1
|
Lan Y, He Y, Chen X, Jiang S, Wang Z, Li S, Hui T, Li S, Fang Z, Chen H. Thermal processing and in vitro digestion of n-3 pork: Effects on the oxidative and digestive properties of proteins and lipids. Food Chem 2024; 468:142472. [PMID: 39700795 DOI: 10.1016/j.foodchem.2024.142472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
This study assessed the oxidation of proteins and lipids, as well as the digestive properties of six different sources of n-3 pork, after treatment with four thermal processing methods (sous vide (SV), steaming (ST), boiling (BO), and frying (FR)) and in vitro digestion. Results showed antioxidant (selenium) was associated with reduced oxidation of n-3 pork during processing and digestion. SV significantly reduced the oxidation of pork proteins and lipids and the loss of polyunsaturated fatty acids (PUFAs) compared with other processing methods. After in vitro digestion, SV caused n-3 pork to exhibit higher protein and lipid digestibility, increasing the bioaccessibility of α-linolenic acid (ALA) (81.04 %), eicosapentaenoic acid (EPA) (78.16 %), and docosahexaenoic acid (DHA) (77.28 %). Therefore, selenium addition was beneficial for improving the oxidative stability of pork, and SV can minimize nutrient losses during the processing and digestion of pork and improve the bioavailability of n-3 PUFAs.
Collapse
Affiliation(s)
- Yong Lan
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuyang He
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiyuan Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Sha Jiang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhuo Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Teng Hui
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
2
|
Wackerle BG, Vicente MR, Zohara FT, Peterman DR, Wetzler M, Brumaghim JL. Developing non-radioactive, radical methods to screen for radiolytic stability. Chem Commun (Camb) 2024; 60:12529-12532. [PMID: 39297294 DOI: 10.1039/d4cc03762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Radiolytically generated radicals cause degradation of nutrients in food, materials in satellites and solar cells, and human health. Radiation effects are studied using gamma radiolysis, a low-throughput, high-cost, and low-accessibility method. We developed a higher-throughput, low-cost, non-radioactive, radical assay that produces radicals similar to those generated in gamma radiolysis and examined monoamide degradation. Our radical assay results correspond to those from gamma irradiation in both monoamide stability and decomposition products, establishing this radical assay as a proof-of-concept screening tool for radiolytic stability.
Collapse
Affiliation(s)
- Brandon G Wackerle
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| | - Madison R Vicente
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| | - Fatema Tuz Zohara
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| | - Dean R Peterman
- Aqueous Separations and Radiochemistry Department, Idaho National Laboratory Idaho Falls, ID, 83415-6158, USA
| | - Modi Wetzler
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| | - Julia L Brumaghim
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
3
|
Yang S, Wang W, Xu Y, Yuan Y, Hao S. Fe-Zn alloy, a new biodegradable material capable of reducing ROS and inhibiting oxidative stress. Regen Biomater 2024; 11:rbae002. [PMID: 38404619 PMCID: PMC10884730 DOI: 10.1093/rb/rbae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/27/2024] Open
Abstract
Fe-based biodegradable materials have attracted significant attention due to their exceptional mechanical properties and favorable biocompatibility. Currently, research on Fe-based materials mainly focuses on regulating the degradation rate. However, excessive release of Fe ions during material degradation will induce the generation of reactive oxygen species (ROS), leading to oxidative stress and ferroptosis. Therefore, the control of ROS release and the improvement of biocompatibility for Fe-based materials are very important. In this study, new Fe-Zn alloys were prepared by electrodeposition with the intention of using Zn as an antioxidant to reduce oxidative damage during alloy degradation. Initially, the impact of three potential degradation ions (Fe2+, Fe3+, Zn2+) from the Fe-Zn alloy on human endothelial cell (EC) activity and migration ability was investigated. Subsequently, cell adhesion, cell activity, ROS production and DNA damage were assessed at various locations surrounding the alloy. Finally, the influence of different concentrations of Zn2+ in the medium on cell viability and ROS production was evaluated. High levels of ROS exhibited evident toxic effects on ECs and promoted DNA damage. As an antioxidant, Zn2+ effectively reduced ROS production around Fe and improved the cell viability on its surface at a concentration of 0.04 mmol/l. These findings demonstrate that Fe-Zn alloy can attenuate the ROS generated from Fe degradation thereby enhancing cytocompatibility.
Collapse
Affiliation(s)
- Shuaikang Yang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weiqiang Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yanan Xu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yonghui Yuan
- Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of Dalian University of Technology, Shenyang 110042, PR China
| | - Shengzhi Hao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
4
|
Huang H, Qiang L, Fan M, Liu Y, Yang A, Chang D, Li J, Sun T, Wang Y, Guo R, Zhuang H, Li X, Guo T, Wang J, Tan H, Zheng P, Weng J. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater 2024; 31:18-37. [PMID: 37593495 PMCID: PMC10432151 DOI: 10.1016/j.bioactmat.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
The resection of malignant osteosarcoma often results in large segmental bone defects, and the residual cells can facilitate recurrence. Consequently, the treatment of osteosarcoma is a major challenge in clinical practice. The ideal goal of treatment for osteosarcoma is to eliminate it thoroughly, and repair the resultant bone defects as well as avoid bacterial infections. Herein, we fabricated a selenium/strontium/zinc-doped hydroxyapatite (Se/Sr/Zn-HA) powder by hydrothermal method, and then employed it with polycaprolactone (PCL) as ink to construct composite scaffolds through 3D printing, and finally introduced them in bone defect repair induced by malignant osteosarcoma. The resultant composite scaffolds integrated multiple functions involving anti-tumor, osteogenic, and antibacterial potentials, mainly attributed to the anti-tumor effects of SeO32-, osteogenic effects of Sr2+ and Zn2+, and antibacterial effects of SeO32- and Zn2+. In vitro studies confirmed that Se/Sr/Zn-HA leaching solution could induce apoptosis of osteosarcoma cells, differentiation of MSCs, and proliferation of MC3T3-E1 while showing excellent antibacterial properties. In vivo tests demonstrated that Se/Sr/Zn-HA could significantly suppress tumors after 8 days of injection, and the Se/Sr/Zn-HA-PCLs scaffold repaired femoral defects effectively after 3 months of implantation. Summarily, the Se/Sr/Zn-HA-PCLs composite scaffolds developed in this study were effective for tumor treatment, bone defect repair, and post-operative anti-infection, which provided a great potential to be a facile therapeutic material for osteosarcoma resection.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dongbiao Chang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Xiangyu Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Huan Tan
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
5
|
Frąckowiak-Wojtasek B, Gąsowska-Bajger B, Tarasek D, Mytnik M, Wojtasek H. Oxidation of anti-thyroid drugs and their selenium analogs by ABTS radical cation. Bioorg Chem 2023; 141:106891. [PMID: 37788560 DOI: 10.1016/j.bioorg.2023.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Lactoperoxidase was previously used as a model enzyme to test the inhibitory activity of selenium analogs of anti-thyroid drugs with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. Peroxidases oxidize ABTS to a metastable radical ABTS•+, which is readily reduced by many antioxidants, including thiol-containing compounds, and it has been used for decades to measure antioxidant activity in biological samples. We showed that anti-thyroid drugs 6-n-propyl-2-thiouracil, methimazole, and selenium analogs of methimazole also reduced it rapidly. This reaction may explain the anti-thyroid action of many other compounds, particularly natural antioxidants, which may reduce the oxidized form of iodine and/or tyrosyl radicals generated by thyroid peroxidase thus decreasing the production of thyroid hormones. However, influence of selenium analogs of methimazole on the rate of hydrogen peroxide consumption during oxidation of ABTS by lactoperoxidase was moderate. Direct hydrogen peroxide reduction, proposed before as their mechanism of action, cannot therefore account for the observed inhibitory effects. 1-Methylimidazole-2-selone and its diselenide were oxidized by ABTS•+ to relatively stable seleninic acid, which decomposed slowly to selenite and 1-methylimidazole. In contrast, oxidation of 1,3-dimethylimidazole-2-selone gave selenite and 1,3-dimethylimidazolium cation. Accumulation of the corresponding seleninic acid was not observed.
