SARS-Co-V-2, diagnostic and therapeutic implications. Hepatol Commun 2020; 4:1731-1743. [PMID: 32904861 PMCID: PMC7461510 DOI: 10.1002/hep4.1600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The immune response against SARS-CoV-2 is comprised of both cellular and humoral arms. While current diagnostic methods are mainly based on PCR, they suffer from insensitivity. Therefore, antibody-based serological tests are being developed to achieve higher sensitivity and specificity. Current efforts in treating SARS-CoV-2 infection include blocking of viral entry into the host cells, prohibiting viral replication and survival in the host cells, or reducing the exaggerated host immune response. Administration of convalescent plasma containing anti-viral antibodies was proposed to improve the outcome in severe cases. In this paper, we review some of the aspects associated with the development of antibodies against SARS-CoV-2 and their potential use for improved diagnosis and therapy.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| | - Asa Kessler
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| | - Asaf Schwarts
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| | - Yaron Ilan
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| |
Collapse
|
15
|
Pizzol JLD, Hora VPD, Reis AJ, Vianna J, Ramis I, Groll AV, Silva PAD. Laboratory diagnosis for Covid-19: A mini-review. Rev Soc Bras Med Trop 2020; 53:e20200451. [PMID: 32876316 PMCID: PMC7451498 DOI: 10.1590/0037-8682-0451-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease (COVID-19) is a pandemic caused by a new coronavirus, called SARS-CoV-2. This disease was first identified in December 2019 and rapidly developed into a challenge to the public health systems around the world. In the absence of a vaccine and specific therapies, disease control and promotion of patient health are strongly dependent on a rapid and accurate diagnosis. This review describes the main laboratory approaches to making a diagnosis of COVID-19 and identifying those previously infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Juliana Lemos Dal Pizzol
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Vanusa Pousada da Hora
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Ana Júlia Reis
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Júlia Vianna
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Ivy Ramis
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Andrea von Groll
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Pedro Almeida da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
16
|
Özçürümez MK, Ambrosch A, Frey O, Haselmann V, Holdenrieder S, Kiehntopf M, Neumaier M, Walter M, Wenzel F, Wölfel R, Renz H. SARS-CoV-2 antibody testing-questions to be asked. J Allergy Clin Immunol 2020; 146:35-43. [PMID: 32479758 PMCID: PMC7256507 DOI: 10.1016/j.jaci.2020.05.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 infection and development of coronavirus disease 2019 presents a major health care challenge of global dimensions. Laboratory diagnostics of infected patients, and the assessment of immunity against severe acute respiratory syndrome coronavirus 2, presents a major cornerstone in handling the pandemic. Currently, there is an increase in demand for antibody testing and a large number of tests are already marketed or are in the late stage of development. However, the interpretation of test results depends on many variables and factors, including sensitivity, specificity, potential cross-reactivity and cross-protectivity, the diagnostic value of antibodies of different isotypes, and the use of antibody testing in identification of acutely ill patients or in epidemiological settings. In this article, the recently established COVID-19 Task Force of the German Society for Clinical Chemistry and Laboratory Medicine (DGKL) addresses these issues on the basis of currently available data sets in this rapidly moving field.
Collapse
Affiliation(s)
- Mustafa K Özçürümez
- Department of Laboratory Medicine of the Medical Clinic at the University Medical Center Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany.
