1
|
Chen C, Li Y, Li Y, Chen Z, Shi P, Xie Y, Qian S. SNCA is a potential therapeutic target for COVID-19 infection in diffuse large B-cell lymphoma patients. Apoptosis 2024; 29:1454-1465. [PMID: 39008196 PMCID: PMC11416394 DOI: 10.1007/s10495-024-01996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Cuprotosis related genes (CRGs) have been proved to be potential therapeutic targets for coronavirus disease 2019 (COVID-19) and cancer, but their immune and molecular mechanisms in COVID-19 infection in Diffuse Large B-cell Lymphoma (DLBC/DLBCL) patients are rarely reported. Our research goal is first to screen the key CRGs in COVID-19 through univariate analysis, machine learning and clinical samples. Secondly, we determined the expression and prognostic role of key CRGs in DLBCL through pan-cancer analysis. We validated the expression levels and prognosis using multiple datasets and independent clinical samples and validated the functional role of key CRGs in DLBCL through cell experiments. Finally, we validated the expression levels of CRGs in COVID-19 infected DLBCL patients samples and analyzed their common pathways in COVID-19 and DLBCL. The results show that synuclein-alpha (SNCA) is the common key differential gene of COVID-19 and DLBCL. DLBCL cells confirm that high expression of SNCA can significantly promote cell apoptosis and significantly inhibit the cycle progression of DLBCL. High expression of SNCA can regulate the binding of major histocompatibility complexes (MHCs) and T cell receptor (TCR) by regulating immune infiltration of Dendritic cells, effectively enhancing T cell-mediated anti-tumor immunity and clearing cancer cells. In conclusion, SNCA may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our study provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/virology
- COVID-19/metabolism
- alpha-Synuclein/genetics
- alpha-Synuclein/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/physiology
- Apoptosis/genetics
- Cell Line, Tumor
- Prognosis
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yun Li
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN. School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yiwei Li
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Zhenzhen Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Pengfei Shi
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Thangavelu L, Moglad E, Afzal M, Almalki WH, Malathi H, Bansal P, Rani B, Walia C, Sivaprasad GV, Rajput P, Imran M. Non-coding RNAs in Parkinson's disease: Regulating SNCA and alpha-synuclein aggregation. Pathol Res Pract 2024; 261:155511. [PMID: 39094523 DOI: 10.1016/j.prp.2024.155511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Parkinson's disease is one of the vital neurodegenerative ailments attributed to a rise in Alpha-synuclein proteins leading to the advancement of motor and cognitive deterioration. Interestingly, in PD lncRNAs, miRNAs and siRNAs are also key regulators of SNCA and alpha-synuclein aggregation. This review will focus on the roles of these three types of small RNAs in trebling the development of PD through regulating SNCA expression or alpha-synuclein protein mediating the RNA from acting. Parkinson's disease is defined by the build-up of alpha-synuclein protein resulting predominantly from the elevated expression level of the SNCA gene. Non-coding RNAs have gained broad appeal as fundamental modulators of gene expression and protein aggregation dynamics, with significant implications on the aetiology of PD. LncRNAs modulate SNCA transcription and edit epigenetic modifications, while miRNA target mRNA is involved in the stability and translation of count alpha-synuclein. Considering all these data, siRNAs can achieve the precise gene silencing effect that directly induces the downregulation of SNCA mRNA. This review also summarizes some recent reports about the interaction between these ncRNAs with the SNCA gene and alpha-synuclein protein, each through its independent in addition to synergistic mechanisms. This review highlights the possibility of therapeutic interventions to perturb SNCA expression to prevent alpha-synuclein aggregation via targeting ncRNAs that might be spun off novel drug development for PD.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
3
|
De Santis E, Alleva S, Minicozzi V, Morante S, Stellato F. Probing the Dynamic Landscape: From Static to Time-Resolved X-Ray Absorption Spectroscopy to Investigate Copper Redox Chemistry in Neurodegenerative Disorders. Chempluschem 2024; 89:e202300712. [PMID: 38526934 DOI: 10.1002/cplu.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Copper (Cu), with its ability to exist in various oxidation states, notably Cu(I) and Cu(II), plays a crucial role in diverse biological redox reactions. This includes its involvement in pathways associated with oxidative stress in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Transmissible Spongiform Encephalopathies. This paper offers an overview of X-ray Absorption Spectroscopy (XAS) studies designed to elucidate the interactions between Cu ions and proteins or peptides associated with these neurodegenerative diseases. The emphasis lies on XAS specificity, revealing the local coordination environment, and on its sensitivity to Cu oxidation states. Furthermore, the paper focuses on XAS applications targeting the characterization of intermediate reaction states and explores the opportunities arising from recent advancements in time-resolved XAS at ultrabright synchrotron and Free Electron Laser radiation sources.