Collapse
Affiliation(s)
| | | | - Damian Tarasek
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052 Opole, Poland
| | - Martyna Mytnik
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052 Opole, Poland
| | - Hubert Wojtasek
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052 Opole, Poland.
| |
Collapse
|
6
|
Lucia Dos Santos Silva R, de Sousa Barberino R, Tavares de Matos MH. Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: A review. Theriogenology 2023; 207:110-122. [PMID: 37290274 DOI: 10.1016/j.theriogenology.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The in vitro culture systems of ovarian preantral follicles have been developed for studying follicular and oocyte growth, for future use of immature oocytes as sources of fertilizable oocytes and for screening ovarian toxic substances. One of the key limitations of the in vitro culture of preantral follicles is the oxidative stress by accumulation of reactive oxygen species (ROS), which can impair follicular development and oocyte quality. Several factors are associated with oxidative stress in vitro, which implies the need for a rigorous control of the conditions as well as addition of antioxidant agents to the culture medium. Antioxidant supplementation can minimize or eliminate the damage caused by ROS, supporting follicular survival and development and producing mature oocytes competent for fertilization. This review focuses on the use of antioxidants and their role in preventing follicular damage caused by oxidative stress in the in vitro culture of preantral follicles.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil.
| |
Collapse
|
7
|
Saouli A, Adjroud O, Ncir M, Bachir A, El Feki A. Attenuating effects of selenium and zinc against hexavalent chromium-induced oxidative stress, hormonal instability, and placenta damage in preimplanted rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60050-60079. [PMID: 37017835 DOI: 10.1007/s11356-023-26700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
As a toxic metal, hexavalent chromium (CrVI) has effects on both the reproductive and endocrine systems. This study aimed to evaluate the protective effects of selenium (Se) and zinc (Zn) against the toxicity of chromium on the placenta in pregnant Wistar albino rats. Thirty pregnant Wistar rats were divided into control and four treated groups, receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg body weight (bw)) alone, or in association with Se (0.3 mg/kg bw), ZnCl2 (20 mg/kg bw), or both of them simultaneously. Plasma steroid hormones, placenta histoarchitecture, oxidative stress profile, and developmental parameters were investigated. These results showed that K2Cr2O7 exposure induced a significant increase in the levels of both plasma estradiol (E2) and placenta malondialdehyde (MDA), the number of fetal resorptions, and percent of post-implantation loss. On the other hand, K2Cr2O7 significantly reduced developmental parameters, maternal body and placenta weight, and plasma progesterone (P) and chorionic gonadotropin hormone (β HCG) levels. However, K2Cr2O7 significantly decreased the placenta activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), and nonprotein sulfhydryl (NPSH). These changes have been reinforced by histopathological evaluation of the placenta. Se and/or ZnCl2 supplementation provoked a significant improvement in most indices. These results suggest that the co-treatment with Se or ZnCl2 strongly opposes the placenta cytotoxicity induced by K2Cr2O7 through its antioxidant action.
Collapse
Affiliation(s)
- Asma Saouli
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria
| | - Marwa Ncir
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Achouak Bachir
- Anatomy and Pathology Laboratory, EHS Salim Zemirli, 16200, El Harrach, Algeria
| | - Abdelfattah El Feki
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
8
|
Vijayakumar S, Chen J, González Sánchez ZI, Tungare K, Bhori M, Durán-Lara EF, Anbu P. Moringa oleifera gum capped MgO nanoparticles: Synthesis, characterization, cyto- and ecotoxicity assessment. Int J Biol Macromol 2023; 233:123514. [PMID: 36739049 DOI: 10.1016/j.ijbiomac.2023.123514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Nano-based drug delivery research is increasing due to the therapeutic applications for human health care. However, traditional chemical capping-based synthesis methods lead to unwanted toxicity effects. Hence, there is an urgent need for green synthesis-based and biocompatible synthesis methods. The current work describes for the first time the green synthesis of Moringa gum-capped MgO nanoparticles (Mgm-MgO NPs). Their antioxidant activity, hemolysis potential, cytotoxicity, phytotoxicity, toxicity by chorioallantoic membrane (CAM) chick embryo assay and in vivo toxicity in zebrafish embryos were described. The Mgm-MgO NPs exhibited significant antioxidant activity. The Mgm-MgO NPs at 500 μg/ml produced significant hemolysis (72.54 %), while lower concentrations did not. Besides, the cytotoxicity assessment of the Mgm-MgO NPs was conducted in PA-1 cells from human ovarian teratocarcinoma by MTT assay. The Mgm-MgO NPs (0.1-500 μg/ml) considerably reduced the viability of PA-1 cells. Furthermore, Mgm-MgO NPs had no significant effect on seed germination but had a significant effect on root and shoot length of mungbean (Vigna radiata). Additionally, the CAM assay was used to analyze the antiangiogenic potential of Mgm-MgO NPs, exhibiting no significant alterations after 72 h. Finally, the zebrafish embryotoxicity assay revealed that the Mgm-MgO NPs (0.1-500 μg/ml) did not affect morphology, mortality or survival rate.