| | - Andreas Ambrosch
- Institute of Laboratory Medicine, Microbiology and Hygiene, Barmherzige Brüder Hospital, Regensburg, Germany
| | - Oliver Frey
- Institute of Laboratory Medicine, Brandenburg Medical School, Brandenburg an der Havel, Germany; Institute of Medical Diagnostics, Berlin, Germany
| | - Verena Haselmann
- Institute of Clinical Chemistry, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Michael Neumaier
- Institute of Clinical Chemistry, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité University Medical Center, Berlin, Germany
| | - Folker Wenzel
- Faculty of Medical and Life Sciences, Hochschule Furtwangen, Furtwangen, Germany
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
17
|
Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, Adriano A, Beese S, Dretzke J, Ferrante di Ruffano L, Harris IM, Price MJ, Dittrich S, Emperador D, Hooft L, Leeflang MM, Van den Bruel A. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2020; 6:CD013652. [PMID: 32584464 PMCID: PMC7387103 DOI: 10.1002/14651858.cd013652] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify current infection, rule out infection, identify people in need of care escalation, or to test for past infection and immune response. Serology tests to detect the presence of antibodies to SARS-CoV-2 aim to identify previous SARS-CoV-2 infection, and may help to confirm the presence of current infection. OBJECTIVES To assess the diagnostic accuracy of antibody tests to determine if a person presenting in the community or in primary or secondary care has SARS-CoV-2 infection, or has previously had SARS-CoV-2 infection, and the accuracy of antibody tests for use in seroprevalence surveys. SEARCH METHODS We undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 27 April 2020. SELECTION CRITERIA We included test accuracy studies of any design that evaluated antibody tests (including enzyme-linked immunosorbent assays, chemiluminescence immunoassays, and lateral flow assays) in people suspected of current or previous SARS-CoV-2 infection, or where tests were used to screen for infection. We also included studies of people either known to have, or not to have SARS-CoV-2 infection. We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR) and clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS We assessed possible bias and applicability of the studies using the QUADAS-2 tool. We extracted 2x2 contingency table data and present sensitivity and specificity for each antibody (or combination of antibodies) using paired forest plots. We pooled data using random-effects logistic regression where appropriate, stratifying by time since post-symptom onset. We tabulated available data by test manufacturer. We have presented uncertainty in estimates of sensitivity and specificity using 95% confidence intervals (CIs). MAIN RESULTS We included 57 publications reporting on a total of 54 study cohorts with 15,976 samples, of which 8526 were from cases of SARS-CoV-2 infection. Studies were conducted in Asia (n = 38), Europe (n = 15), and the USA and China (n = 1). We identified data from 25 commercial tests and numerous in-house assays, a small fraction of the 279 antibody assays listed by the Foundation for Innovative Diagnostics. More than half (n = 28) of the studies included were only available as preprints. We had concerns about risk of bias and applicability. Common issues were use of multi-group designs (n = 29), inclusion of only COVID-19 cases (n = 19), lack of blinding of the index test (n = 49) and reference standard (n = 29), differential verification (n = 22), and the lack of clarity about participant numbers, characteristics and study exclusions (n = 47). Most studies (n = 44) only included people hospitalised due to suspected or confirmed COVID-19 infection. There were no studies exclusively in asymptomatic participants. Two-thirds of the studies (n = 33) defined COVID-19 cases based on RT-PCR results alone, ignoring the potential for false-negative RT-PCR results. We observed evidence of selective publication of study findings through omission of the identity of tests (n = 5). We observed substantial heterogeneity in sensitivities of IgA, IgM and IgG antibodies, or combinations thereof, for results aggregated across different time periods post-symptom onset (range 0% to 100% for all target antibodies). We thus based the main results of the review on the 38 studies that stratified results by time since symptom onset. The numbers of individuals contributing data within each study each week are small and are usually not based on tracking the same groups of patients over time. Pooled results for IgG, IgM, IgA, total antibodies and IgG/IgM all showed low sensitivity during the first week since onset of symptoms (all less than 30.1%), rising in the second week and reaching their highest values in the third week. The combination of IgG/IgM had a sensitivity of 30.1% (95% CI 21.4 to 40.7) for 1 to 7 days, 72.2% (95% CI 63.5 to 79.5) for 8 to 14 days, 91.4% (95% CI 87.0 to 94.4) for 15 to 21 days. Estimates of accuracy beyond three weeks are based on smaller sample sizes and fewer studies. For 21 to 35 days, pooled sensitivities for IgG/IgM were 96.0% (95% CI 90.6 to 98.3). There are insufficient studies to estimate sensitivity of tests beyond 35 days post-symptom onset. Summary specificities (provided in 35 studies) exceeded 98% for all target antibodies with confidence intervals no more than 2 percentage points wide. False-positive results were more common where COVID-19 had been suspected and ruled out, but numbers were small and the difference