Collapse
Affiliation(s)
- Emiliano De Santis
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23, Uppsala, Sweden
| | - Stefania Alleva
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Silvia Morante
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Francesco Stellato
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
4
|
Huenchuguala S, Segura-Aguilar J. Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson's Disease According to the Single-Neuron Degeneration Model. Biomolecules 2024; 14:673. [PMID: 38927076 PMCID: PMC11201619 DOI: 10.3390/biom14060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
One of the biggest problems in the treatment of idiopathic Parkinson's disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson's disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
5
|
Blacher C, Abramov-Harpaz K, Miller Y. Primary Nucleation of Polymorphic α-Synuclein Dimers Depends on Copper Concentrations and Definite Copper-Binding Site. Biomolecules 2024; 14:627. [PMID: 38927031 PMCID: PMC11201572 DOI: 10.3390/biom14060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The primary nucleation process of α-synuclein (AS) that forms toxic oligomeric species is the early stage of the pathological cause of Parkinson's disease. It is well-known that copper influences this primary nucleation process. While significant efforts have been made to solve the structures of polymorphic AS fibrils, the structures of AS oligomers and the copper-bound AS oligomers at the molecular level and the effect of copper concentrations on the primary nucleation are elusive. Here, we propose and demonstrate new molecular mechanism pathways of primary nucleation of AS that are tuned by distinct copper concentrations and by a specific copper-binding site. We present the polymorphic AS dimers bound to different copper-binding sites at the atomic resolution in high- and low-copper concentrations, using extensive molecular dynamics simulations. Our results show the complexity of the primary nucleation pathways that rely on the copper concentrations and the copper binding site. From a broader perspective, our study proposes a new strategy to control the primary nucleation of other toxic amyloid oligomers in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmia Blacher
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| |
Collapse
|
6
|
Wimalasena K, Adetuyi O, Eldani M. Metabolic energy decline coupled dysregulation of catecholamine metabolism in physiologically highly active neurons: implications for selective neuronal death in Parkinson's disease. Front Aging Neurosci 2024; 16:1339295. [PMID: 38450382 PMCID: PMC10914975 DOI: 10.3389/fnagi.2024.1339295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is an age-related irreversible neurodegenerative disease which is characterized as a progressively worsening involuntary movement disorder caused by the loss of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc). Two main pathophysiological features of PD are the accumulation of inclusion bodies in the affected neurons and the predominant loss of neuromelanin-containing DA neurons in substantia nigra pars compacta (SNpc) and noradrenergic (NE) neurons in locus coeruleus (LC). The inclusion bodies contain misfolded and aggregated α-synuclein (α-Syn) fibrils known as Lewy bodies. The etiology and pathogenic mechanisms of PD are complex, multi-dimensional and associated with a combination of environmental, genetic, and other age-related factors. Although individual factors associated with the pathogenic mechanisms of PD have been widely investigated, an integration of the findings to a unified causative mechanism has not been envisioned. Here we propose an integrated mechanism for the degeneration of DA neurons in SNpc and NE neurons in LC in PD, based on their unique high metabolic activity coupled elevated energy demand, using currently available experimental data. The proposed hypothetical mechanism is primarily based on the unique high metabolic activity coupled elevated energy demand of these neurons. We reason that the high vulnerability of a selective group of DA neurons in SNpc and NE neurons in LC in PD could be due to the cellular energy modulations. Such cellular energy modulations could induce dysregulation of DA and NE metabolism and perturbation of the redox active metal homeostasis (especially copper and iron) in these neurons.