Collapse
Affiliation(s)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, PR China.
| | - Zaira I González Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, Plot No-50, Sector-15, CBD Belapur, 400614, Maharashtra, India.
| | - Mustansir Bhori
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, Plot No-50, Sector-15, CBD Belapur, 400614, Maharashtra, India
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab
- Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Periasamy Anbu
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| |
Collapse
|
9
|
Son AR, Kim SH, Islam M, Oh SJ, Paik MJ, Lee SS, Lee SS. Higher Concentration of Dietary Selenium, Zinc, and Copper Complex Reduces Heat Stress-Associated Oxidative Stress and Metabolic Alteration in the Blood of Holstein and Jersey Steers. Animals (Basel) 2022; 12:ani12223104. [PMID: 36428332 PMCID: PMC9686896 DOI: 10.3390/ani12223104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
This study investigated the influence of high concentrations of dietary minerals on reducing heat stress (HS)-associated oxidative stress and metabolic alterations in the blood of Holstein and Jersey steers. Holstein steers and Jersey steers were separately maintained under a 3 × 3 Latin square design during the summer conditions. For each trial, the treatments included Control (Con; fed basal TMR without additional mineral supplementation), NM (NRC recommended mineral supplementation group; [basal TMR + (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm) as DM basis]), and HM (higher than NRC recommended mineral supplementation group; [basal TMR + (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm) as DM basis]). Blood samples were collected at the end of each 20-day feeding trial. In both breeds, a higher superoxide dismutase concentration (U/mL) along with lower HSP27 (μg/L) and HSP70 (μg/L) concentrations were observed in both mineral-supplemented groups compared to the Con group (p < 0.05). The HM group had significantly higher lactic acid levels in Jersey steers (p < 0.05), and tended to have higher alanine levels in Holstein steers (p = 0.051). Based on star pattern recognition analysis, the levels of succinic acid, malic acid, γ-linolenic acid, 13-methyltetradecanoic acid, and tyrosine decreased, whereas palmitoleic acid increased with increasing mineral concentrations in both breeds. Different treatment groups of both breeds were separated according to the VIP scores of the top 15 metabolites through PLS−DA analysis; however, their metabolic trend was mostly associated with the glucose homeostasis. Overall, the results suggested that supplementation with a higher-than-recommended concentration of dietary minerals rich in organic Se, as was the case in the HM group, would help to prevent HS-associated oxidative stress and metabolic alterations in Holstein and Jersey steers.
Collapse
Affiliation(s)
- A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Song-Jin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Laboratory, Gyeongsang National University, Jinju 52828, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
- Correspondence: ; Tel./Fax: +82-61-750-3237
| |
Collapse
|
10
|
Aragoni M, Arca M, Caltagirone C, Castellano C, Demartin F, Jones PG, Pivetta T, Podda E, Lippolis V, Murgia S, Picci G. Role of the Solvent in the Reactivity of Bis-4-imidazoline-2-selone Derivatives toward I 2: An Experimental and Theoretical Approach. J Org Chem 2022; 87:15448-15465. [DOI: 10.1021/acs.joc.2c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- M.Carla Aragoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Carlo Castellano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133Milano, Italy
| | - Francesco Demartin
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133Milano, Italy
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig, Hagenring 30, D-38106Braunschweig, Germany
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Enrico Podda
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
- Centro Servizi di Ateneo per la Ricerca-CeSAR, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Sergio Murgia
- Dipartimento di Scienze della Vita e dell’ambiente, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| |
Collapse
|
11
|
ChunYan Z, RuJian Y, LiQiang W, HaiYan H, JinTao W, XiangWen L, XueMin D, YanShi X. Design, synthesis, and evaluation of aryl-thioether ruthenium polypyridine complexes: A multi-target antimicrobial agents against gram-positive bacteria. Eur J Med Chem 2022; 240:114562. [DOI: 10.1016/j.ejmech.2022.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
|
12
|
Oushani NH, Valipour M, Maghami P. Protective role of selenium on structural change of human hemoglobin in the presence of vinyl chloride. Toxicol Res 2022; 38:557-566. [PMID: 36277367 PMCID: PMC9532497 DOI: 10.1007/s43188-022-00137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vinyl chloride is a colorless gas with a pleasant odor capable of entering the body through oral or inhalation routes. Extensive studies on this compound indicated that it is a carcinogen, and Vinyl chloride exposure can result in a specific type of cancer in vinyl chloride workers. Whereas hemoglobin plays a vital role in oxygen transfer throughout the body, in a molecular aspect, the effect of vinyl chloride on human hemoglobin has not been studied. Furthermore, selenium as an antioxidant is a vital factor for the health of humans and animals. Then this research investigated the effect of the antioxidant capability of selenium at the same concentrations in blood on the interaction between vinyl chloride and hemoglobin. UV-visible, Fourier-transform infrared, chemiluminescence, and fluorescence spectroscopies were employed. The results indicated the destruction of hemoglobin structure in different concentrations of vinyl chloride. At the same time, the antioxidant effect of selenium inhibited the destructive impact of vinyl chloride on hemoglobin structure.
Collapse
Affiliation(s)
| | - Masoumeh Valipour
- Department of Biology, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Acar Çevik U, Celik I, Işık A, Gül ÜD, Bayazıt G, Bostancı HE, Özkay Y, Kaplancıklı ZA. Synthesis, and docking studies of novel tetrazole-S-alkyl derivatives as antimicrobial agents. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2117812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Ülküye Dudu Gül
- Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Gizem Bayazıt
- Department of Biotechnology, Institute of Graduate Studies, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
14
|
K.M. P, C.E. S, P. R, M.N.S. K, K. L, P.A. S, H. R. Synthesis, characterization, antibacterial, antifungal and antithrombotic activity studies of new chiral selenated Schiff bases and their Pd complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Singh U, Sharma S. Impact of Bioaccumulated Selenium on Nutraceutical Properties and Volatile Compounds in Submerged Fermented
Pleurotus eryngii
Mycelia. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Umesh Singh
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) Delhi 110016 India
| | - Satyawati Sharma
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) Delhi 110016 India
| |
Collapse
|
16
|
Du H, Zheng Y, Zhang W, Tang H, Jing B, Li H, Xu F, Lin J, Fu H, Chang L, Shu G. Nano-Selenium Alleviates Cadmium-Induced Acute Hepatic Toxicity by Decreasing Oxidative Stress and Activating the Nrf2 Pathway in Male Kunming Mice. Front Vet Sci 2022; 9:942189. [PMID: 35958302 PMCID: PMC9362431 DOI: 10.3389/fvets.2022.942189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 01/11/2023] Open
Abstract
Cadmium (Cd) is known as a highly toxic heavy metal and has been reported to induce hepatotoxicity in animals. Nano-selenium (NSe) is an antioxidant that plays many biological roles such as oxidative stress alleviation. The purpose of this study is to explore the mechanism of action by which NSe inhibits Cd-induced hepatic toxicity and oxidative stress. Sixty eight-week-old male Kunming mice were randomly divided into four groups (15 mice per group). The control group and cadmium groups received distilled water, whereas the sodium-selenite group received 0.2 mg/kg SSe and the NSe group received 0.2 mg/kg NSe intragastrically for 2 weeks. On the last day, all the other groups were treated with Cd (126 mg/kg) except for the control group. The results obtained in this study showed that NSe alleviated Cd-induced hepatic pathological changes. Furthermore, NSe reduced the activities of ALT and AST as well as the content of MDA, while elevated the activities of T-AOC, T-SOD and GSH (P < 0.05). In addition, the NSe group significantly increased mRNA expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GST, GSH-Px, CAT and SOD) compared to the Cd group (P < 0.05). In conclusion, NSe shows its potentiality to reduce Cd-induced liver injury by inhibiting oxidative stress and activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Hong Du
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilei Zheng
- College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijen Chang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
- *Correspondence: Lijen Chang
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Gang Shu
| |
Collapse
|
17
|
Saab M, Nelson DJ, Leech MC, Lam K, Nolan SP, Nahra F, Van Hecke K. Reactions of N-heterocyclic carbene-based chalcogenoureas with halogens: a diverse range of outcomes. Dalton Trans 2022; 51:3721-3733. [PMID: 35169826 DOI: 10.1039/d2dt00010e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the reactions of chalcogenoureas derived from N-heterocyclic carbenes, referred to here as [E(NHC)], with halogens. Depending on the structure of the chalcogenourea and the identity of the halogen, a diverse range of reactivity was observed and a corresponding range of structures was obtained. Cyclic voltammetry was carried out to characterise the oxidation and reduction potentials of these [E(NHC)] species; selenoureas were found to be easier to oxidise than the corresponding thioureas. In some cases, a correlation was found between the oxidation potential of these compounds and the electronic properties of the corresponding NHC. The reactivity of these chalcogenoureas with different halogenating reagents (Br2, SO2Cl2, I2) was then investigated, and products were characterised using NMR spectroscopy and single-crystal X-ray diffraction. X-ray analyses elucidated the solid-state coordination types of the obtained products, showing that a variety of possible adducts can be obtained. In some cases, we were able to extrapolate a structure/activity correlation to explain the observed trends in reactivity and oxidation potentials.