was within the range expected by chance. Assuming a prevalence of 50%, a value considered possible in healthcare workers who have suffered respiratory symptoms, we would anticipate that 43 (28 to 65) would be missed and 7 (3 to 14) would be falsely positive in 1000 people undergoing IgG/IgM testing at days 15 to 21 post-symptom onset. At a prevalence of 20%, a likely value in surveys in high-risk settings, 17 (11 to 26) would be missed per 1000 people tested and 10 (5 to 22) would be falsely positive. At a lower prevalence of 5%, a likely value in national surveys, 4 (3 to 7) would be missed per 1000 tested, and 12 (6 to 27) would be falsely positive. Analyses showed small differences in sensitivity between assay type, but methodological concerns and sparse data prevent comparisons between test brands. AUTHORS' CONCLUSIONS The sensitivity of antibody tests is too low in the first week since symptom onset to have a primary role for the diagnosis of COVID-19, but they may still have a role complementing other testing in individuals presenting later, when RT-PCR tests are negative, or are not done. Antibody tests are likely to have a useful role for detecting previous SARS-CoV-2 infection if used 15 or more days after the onset of symptoms. However, the duration of antibody rises is currently unknown, and we found very little data beyond 35 days post-symptom onset. We are therefore uncertain about the utility of these tests for seroprevalence surveys for public health management purposes. Concerns about high risk of bias and applicability make it likely that the accuracy of tests when used in clinical care will be lower than reported in the included studies. Sensitivity has mainly been evaluated in hospitalised patients, so it is unclear whether the tests are able to detect lower antibody levels likely seen with milder and asymptomatic COVID-19 disease. The design, execution and reporting of studies of the accuracy of COVID-19 tests requires considerable improvement. Studies must report data on sensitivity disaggregated by time since onset of symptoms. COVID-19-positive cases who are RT-PCR-negative should be included as well as those confirmed RT-PCR, in accordance with the World Health Organization (WHO) and China National Health Commission of the People's Republic of China (CDC) case definitions. We were only able to obtain data from a small proportion of available tests, and action is needed to ensure that all results of test evaluations are available in the public domain to prevent selective reporting. This is a fast-moving field and we plan ongoing updates of this living systematic review.
Collapse
Affiliation(s)
- Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sian Taylor-Phillips
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ada Adriano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sophie Beese
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Janine Dretzke
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Lavinia Ferrante di Ruffano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Isobel M Harris
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Malcolm J Price
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Biomarker and Test Evaluation Programme (BiTE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Kontou PI, Braliou GG, Dimou NL, Nikolopoulos G, Bagos PG. Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics (Basel) 2020; 10:E319. [PMID: 32438677 PMCID: PMC7278002 DOI: 10.3390/diagnostics10050319] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023] Open
Abstract
The emergence of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 made imperative the need for diagnostic tests that can identify the infection. Although Nucleic Acid Test (NAT) is considered to be the gold standard, serological tests based on antibodies could be very helpful. However, individual studies are usually inconclusive, thus, a comparison of different tests is needed. We performed a systematic review and meta-analysis in PubMed, medRxiv and bioRxiv. We used the bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities. We evaluated IgM and IgG tests based on Enzyme-linked immunosorbent assay (ELISA), Chemiluminescence Enzyme Immunoassays (CLIA), Fluorescence Immunoassays (FIA), and the Lateral Flow Immunoassays (LFIA). We identified 38 studies containing data from 7848 individuals. Tests using the S antigen are more sensitive than N antigen-based tests. IgG tests perform better compared to IgM ones and show better sensitivity when the samples were taken longer after the onset of symptoms. Moreover, a combined IgG/IgM test seems to be a better choice in terms of sensitivity than measuring either antibody alone. All methods yield high specificity with some of them (ELISA and LFIA) reaching levels around 99%. ELISA- and CLIA-based methods perform better in terms of sensitivity (90%-94%) followed by LFIA and FIA with sensitivities ranging from 80% to 89%. ELISA tests could be a safer choice at this stage of the pandemic. LFIA tests are more attractive for large seroprevalence studies but show lower sensitivity, and this should be taken into account when designing and performing seroprevalence studies.
Collapse
Affiliation(s)
- Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35131 Lamia, Greece; (P.I.K.); (G.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35131 Lamia, Greece; (P.I.K.); (G.G.B.)
| | - Niki L. Dimou
- International Agency for Research on Cancer, 69372 Lyon, France;
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35131 Lamia, Greece; (P.I.K.); (G.G.B.)
| |
Collapse
|