Collapse
Affiliation(s)
- Kandatege Wimalasena
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, United States
| | | | | |
Collapse
|
7
|
Sharma T, Kumar R, Mukherjee S. Neuronal Vulnerability to Degeneration in Parkinson's Disease and Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:715-730. [PMID: 37185323 DOI: 10.2174/1871527322666230426155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson's disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson's disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson's disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson's disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tanushree Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Molecular and Human Genetics, Banaras Hindu University Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Liu T, Wu H, Wei J. The Construction and Validation of a Novel Ferroptosis-Related Gene Signature in Parkinson's Disease. Int J Mol Sci 2023; 24:17203. [PMID: 38139032 PMCID: PMC10742934 DOI: 10.3390/ijms242417203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
As a newly discovered regulated cell death mode, ferroptosis is associated with the development of Parkinson's disease (PD) and has attracted much attention. Nonetheless, the relationship between ferroptosis and PD pathogenesis remains unclear. The GSE8397 dataset includes GPL96 and GPL97 platforms. The differential genes were analyzed by immune infiltration and Gene Set Enrichment Analysis (GSEA) (p < 0.05), and differential multiple |logFC| > 1 and weighted gene coexpression network analysis (WGCNA) were used to screen differential expression genes (DEGs). The intersection with 368 ferroptosis-related genes (FRGs) was conducted for gene ontology/Kyoto encyclopedia of gene and genome (GO/KEGG) enrichment analysis, gene expression analysis, correlation analysis, single-cell sequencing analysis, and prognosis analysis (area under the curve, AUC) and to predict relevant miRNAs and construct network diagrams using Cytoscape. The intersection genes of differentially expressed ferroptosis-related genes (DEFRGs) and mitochondrial dysfunction genes were validated in the substantia nigra of MPTP-induced PD mice models by Western blotting and immunohistochemistry, and the protein-binding pocket was predicted using the DoGSiteScorer database. According to the results, the estimated scores were positively correlated with the stromal scores or immune scores in the GPL96 and GPL97 platforms. In the GPL96 platform, the GSEA showed that differential genes were mainly involved in the GnRH signaling pathway, B cell receptor signaling pathway, inositol phosphate metabolism, etc. In the GPL97 platform, the GSEA showed that differential genes were mainly involved in the ubiquitin-mediated proteolysis, axon guidance, Wnt signaling pathway, MAPK signaling pathway, etc. We obtained 26 DEFRGs, including 12 up-regulated genes and 14 down-regulated genes, with good correlation. The area under the prognostic analysis curve (AUC > 0.700) showed a good prognostic ability. We found that they were enriched in different neuronal cells, oligodendrocytes, astrocytes, oligodendrocyte precursor cells, and microglial cells, and their expression scores were positively correlated, and selected genes with an AUC curve ≥0.9 were used to predict miRNA, including miR-214/761/3619-5p, miR-203, miR-204/204b/211, miR-128/128ab, miR-199ab-5p, etc. For the differentially expressed ferroptosis-mitochondrial dysfunction-related genes (DEF-MDRGs) (AR, ISCU, SNCA, and PDK4), in the substantia nigra of mice, compared with the Saline group, the expression of AR and ISCU was decreased (p < 0.05), and the expression of α-Syn and PDK4 was increased (p < 0.05) in the MPTP group. Therapeutic drugs that target SNCA include ABBV-0805, Prasinezumab, Cinpanemab, and Gardenin A. The results of this study suggest that cellular DEF-MDRGs might play an important role in PD. AR, ISCU, SNCA, and PDK4 have the potential to be specific biomarkers for the early diagnosis of PD.
Collapse
Affiliation(s)
| | | | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.)