Collapse
Affiliation(s)
- Marina Saab
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium.
| | - David J Nelson
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, UK
| | - Matthew C Leech
- School of Science, University of Greenwich, Chatham Maritime ME4 4TB, UK
| | - Kevin Lam
- School of Science, University of Greenwich, Chatham Maritime ME4 4TB, UK
| | - Steven P Nolan
- Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Fady Nahra
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium. .,VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium.
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Samad N, Rao T, Rehman MHU, Bhatti SA, Imran I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biol Trace Elem Res 2022; 200:689-698. [PMID: 33745108 DOI: 10.1007/s12011-021-02679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Elevated arsenic (As) contamination in drinking water was detected in many areas of Pakistan. The intoxication of As causes various neurological diseases in humans, which can be inhibited by the administration of potent antioxidants. Trace elements are also found in drinking water such as selenium (Se), which possess antioxidant potential. The main purpose of the current study is to find out the protective effect of Se against As toxicity which can cause anxiety- and depression-like behaviors as well as memory impairment. Thirty-six male rats were divided into six groups: (1) distilled water (dw)+dw, (2) dw+Se (0.175 mg/ml/kg), (3) dw+Se (0.35mg/ml/kg), (4) dw+As (2.5mg/ml/kg), (5) As (2.5mg/ml/kg) + Se (0.175 mg/ml/kg), and (6) As (2.5mg/ml/kg) + Se (0.35 mg/ml/kg). Rats were treated with respective treatment for 4 weeks. Sub-chronic treatment of As reduced time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and increased immobility time in forced swim test indicate anxiety- and/or depression-like behavior, respectively. Conversely, rats treated with As+Se (at both doses) increased time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and decreased immobility time in forced swim test indicate the anxiolytic and anti-depressive effect of Se, respectively. Co-administration of Se (0.175 and 0.35) inhibited As instigated reduction of spatial memory performed in Morris water maze. The reversal in the reduced level of malondialdehyde and activity of acetylcholinesterase in the hippocampus by Se was observed in As-treated animals, while the activity of antioxidant enzymes in the hippocampus was increased in As+Se than dw+As-treated animals. Histopathological studies have shown the reversal of hippocampus deterioration by Se in As-treated rats. The results may imply to prevent the intoxication of As instigated impairment in behavioral and biochemical indices by Se supplementation and/or increased safer intake.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tazeen Rao
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
19
|
Chalana A, Kumar Rai R, Karri R, Kumar Jha K, Kumar B, Roy G. Interplay of the intermolecular and intramolecular interactions in stabilizing the thione-based copper(I) complexes and their significance in protecting the biomolecules against metal-mediated oxidative damage. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Tanaka YK, Usuzawa H, Yoshida M, Kumagai K, Kobayashi K, Matsuyama S, Inoue T, Matsunaga A, Shimura M, Ruiz Encinar J, Costa-Fernández JM, Fukumoto Y, Suzuki N, Ogra Y. Formation Mechanism and Toxicological Significance of Biogenic Mercury Selenide Nanoparticles in Human Hepatoma HepG2 Cells. Chem Res Toxicol 2021; 34:2471-2484. [PMID: 34841876 DOI: 10.1021/acs.chemrestox.1c00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Hana Usuzawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Miyu Yoshida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Kazuhiro Kumagai
- Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Keita Kobayashi
- Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Satoshi Matsuyama
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takato Inoue
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Matsunaga
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Mari Shimura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33003 Oviedo, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33003 Oviedo, Spain
| | - Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
21
|
K.M. PK, B.C. VK, M.N. SK, P. RK, S. D, R.J. B, H.D. R. Synthesis, structural characterization, CT-DNA interaction study and antithrombotic activity of new ortho-vanillin-based chiral (Se,N,O) donor ligands and their Pd complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Shafaei A, Khayati GR, Hoshyar R. Green and cost-effective synthesis, characterization and DFT studying of silver nanoparticles for improving their biological properties by opium syrup as biomedical drug and good biocompatibility. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1993257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amineh Shafaei
- Department of Nanotechnology, Mineral Industries Research Center (MIRC), Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholam Reza Khayati
- Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reyhane Hoshyar
- Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI, USA
- Cellular and Molecular Research Center, Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
23
|
Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179461. [PMID: 34502369 PMCID: PMC8431716 DOI: 10.3390/ijms22179461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present review is to discuss traditional hypotheses on the etiopathogenesis of Alzheimer's disease (AD), as well as the role of metabolic-syndrome-related mechanisms in AD development with a special focus on advanced glycation end-products (AGEs) and their role in metal-induced neurodegeneration in AD. Persistent hyperglycemia along with oxidative stress results in increased protein glycation and formation of AGEs. The latter were shown to possess a wide spectrum of neurotoxic effects including increased Aβ generation and aggregation. In addition, AGE binding to receptor for AGE (RAGE) induces a variety of pathways contributing to neuroinflammation. The existing data also demonstrate that AGE toxicity seems to mediate the involvement of copper (Cu) and potentially other metals in AD pathogenesis. Specifically, Cu promotes AGE formation, AGE-Aβ cross-linking and up-regulation of RAGE expression. Moreover, Aβ glycation was shown to increase prooxidant effects of Cu through Fenton chemistry. Given the role of AGE and RAGE, as well as metal toxicity in AD pathogenesis, it is proposed that metal chelation and/or incretins may slow down oxidative damage. In addition, selenium (Se) compounds seem to attenuate the intracellular toxicity of the deranged tau and Aβ, as well as inhibiting AGE accumulation and metal-induced neurotoxicity.
