1
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry 2020; 138:107729. [PMID: 33421896 DOI: 10.1016/j.bioelechem.2020.107729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Polymorphism is an important aspect in drug metabolism responsible for different individual response to drug dosage, often leading to adverse drug reactions. Here human CYP2C9 as well as its polymorphic variants CYP2C9*2 and CYP2C9*3 present in approximately 35% of the Caucasian population have been engineered by linking their gene to the one of D. vulgaris flavodoxin (FLD) that acts as regulator of the electron flow from the electrode surface to the haem. The redox properties of the immobilised proteins were investigated by cyclic voltammetry and electrocatalysis was measured in presence of the largely used anticoagulant drug S-warfarin, marker substrate for CYP2C9. Immobilisation of the CYP2C9-FLD, CYP2C9*2-FLD and CYP2C9*3-FLD on DDAB modified glassy carbon electrodes showed well defined redox couples on the oxygen-free cyclic voltammograms and mid-point potentials of all enzymes were calculated. Electrocatalysis in presence of substrate and quantification of the product formed showed lower catalytic activities for the CYP2C9*3-FLD (2.73 ± 1.07 min-1) and CYP2C9*2-FLD (12.42 ± 2.17 min-1) compared to the wild type CYP2C9-FLD (18.23 ± 1.29 min-1). These differences in activity among the CYP2C9 variants are in line with the reported literature data, and this set the basis for the use of the bio-electrode for the measurement of the different catalytic responses towards drugs very relevant in therapy.
Collapse
|
3
|
Kesik‐Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem 2018; 65:306-322. [PMID: 28972297 PMCID: PMC6749944 DOI: 10.1002/bab.1617] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Since its introduction in 1982, biopharmaceutical drugs have revolutionized the treatment of a broad spectrum of diseases and are increasingly used in nearly all branches of medicine. In recent years, the biopharmaceuticals market has developed much faster than the market for all drugs and is believed to have great potential for further dynamic growth because of the tremendous demand for these drugs. Biobetters, which contain altered active pharmaceutical ingredients with enhanced efficacy, will play an important role in the development of biopharmaceuticals. Another significant group of biopharmaceuticals are biosimilars. Their introduction in the European Union and, recently, the Unites States markets will reduce the costs of biopharmaceutical treatment. This review highlights recent progress in the field of biopharmaceutical development and issues concerning the registration of innovative biopharmaceuticals and biosimilars. The leading class of biopharmaceuticals, the current biopharmaceuticals market, and forecasts are also discussed.
Collapse
|
4
|
Degregorio D, D'Avino S, Castrignanò S, Di Nardo G, Sadeghi SJ, Catucci G, Gilardi G. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras. Front Pharmacol 2017; 8:121. [PMID: 28377716 PMCID: PMC5359286 DOI: 10.3389/fphar.2017.00121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a Vmax increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
5
|
Rua F, Sadeghi SJ, Castrignanò S, Valetti F, Gilardi G. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery. Bioelectrochemistry 2015; 105:110-6. [DOI: 10.1016/j.bioelechem.2015.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 03/22/2015] [Indexed: 11/15/2022]
|
6
|
Wang N, Gao C, Xue F, Han Y, Li T, Cao X, Zhang X, Zhang Y, Wang ZL. Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450. ACS NANO 2015; 9:3159-3168. [PMID: 25758259 DOI: 10.1021/acsnano.5b00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cytochromes P450 (CYPs) enzymes are involved in catalyzing the metabolism of various endogenous and exogenous compounds. A rapid analysis of drug metabolism reactions by CYPs is required because they can metabolize 95% of current drugs in drug development and effective therapies. Here, we describe a study of piezotronic-effect enhanced drug metabolism and sensing by utilizing a single ZnO nanowire (ZnO NW) device. Owing to the unique hydrophobic feature of a ZnO NW that provides a desirable "microenvironment" for the immobilization of biomolecules, our device can effectively stimulate the tolbutamide metabolism by decorating a ZnO NW with cytochrome P4502C9/CYPs reductase (CYP2C9/CPR) microsomes. By applying an external compressive strain to the ZnO nanowire, the piezotronic effect, which plays a primary role in tuning the transport behavior of a ZnO NW utilizing the created piezoelectric polarization charges at the local interface, can effectively enhance the performance of the device. A theoretical model is proposed using an energy band diagram to explain the experimental data. This study provides a potential approach to study drug metabolism and trace drug detection based on the piezotronic effect.