| |
Collapse
|
9
|
He J, Liu F, Xu T, Ma J, Yu H, Zhao J, Xie Y, Luo L, Yang Q, Lou T, He L, Sun D. The role of hydrogen therapy in Alzheimer's disease management: Insights into mechanisms, administration routes, and future challenges. Biomed Pharmacother 2023; 168:115807. [PMID: 37913734 DOI: 10.1016/j.biopha.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly. While conventional pharmacological therapies remain the primary treatment for AD, their efficacy is limited effectiveness and often associated with significant side effects. This underscores the urgent need to explore alternative, non-pharmacological interventions. Oxidative stress has been identified as a central player in AD pathology, influencing various aspects including amyloid-beta metabolism, tau phosphorylation, autophagy, neuroinflammation, mitochondrial dysfunction, and synaptic dysfunction. Among the emerging non-drug approaches, hydrogen therapy has garnered attention for its potential in mitigating these pathological conditions. This review provides a comprehensively overview of the therapeutic potential of hydrogen in AD. We delve into its mechanisms of action, administration routes, and discuss the current challenges and future prospects, with the aim of providing valuable insights to facilitate the clinical application of hydrogen-based therapies in AD management.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yanyan Xie
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Luo
- Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Ting Lou
- Yiwu Center for Disease Control and Prevention, Yiwu 322000, China.
| | - Luqing He
- Department of Science and Education, the Third People's Hospital Health Care Group of Cixi, Ningbo 315300, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
11
|
Uceda AB, Ramis R, Pauwels K, Adrover M, Mariño L, Frau J, Vilanova B. Understanding the effect of the membrane-mimetic micelles on the interplay between α-synuclein and Cu(II)/Cu(I) cations. J Inorg Biochem 2023; 247:112344. [PMID: 37542850 DOI: 10.1016/j.jinorgbio.2023.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
α-Synuclein (αS) is a presynaptic protein whose aggregates are considered as a hallmark of Parkinson's disease (PD). Although its physiological function is still under debate, it is widely accepted that its functions are always mediated by its interaction with membranes. The association of αS with phospholipid membranes occurs concomitant to its folding from its monomeric, unfolded state towards an antiparallel amphipathic α-helix. Besides this, copper ions can also bind αS and modify its aggregation propensity. The effect of Cu(II) and Cu(I) on the lipid-αS affinity and on the structure of the membrane-bound αS have not yet been studied. This knowledge is relevant to understand the molecular pathogenesis of PD. Therefore, we have here studied the affinities between Cu(II) and Cu(I) and the micelle-bound αS, as well as the effect of these cations on the structure of micelle-bound αS. Cu(II) or Cu(I) did not affect the α-helical structure of the micelle-bound αS. However, while Cu(I) binds at the same sites of αS in the presence or in the absence of micelles, the micelle-bound αS displays different Cu(II) binding sites than unbound αS. In any case, sodium docecyl sulphate -micelles reduce the stability of the αS complexes with both Cu(II) and Cu(I). Finally, we have observed that the micelle-bound αS is still able to prevent the Cu(II)-catalysed oxidation of neuronal metabolites (e.g. ascorbic acid) and the formation of reactive oxygen species, thus this binding does not impair its biological function as part of the antioxidant machinery.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Rafael Ramis
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain; Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Kris Pauwels
- Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Miquel Adrover
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Juan Frau
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Bartolomé Vilanova
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain.
| |
Collapse
|
12
|
Oliveri V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules 2023; 28:6446. [PMID: 37764220 PMCID: PMC10537474 DOI: 10.3390/molecules28186446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
13
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
14
|
Copper Binding and Redox Activity of α-Synuclein in Membrane-Like Environment. Biomolecules 2023; 13:biom13020287. [PMID: 36830656 PMCID: PMC9953312 DOI: 10.3390/biom13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson's disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation.
Collapse
|
15
|
Crossroads between copper ions and amyloid formation in Parkinson's disease. Essays Biochem 2022; 66:977-986. [PMID: 35757906 PMCID: PMC9760422 DOI: 10.1042/ebc20220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022]
Abstract
Copper (Cu) ion dys-homeostasis and α-synclein amyloid deposits are two hallmarks of Parkinson's disease (PD). Here, I will discuss the connections between these features, with a major focus on the role of Cu in the α-synuclein (aS) amyloid formation process. The structurally disordered aS monomer can bind to both redox states of Cu (i.e., oxidized Cu(II) and reduced Cu(I)) with high affinity in vitro. Notably, the presence of Cu(II) (in absence of aS N-terminal acetylation) and Cu(I) (when in complex with the copper chaperone Atox1) modulate aS assembly into β-structured amyloids in opposite directions in vitro. Albeit the link to biological relevance is not fully unraveled, existing observations clearly emphasize the need for more knowledge on this interplay and its consequences to eventually combat destructive reactions that promote PD.