Collapse
|
24
|
Serpe A, Pilia L, Balestri D, Marchiò L, Deplano P. Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N, N'-Dimethyl-piperazine-2,3-dithione/I 2 Mixtures. Molecules 2021; 26:4721. [PMID: 34443309 PMCID: PMC8400658 DOI: 10.3390/molecules26164721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
In the context of new efficient and safe leaching agents for noble metals, this paper describes the capability of the Me2pipdt/I2 mixture (where Me2pipdt = N,N'-dimethyl-piperazine-2,3-dithione) in organic solutions to quantitatively dissolve Au, Pd, and Cu metal powders in mild conditions (room temperature and pressure) and short times (within 1 h in the reported conditions). A focus on the structural insights of the obtained coordination compounds is shown, namely [AuI2(Me2pipdt)]I3 (1), [Pd(Me2pipdt)2]I2 (2a) and [Cu(Me2pipdt)2]I3 (3), where the metals are found, respectively, in 3+, 2+ and 1+ oxidation states, and of [Cu(Me2pipdt)2]BF4 (4) and [Cu(Me2dazdt)2]I3 (5) (Me2dazdt = N,N'-dimethyl-perhydrodizepine-2,3-dithione) compared with 3. Au(III) and Pd(II) (d8 configuration) form square-planar complexes, whereas Cu(I) (d10) forms tetrahedral complexes. Density functional theory calculations performed on the cationic species of 1-5 help to highlight the nature of the bonding in the different complexes. Finally, the valorization of the noble metals-rich leachates is assessed. Specifically, gold metal is quantitatively recovered from the solution besides the ligands, showing the potential of these systems to promote metal recycling processes.
Collapse
Affiliation(s)
- Angela Serpe
- Department of Civil and Environmental Engineering and Architecture, INSTM Unit, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Via Marengo 2, 09123 Cagliari, Italy
| | - Luca Pilia
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| | - Davide Balestri
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, 43124 Parma, Italy;
| | - Luciano Marchiò
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, 43124 Parma, Italy;
| | - Paola Deplano
- Department of Chemical and Soil Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
25
|
Suriyakala G, Sathiyaraj S, Gandhi AD, Vadakkan K, Mahadeva Rao U, Babujanarthanam R. Plumeria pudica Jacq. flower extract - mediated silver nanoparticles: Characterization and evaluation of biomedical applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Cargnelutti R, Schumacher RF, Belladona AL, Kazmierczak JC. Coordination chemistry and synthetic approaches of pyridyl-selenium ligands: A decade update. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213537] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Anantharaj S, Pitchaimuthu S, Noda S. A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Adv Colloid Interface Sci 2021; 287:102331. [PMID: 33321333 DOI: 10.1016/j.cis.2020.102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
Collapse
|
28
|
Khan AU, Khan AU, Li B, Mahnashi MH, Alyami BA, Alqahtani YS, Alqarni AO, Khan ZUH, Ullah S, Wasim M, Khan QU, Ahmad W. Biosynthesis of silver capped magnesium oxide nanocomposite using Olea cuspidata leaf extract and their photocatalytic, antioxidant and antibacterial activity. Photodiagnosis Photodyn Ther 2020; 33:102153. [PMID: 33348075 DOI: 10.1016/j.pdpdt.2020.102153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Green chemistry is a modern area of research which covers synthesis of nanomaterials through useful, environmentally, economically friendly techniques and their use in different fields. The synthesis involves the formation of bimetallic nanomaterials to enhance their synergistic relationship and achieve special modulated properties. That's why bimetallic nanomaterials are extremely important and gaining interest among researchers in the field of medicinal chemistry for the treatment of various diseases. In this particular study, bimetallic nanoparticles synthesis was done by reduction procedure using leaf extract of Olea cuspidata. The phytochemicals in leaf extract act as stabilizing and capping agent in reduction of precursor's salts. The characterization of green synthesized Ag@MgO nanocomposite was done through several analytical techniques such as ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), High resolution transmission electron microscope (HRTEM) and Zeta potential. To explore the biological potential of synthesized nanocomposite, antibacterial activities against gram negative (Escherichia coli) bacteria and gram positive (Staphylococcus aureus) has been evaluated. The photocatalytic activity in contrary to methylene blue (MB) decomposition was seen efficiently. Moreover, the antioxidant nature of green synthesized Ag@MgO nanocomposite was analyzed by destabilizing and scavenging maximum percentage (93 %) of dangerous and harmful 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical. The best and surprising results provided the information for the presence of essential and vital components in Olea Cuspidata in the form of organic acids (Citrus Acid) aids in stabilizing the entire structure with enhanced properties. Up to the best of our knowledge, the facts and results obtained regarding the structure of Ag@MgO nanocomposite clearly illustrates the uniqueness of green chemistry and also its role in future developing multifunctional nanoparticles in the field of nanobiotechnology.