Collapse
Affiliation(s)
- Ning Wang
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- §School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Caizhen Gao
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- §School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Fei Xue
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yu Han
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- §School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Tao Li
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xia Cao
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xueji Zhang
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Zhang
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhong Lin Wang
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- ∥School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
7
|
Bioelectrochemistry as a tool for the study of aromatization of steroids by human aromatase. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
9
|
|
10
|
Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 2014; 98:6185-203. [PMID: 24848420 DOI: 10.1007/s00253-014-5767-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Germany,
| | | |
Collapse
|
11
|
Rua F, Di Nardo G, Sadeghi SJ, Gilardi G. Toward reduction in animal sacrifice for drugs: molecular modeling of Macaca fascicularis P450 2C20 for virtual screening of Homo sapiens P450 2C8 substrates. Biotechnol Appl Biochem 2014; 59:479-89. [PMID: 23586958 DOI: 10.1002/bab.1051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/04/2012] [Indexed: 01/08/2023]
Abstract
Macaca fascicularis P450 2C20 shares 92% identity with human cytochrome P450 2C8, which is involved in the metabolism of more than 8% of all prescribed drugs. To date, only paclitaxel and amodiaquine, two substrate markers of the human P450 2C8, have been experimentally confirmed as M. fascicularis P450 2C20 drugs. To bridge the lack of information on the ligands recognized by M. fascicularis P450 2C20, in this study, a three-dimensional homology model of this enzyme was generated on the basis of the available crystal structure of the human homologue P450 2C8 using YASARA. The results indicated that 90.0%, 9.0%, 0.5%, and 0.5% of the residues of the P450 2C20 model were located in the most favorable, allowed, generously allowed, and disallowed regions, respectively. The root-mean-square deviation of the C-alpha superposition of the M. fascicularis P450 2C20 model with the Homo sapiens P450 2C8 was 0.074 Å, indicating a very high similarity of the two structures. Subsequently, the 2C20 model was used for in silico screening of 58 known P450 2C8 substrates and 62 inhibitors. These were also docked in the active site of the crystal structure of the human P450 2C8. The affinity of each compound for the active site of both cytochromes proved to be very similar, meaning that the few key residues that are mutated in the active site of the M. fascicularis P450 do not prevent the P450 2C20 from recognizing the same substrates as the human P450 2C8.
Collapse
Affiliation(s)
- Francesco Rua
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
12
|
Xie X, Bartholomeusz C, Ahmed AA, Kazansky A, Diao L, Baggerly KA, Hortobagyi GN, Ueno NT. Bisphosphorylated PEA-15 sensitizes ovarian cancer cells to paclitaxel by impairing the microtubule-destabilizing effect of SCLIP. Mol Cancer Ther 2013; 12:1099-111. [PMID: 23543364 DOI: 10.1158/1535-7163.mct-12-0737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paclitaxel is a standard chemotherapeutic agent for ovarian cancer. PEA-15 (phosphoprotein enriched in astrocytes-15 kDa) regulates cell proliferation, autophagy, apoptosis, and glucose metabolism and also mediates AKT-dependent chemoresistance in breast cancer. The functions of PEA-15 are tightly regulated by its phosphorylation status at Ser104 and Ser116. However, the effect of PEA-15 phosphorylation status on chemosensitivity of cancer cells remains unknown. Here, we tested the hypothesis that PEA-15 phosphorylated at both Ser104 and Ser116 (pPEA-15) sensitizes ovarian cancer cells to paclitaxel. We first found that knockdown of PEA-15 in PEA-15-high expressing HEY and OVTOKO ovarian cancer cells resulted in paclitaxel resistance, whereas re-expression of PEA-15 in these cells led to paclitaxel sensitization. We next found that SKOV3.ip1-DD cells (expressing phosphomimetic PEA-15) were more sensitive to paclitaxel than SKOV3.ip1-AA cells (expressing nonphosphorylatable PEA-15). Compared with SKOV3.ip1-vector and SKOV3.ip1-AA cells, SKOV3.ip1-DD cells displayed reduced cell viability, inhibited anchorage-independent growth, and augmented apoptosis when treated with paclitaxel. Furthermore, HEY and OVTOKO cells displayed enhanced paclitaxel sensitivity when transiently overexpressing phosphomimetic PEA-15 and reduced paclitaxel sensitivity when transiently overexpressing nonphosphorylatable PEA-15. These results indicate that pPEA-15 sensitizes ovarian cancer cells to paclitaxel. cDNA microarray analysis suggested that SCLIP (SCG10-like protein), a microtubule-destabilizing protein, is involved in pPEA-15-mediated chemosensitization. We found that reduced expression and possibly posttranslational modification of SCLIP following paclitaxel treatment impaired the microtubule-destabilizing effect of SCLIP, thereby promoting induction of mitotic arrest and apoptosis by paclitaxel. Our findings highlight the importance of pPEA-15 as a promising target for improving the efficacy of paclitaxel-based therapy in ovarian cancer.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|