Collapse
|
16
|
Wang H, Mörman C, Sternke-Hoffmann R, Huang CY, Prota A, Ma P, Luo J. Cu 2+ ions modulate the interaction between α-synuclein and lipid membranes. J Inorg Biochem 2022; 236:111945. [PMID: 35952593 DOI: 10.1016/j.jinorgbio.2022.111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022]
Abstract
α-synuclein protein aggregates are the major constituent of Lewy bodies, which is a main pathogenic hallmark of Parkinson's disease. Both lipid membranes and Cu2+ ions can bind to α-synuclein and modulate its aggregation propensity and toxicity. However, the synergistic effect of copper ions and lipid membranes on α-synuclein remains to be explored. Here, we investigate how Cu2+ and α-synuclein simultaneously influence the lipidic structure of lipidic cubic phase(LCP) matrix by using small-angle X-ray scattering. α-Syn proteins destabilize the cubic-Pn3m phase of LCP that can be further recovered after the addition of Cu2 ions even at a low stoichiometric ratio. By using circular dichroism and nuclear magnetic resonance, we also study how lipid membranes and Cu2+ ions impact the secondary structures of α-synuclein at an atomic level. Although the secondary structure of α-synuclein with lipid membranes is not significantly changed to a large extent in the presence of Cu2+ ions, lipid membranes promote the interaction between α-synuclein C-terminus and Cu2+ ions. The modulation of Cu2+ ions and lipid membranes on α-synuclein dynamics and structure may play an important role in the molecular pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Cecilia Mörman
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden
| | | | - Chia-Ying Huang
- Swiss Light Source at Paul Scherrer Institut, Forschungstrasse 111, Villigen-PSI, Villigen 5232, Switzerland
| | - Andrea Prota
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Pikyee Ma
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.
| |
Collapse
|
17
|
Rodríguez EE, Ríos A, Trujano-Ortiz LG, Villegas A, Castañeda-Hernández G, Fernández CO, González FJ, Quintanar L. Comparing the copper binding features of alpha and beta synucleins. J Inorg Biochem 2022; 229:111715. [DOI: 10.1016/j.jinorgbio.2022.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/10/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
|
18
|
Andersen C, Grønnemose AL, Pedersen JN, Nowak JS, Christiansen G, Nielsen J, Mulder FAA, Otzen DE, Jørgensen TJD. Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications. Biochemistry 2021; 60:3644-3658. [PMID: 34730940 DOI: 10.1021/acs.biochem.1c00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aggregation of α-synuclein (αSN) and increased oxidative stress leading to lipid peroxidation are pathological characteristics of Parkinson's disease (PD). Here, we report that aggregation of αSN in the presence of lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) increases the stability and the yield of αSN oligomers (αSO). Further, we show that ONE is more efficient than HNE at inducing αSO. In addition, we demonstrate that the two αSO differ in both size and shape. ONE-αSO are smaller in size than HNE-αSO, except when they are formed at a high molar excess of aldehyde. In both monomeric and oligomeric αSN, His50 is the main target of HNE modification, and HNE-induced oligomerization is severely retarded in the mutant His50Ala αSN. In contrast, ONE-induced aggregation of His50Ala αSN occurs readily, demonstrating the different pathways for inducing αSN aggregation by HNE and ONE. Our results show different morphologies of the HNE-treated and ONE-treated αSO and different roles of His50 in their modification of αSN, but we also observe structural similarities between these αSO and the non-treated αSO, e.g., flexible C-terminus, a folded core composed of the N-terminal and NAC region. Furthermore, HNE-αSO show a similar deuterium uptake as a previously characterized oligomer formed by non-treated αSO, suggesting that the backbone conformational dynamics of their folded cores resemble one another.