Collapse
Affiliation(s)
- Afaq Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Arif Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Beijing Advaced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Baoshan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University, Vehari, 61100 Pakistan
| | - Sami Ullah
- COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Muhammad Wasim
- PGR Medicine Group b Dermatology Saidu Group of Teaching Hospital Swat, KPK, Pakistan
| | - Qudrat Ullah Khan
- College of Physics and Optoelectronics, Shenzhen University, Nanhai Ave, 3688, Shenzhen, Guangdong, 518060, PR China
| | - Waqas Ahmad
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
29
|
Planeta K, Setkowicz Z, Janik-Olchawa N, Matusiak K, Ryszawy D, Drozdz A, Janeczko K, Ostachowicz B, Chwiej J. Comparison of Elemental Anomalies Following Implantation of Different Cell Lines of Glioblastoma Multiforme in the Rat Brain: A Total Reflection X-ray Fluorescence Spectroscopy Study. ACS Chem Neurosci 2020; 11:4447-4459. [PMID: 33205959 PMCID: PMC7747222 DOI: 10.1021/acschemneuro.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor with a very high degree of malignancy and is classified by WHO as a glioma IV. At present, the treatment of patients suffering from GBM is based on surgical resection of the tumor with maximal protection of surrounding tissues followed by radio- and pharmacological therapy using temozolomide as the most frequently recommended drug. This strategy, however, does not guarantee success and has devastating consequences. Testing of new substances or therapies having potential in the treatment of GBM as well as detection of their side effects cannot be done on humans. Animal models of the disease are usually used for these purposes, and one possibility is the implantation of human tumor cells into rodent brains. Such a solution was used in the present study the purpose of which was comparison of elemental anomalies appearing in the brain as a result of implantation of different glioblastoma cell lines. These were two commercially available cell lines (U87MG and T98G), as well as tumor cells taken directly from a patient diagnosed with GBM. Using total reflection X-ray fluorescence we determined the contents of P, S, K, Ca, Fe, Cu, Zn, and Se in implanted-left and intact-right brain hemispheres. The number of elemental anomalies registered for both hemispheres was positively correlated with the invasiveness of GBM cells and was the highest for animals subjected to U87MG cell implantation, which presented significant decrease of P, K, and Cu levels and an increase of Se concentration within the left hemisphere. The abnormality common for all three groups of animals subjected to glioma cell implantation was increased Fe level in the brain, which may result from higher blood supply or the presence of hemorrhaging regions. In the case of the intact hemisphere, elevated Fe concentration may also indicate higher neuronal activity caused by taking over some functions of the left hemisphere impaired as a result of tumor growth.
Collapse
Affiliation(s)
- Karolina Planeta
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Zuzanna Setkowicz
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Natalia Janik-Olchawa
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Katarzyna Matusiak
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Damian Ryszawy
- Jagiellonian
University, Faculty of Biochemistry,
Biophysics, and Biotechnology, Krakow 31-007, Poland
| | - Agnieszka Drozdz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Krzysztof Janeczko
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Beata Ostachowicz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Joanna Chwiej
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| |
Collapse
|
30
|
Engineering bioactive surfaces on nanoparticles and their biological interactions. Sci Rep 2020; 10:19713. [PMID: 33184324 PMCID: PMC7665184 DOI: 10.1038/s41598-020-75465-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/21/2020] [Indexed: 01/19/2023] Open
Abstract
The successful integration of nanoparticles into biomedical applications requires modulation of their surface properties so that the interaction with biological systems is regulated to minimize toxicity for biological function. In the present work, we have engineered bioactive surfaces on gold (Au) and silver (Ag) nanoparticles and subsequently evaluated their interaction with mouse skin fibroblasts and macrophages. The Au and Ag nanoparticles were synthesized using tyrosine, tryptophan, isonicotinylhydrazide, epigallocatechin gallate, and curcumin as reducing and stabilizing agents. The nanoparticles thus prepared showed surface corona and exhibited free radical scavenging and enzyme activities with limited cytotoxicity and genotoxicity. We have thus developed avenues for engineering the surface of nanoparticles for biological applications.
Collapse
|
31
|
Kumar A, Prasad KS. Role of nano-selenium in health and environment. J Biotechnol 2020; 325:152-163. [PMID: 33157197 DOI: 10.1016/j.jbiotec.2020.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/08/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
In recent years, researches on selenium nanoparticle have gained more attention due to its important role in many physiological processes. Generally, selenium nanoparticle has a high level of absorption in regular supplementation comparative to selenium. Therefore it is all-important to develop new techniques to elevate the transportation of selenium compounds (selenoproteins, selenoenzymes, etc.) by increasing their bioavailability, bioactivity, and controlled release. SeNPs have special attention regarding their application as food additives and therapeutic agents. Selenium nanoparticle has biomedical and pharmaceutical uses due to its antioxidant, antimicrobial, antidiabetic, and anticancer effects. Selenium nanoparticle is also used to antagonize the toxic effect of chemical and heavy metals. SeNPs are beneficial for the treatment of water and soil contaminated with metals and heavy metals as it has adsorption capability. Selenium nanoparticle is synthesized by the bioreduction of selenium species (sodium selenate, sodium selenite, selenium dioxide, and selenium tetrachloride, etc.) by using bacteria, fungi, plant, and plant extracts, which have given hope for the bioremediation of selenium contaminated water and soils. This article reviews the procedure of selenium nanoparticle synthesis (physical, chemical and biological methods), characterization (UV-vis spectroscopy, transmission electron microscopy, Scanning electron microscopy, electron dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, etc.), with the emphasis on its role and application in health and environment.
Collapse
Affiliation(s)
- Awanish Kumar
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad (A Central University), Allahabad, Uttar Pradesh, India
| | - Kumar Suranjit Prasad
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad (A Central University), Allahabad, Uttar Pradesh, India.
| |
Collapse
|
32
|
Eteshola EOU, Haupt DA, Koos SI, Siemer LA, Morris DL. The role of metal ion binding in the antioxidant mechanisms of reduced and oxidized glutathione in metal-mediated oxidative DNA damage. Metallomics 2020; 12:79-91. [PMID: 31750486 DOI: 10.1039/c9mt00231f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antioxidant activity of glutathione in its reduced (GSH) and oxidized (GSSG) forms against metal-mediated oxidative DNA damage was studied by monitoring production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) from calf-thymus DNA. GSH and GSSG were combined with Fe(ii) and Cu(ii) before and after addition of DNA to investigate the role of metal coordination in the antioxidant mechanism. The antioxidant behavior of GSH and GSSG was also compared to the known radical scavenger DMSO. GSH and GSSG lower oxidative DNA damage for Fe(ii) and Cu(ii) reactions. GSH only exhibited appreciable antioxidant behavior when combined with Fe(ii) prior to adding DNA, and GSH and GSSG were slightly more effective against Cu(ii)-mediated damage when combined with Cu(ii) prior to adding DNA. Raman spectra of GSH in the presence of Cu(ii) indicate that Cu(ii) oxidizes GSH and raises the possibility that the antioxidant activity of GSH against Cu(ii) reactions may be attributed to its ability to form GSSG. No evidence of GSH oxidation in the presence of Fe(ii) was observed. The fluorescent probe dichlorofluorescein diacetate (DCF-DA) shows that the presence of GSH (for Cu(ii) reactions) and GSSG (for Fe(ii) and Cu(ii) reactions) lowers levels of reactive oxygen species (ROS) in bulk solution. Overall, the results suggest that the mechanism of antioxidant activity for GSH and GSSG against Fe(ii) and Cu(ii)-mediated oxidative damage involves metal coordination, and isothermal titration calorimetry (ITC) studies of the Cu(ii)-GSSG system show an enthalpically favored complexation reaction with an apparent 1 : 1 stoichiometry.
Collapse
Affiliation(s)
- Elias O U Eteshola
- Department of Pharmacology & Cancer Biology/Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
33
|
Begines P, Sevilla-Horrillo L, Puerta A, Puckett R, Bayort S, Lagunes I, Maya I, Padrón JM, López Ó, Fernández-Bolaños JG. Masked Phenolic-Selenium Conjugates: Potent and Selective Antiproliferative Agents Overcoming P-gp Resistance. Pharmaceuticals (Basel) 2020; 13:ph13110358. [PMID: 33142908 PMCID: PMC7692337 DOI: 10.3390/ph13110358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for one of the most complex diseases nowadays due to its multifactorial nature. Despite the vast number of cytotoxic agents developed so far, good therapeutic approaches are not always reached. In recent years, multitarget drugs are gaining great attention against multifactorial diseases in contraposition to polypharmacy. Herein we have accomplished the conjugation of phenolic derivatives with an ample number of organochalcogen motifs with the aim of developing novel antiproliferative agents. Their antioxidant, and antiproliferative properties (against six tumour and one non-tumour cell lines) were analysed. Moreover, in order to predict P-gp-mediated chemoresistance, the P-glycoprotein assay was also conducted in order to determine whether compounds prepared herein could behave as substrates of that glycoprotein. Selenium derivatives were found to be significantly stronger antiproliferative agents than their sulfur isosters. Moreover, the length and the nature of the tether, together with the nature of the organoselenium scaffold were also found to be crucial features in the observed bioactivities. The lead compound, bearing a methylenedioxyphenyl moiety, and a diselenide functionality, showed a good activity (GI50 = 0.88‒2.0 µM) and selectivity towards tumour cell lines (selectivity index: 14‒32); moreover, compounds considered herein were not substrates for the P-gp efflux pump, thus avoiding the development of chemoresistance coming from such mechanism, commonly found for widely-used chemotherapeutic agents.
Collapse
Affiliation(s)
- Paloma Begines
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
| | - Lucía Sevilla-Horrillo
- Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, E-41011 Seville, Spain; (L.S.-H.); (R.P.)
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.P.); (I.L.)
| | - Rebecca Puckett
- Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, E-41011 Seville, Spain; (L.S.-H.); (R.P.)
| | - Samuel Bayort
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
| | - Irene Lagunes
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.P.); (I.L.)
| | - Inés Maya
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.P.); (I.L.)
- Correspondence: (J.M.P.); (Ó.L.); (J.G.F.-B.); Tel.: +34-922-316-502 (J.M.P.) ext. 6126; +34-954-559-997 (Ó.L.); +34-954-550-996 (J.G.F.-B.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
- Correspondence: (J.M.P.); (Ó.L.); (J.G.F.-B.); Tel.: +34-922-316-502 (J.M.P.) ext. 6126; +34-954-559-997 (Ó.L.); +34-954-550-996 (J.G.F.-B.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
- Correspondence: (J.M.P.); (Ó.L.); (J.G.F.-B.); Tel.: +34-922-316-502 (J.M.P.) ext. 6126; +34-954-559-997 (Ó.L.); +34-954-550-996 (J.G.F.-B.)
| |
Collapse
|
34
|
Sheikhi‐Mohammareh S, Shiri A, Maleki EH, Matin MM, Beyzaei H, Baranipour P, Oroojalian F, Memariani T. Synthesis of Various Derivatives of [1,3]Selenazolo[4,5‐d]pyrimidine and Exploitation of These Heterocyclic Systems as Antibacterial, Antifungal, and Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Ali Shiri
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Ebrahim H. Maleki
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group Institute of Biotechnology, Ferdowsi University of Mashhad Mashhad Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Parviz Baranipour
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies School of Medicine, North Khorasan University of Medical Sciences Bojnurd Iran
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Toktam Memariani
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| |
Collapse
|
35
|
Saedi S, Shokri M, Rhim JW. Antimicrobial activity of sulfur nanoparticles: Effect of preparation methods. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Prabhu Kumar K, Vasantha Kumar B, Kumar PR, Butcher RJ, Vivek H, Suchetan P, Revanasiddappa H, Foro S. Synthesis, characterization, CT‐DNA binding and docking studies of novel selenated ligands and their palladium complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K.M. Prabhu Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - B.C. Vasantha Kumar
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - P. Raghavendra Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | | | - H.K. Vivek
- Faculty of Natural SciencesAdichunchanagiri University B. G. Ngara Mandya Karnataka India
| | - P.A. Suchetan
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - H.D. Revanasiddappa
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - Sabine Foro
- Institute of Materials ScienceDarmstadt University of Technology Petersenstr. 23 D‐64287 Darmstadt Germany
| |
Collapse
|
37
|
Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Pyrzynska K, Sentkowska A. Selenium in plant foods: speciation analysis, bioavailability, and factors affecting composition. Crit Rev Food Sci Nutr 2020; 61:1340-1352. [PMID: 32363893 DOI: 10.1080/10408398.2020.1758027] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interest in selenium has been increasing over the past few decades with growing knowledge of its importance to overall health. The ability of several plants to accumulate and transform inorganic selenium forms into its bioactive organic compounds has important implications for human nutrition and health. In this review, we present the studies carried out during the last decade to characterize selenium species produced by different plant foods. Attention is also paid to the effect of selenium treatment on chemical composition and antioxidant properties of plants.
Collapse
|
39
|
Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Zinc(II) thione and selone complexes: The effect of metal redox activity on ligand-based oxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Ianni A, Bennato F, Martino C, Grotta L, Martino G. Volatile Flavor Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020; 25:E461. [PMID: 31979062 PMCID: PMC7037034 DOI: 10.3390/molecules25030461] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive research has been conducted concerning the determination and characterization of volatile compounds contributing to aroma and flavor in cheese. Considerable knowledge has been accumulated on the understanding of the mechanisms through which these compounds are formed during ripening, as well as on the optimization of the methodological approaches which lead to their detection. More recently, particular attention has been given to the aromatic properties of milk and cheeses obtained from lactating dairy ruminants fed experimental diets, characterized, for instance, by the addition of trace elements, natural supplements, or agricultural by-products rich in bioactive compounds. The purpose of this review is to summarize the major families of volatile compounds most commonly found in these types of dairy products at various ripening stages, describing in greater detail the role of animal diet in influencing the synthesis mechanisms most commonly responsible for cheese flavor determination. A large number of volatile compounds, including carboxylic acids, lactones, ketones, alcohols, and aldehydes, can be detected in cheese. The relative percentage of each compound depends on the biochemical processes that occur during ripening, and these are mainly mediated by endogenous enzymes and factors of bacterial origin whose function can be strongly influenced by the bioactive compounds taken by animals with the diet and released in milk through the mammary gland. Further evaluations on the interactions between volatile compounds and cheese matrix would be necessary in order to improve the knowledge on the synthesis mechanisms of such compounds; in addition to this, more should be done with respect to the determination of synergistic effects of flavor compounds, correlating such compounds to the aroma of dairy products.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| | - Francesca Bennato
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| | - Camillo Martino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy;
| | - Lisa Grotta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.I.); (F.B.); (L.G.)
| |
Collapse
|
42
|
Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I. Selenium Anticancer Properties and Impact on Cellular Redox Status. Antioxidants (Basel) 2020; 9:antiox9010080. [PMID: 31963404 PMCID: PMC7023255 DOI: 10.3390/antiox9010080] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Background: In this review, we provide information published in recent years on the chemical forms, main biological functions and especially on antioxidant and prooxidant activities of selenium. The main focus is put on the impact of selenoproteins on maintaining cellular redox balance and anticancerogenic function. Moreover, we summarize data on chemotherapeutic application of redox active selenium compounds. (2) Methods: In the first section, main aspects of metabolism and redox activity of selenium compounds is reviewed. The second outlines multiple biological functions, asserted when selenium is incorporated into the structure of selenoproteins. The final section focuses on anticancer activity of selenium and chemotherapeutic application of redox active selenium compounds as well. (3) Results: optimal dietary level of selenium ensures its proper antioxidant and anticancer activity. We pay special attention to antioxidant activities of selenium compounds, especially selenoproteins, and their importance in antioxidant defence. It is worth noting, that data on selenium anticancer properties is still contraversive. Moreover, selenium compounds as chemotherapeutic agents usually are used at supranutritional doses. (4) Conclusions: Selenium play a vital role for many organism systems due to its incorporation into selenoproteins structure. Selenium possesses antioxidant activity at optimal doses, while at supranutritional doses, it displays prooxidant activity. Redox active selenium compounds can be used for cancer treatment; recently special attention is put to selenium containing nanoparticles.
Collapse
Affiliation(s)
- Lolita Kuršvietienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
| | - Aušra Mongirdienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
| | - Jurga Bernatonienė
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Jurgita Šulinskienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
- Institute of Neurosciences, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Inga Stanevičienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.K.); (A.M.); (J.Š.)
- Correspondence: ; Tel.: +370-6157-4010
| |
Collapse
|
43
|
Selenotriapine – An isostere of the most studied thiosemicarbazone with pronounced pro-apoptotic activity, low toxicity and ability to challenge phenotype reprogramming of 3-D mammary adenocarcinoma tumors. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Nobre PC, Vargas HA, Jacoby CG, Schneider PH, Casaril AM, Savegnago L, Schumacher RF, Lenardão EJ, Ávila DS, Rodrigues Junior LB, Perin G. Synthesis of enantiomerically pure glycerol derivatives containing an organochalcogen unit: In vitro and in vivo antioxidant activity. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
45
|
Ribaudo G, Bortoli M, Ongaro A, Oselladore E, Gianoncelli A, Zagotto G, Orian L. Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts. RSC Adv 2020; 10:18583-18593. [PMID: 35518299 PMCID: PMC9053872 DOI: 10.1039/d0ra03509b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fluoxetine finds application in the treatment of depression and mood disorders. This selective serotonin-reuptake inhibitor (SSRI) also contrasts oxidative stress by direct ROS scavenging, modulation of the endogenous antioxidant defense system, and/or enhancement of the serotonin antioxidant capacity. We synthesised some fluoxetine analogues incorporating a selenium nucleus, thus expanding its antioxidant potential by enabling a hydroperoxides-inactivating, glutathione peroxidase (GPx)-like activity. Radical scavenging and peroxidatic activity were combined in a water-soluble, drug-like, tandem antioxidant molecule. Selenofluoxetine derivatives were reacted with H2O2 in water, and the mechanistic details of the reaction were unravelled combining nuclear magnetic resonance (NMR), electrospray ionisation-mass spectrometry (ESI-MS) and quantum chemistry calculations. The observed oxidation–elimination process led to the formation of seleninic acid and cinnamylamine in a trans-selective manner. This mechanism is likely to be extended to other substrates for the preparation of unsaturated cinnamylamines. We modified fluoxetine by incorporating a selenium nucleus enabling a hydroperoxide-inactivating, glutathione peroxidase (GPx)-like activity and paving the way for its use as green catalyst.![]()
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alberto Ongaro
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Erika Oselladore
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
46
|
Synthesis, crystal structures and antioxidant studies of Pd(II) and Ru(II) complexes of 2-(4-methoxyphenyltelluro) ethanol. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Li Y, Hao H, Zhong Z, Li M, Li J, Du Y, Wu X, Wang J, Zhang S. Assembly Mechanism of Highly Crystalline Selenium-Doped Hydroxyapatite Nanorods via Particle Attachment and Their Effect on the Fate of Stem Cells. ACS Biomater Sci Eng 2019; 5:6703-6714. [DOI: 10.1021/acsbiomaterials.9b01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengyu Zhong
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengdie Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaodan Wu
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
48
|
Dietary selenium intake in lactating dairy cows modifies fatty acid composition and volatile profile of milk and 30-day-ripened caciotta cheese. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03322-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Assaleh MH, Božić AR, Bjelogrlić S, Milošević M, Simić M, Marinković AD, Cvijetić IN. Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono- and bis-(thiocarbohydrazones) improves the antioxidant activity: spectroscopic and DFT study. Struct Chem 2019. [DOI: 10.1007/s11224-019-01371-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Ianni A, Bennato F, Martino C, Innosa D, Grotta L, Martino G. Effects of selenium supplementation on chemical composition and aromatic profiles of cow milk and its derived cheese. J Dairy Sci 2019; 102:6853-6862. [PMID: 31202652 DOI: 10.3168/jds.2019-16382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
This study aimed to investigate the effect of dietary selenium supplementation of Friesian cows on chemical-nutritional and volatile fraction of caciocavallo cheese. A sample of 32 Friesian cows, balanced for parity, milk production, and days in milk, were randomly assigned to 2 groups. The control group (CG) was fed with a conventional feeding strategy, while the experimental group (SeG) received a daily selenomethionine supplementation of 0.45 mg/kg in total mixed ration. During the experimental period, milk yield was monitored, and samples of milk and caciocavallo cheese were collected and analyzed to obtain information on chemical-nutritional composition and volatile compounds profile. Dietary Se integration did not induce variations on milk yield or composition but significantly lowered the somatic cell count (SCC). In both milk and cheese, samples from SeG were characterized by a lower concentration of saturated fatty acids (SFA) and increases in linoleic and rumenic acids. The volatile compounds profile of dairy products was also positively affected by dietary Se intake, with an increase in concentration of free fatty acids, esters, and aldehydes. These results suggest that Se plays a positive role in improving bovine mammary gland functionality and the nutraceutical properties of milk and caciocavallo cheese made therefrom. Such findings could contribute to the production of cheeses with interesting organoleptic properties, although further sensorial evaluations should be performed to deeply investigate these changes and confirm consumer acceptability.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Italy 06126
| | - Denise Innosa
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Italy 64100.
| |
Collapse
|