Collapse
Affiliation(s)
- Camilla Andersen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | - Anne Louise Grønnemose
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark.,Department of Biochemistry and Molecular Biology, Campusvej 55, University of Southern Denmark, Odense M 5230, Denmark
| | - Jannik N Pedersen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | - Jan S Nowak
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | | | - Janni Nielsen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | - Frans A A Mulder
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark.,Department of Chemistry, Langelandsgade 140, Aarhus University, Aarhus C 8000, Denmark
| | - Daniel Erik Otzen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, Campusvej 55, University of Southern Denmark, Odense M 5230, Denmark
| |
Collapse
|
19
|
Teng X, Sheveleva A, Tuna F, Willison KR, Ying L. Acetylation Rather than H50Q Mutation Impacts the Kinetics of Cu(II) Binding to α-Synuclein. Chemphyschem 2021; 22:2413-2419. [PMID: 34617653 PMCID: PMC9293329 DOI: 10.1002/cphc.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/02/2021] [Indexed: 11/10/2022]
Abstract
The interaction between α‐synuclein (αSyn) and Cu2+ has been suggested to be closely linked to brain copper homeostasis. Disruption of copper levels could induce misfolding and aggregation of αSyn, and thus contribute to the progression of Parkinson's disease (PD). Understanding the molecular mechanism of αSyn‐Cu2+ interaction is important and controversies in Cu2+ coordination geometry with αSyn still exists. Herein, we find that the pathological H50Q mutation has no impact on the kinetics of Cu2+ binding to the high‐affinity site of wild type αSyn (WT‐αSyn), indicating the non‐involvement of His50 in high‐affinity Cu2+ binding to WT‐αSyn. In contrast, the physiological N‐terminally acetylated αSyn (NAc‐αSyn) displays several orders of magnitude weaker Cu2+ binding affinity than WT‐αSyn. Cu2+ coordination mode to NAc‐αSyn has also been proposed based on EPR spectrum. In addition, we find that Cu2+ coordinated WT‐αSyn is reduction‐active in the presence of GSH, but essentially inactive towards ascorbate. Our work provides new insights into αSyn‐Cu2+ interaction, which may help understand the multifaceted normal functions of αSyn as well as pathological consequences of αSyn aggregation.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Alena Sheveleva
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Keith R Willison
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
20
|
Zheng J, Wu H, Zhang Z, Yao S. Dynamic co-expression modular network analysis in nonalcoholic fatty liver disease. Hereditas 2021; 158:31. [PMID: 34419146 PMCID: PMC8380347 DOI: 10.1186/s41065-021-00196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting people’s health worldwide. Exploring the potential biomarkers and dynamic networks during NAFLD progression is urgently important. Material and methods Differentially expressed genes (DEGs) in obesity, NAFL and NASH were screened from GSE126848 and GSE130970, respectively. Gene set enrichment analysis of DEGs was conducted to reveal the Gene Ontology (GO) biological process in each period. Dynamic molecular networks were constructed by DyNet to illustrate the common and distinct progression of health- or obesity-derived NAFLD. The dynamic co-expression modular analysis was carried out by CEMiTool to elucidate the key modulators, networks, and enriched pathways during NAFLD. Results A total of 453 DEGs were filtered from obesity, NAFL and NASH periods. Function annotation showed that health-NAFLD sequence was mainly associated with dysfunction of metabolic syndrome pathways, while obesity-NAFLD sequence exhibited dysregulation of Cell cycle and Cellular senescence pathways. Nine nodes including COL3A1, CXCL9, CYCS, CXCL10, THY1, COL1A2, SAA1, CDKN1A, and JUN in the dynamic networks were commonly identified in health- and obesity-derived NAFLD. Moreover, CYCS, whose role is unknown in NAFLD, possessed the highest correlation with NAFLD activity score, lobular inflammation grade, and the cytological ballooning grade. Dynamic co-expression modular analysis showed that module 4 was activated in NAFL and NASH, while module 3 was inhibited at NAFLD stages. Module 3 was negatively correlated with CXCL10, and module 4 was positively correlated with COL1A2 and THY1. Conclusion Dynamic network analysis and dynamic gene co-expression modular analysis identified a nine-gene signature as the potential key regulator in NAFLD progression, which provided comprehensive regulatory mechanisms underlying NAFLD progression. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00196-8.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Pharmacy, Zhejiang Medical & Health Group Hangzhou Hospital, No.1 Banshan Road, Kangjian nong, Hangzhou, 310022, China
| | - Huizhong Wu
- Department of Pharmacy, Zhejiang Quhua Hospital, Quzhou, 324002, China
| | - Zhiying Zhang
- Department of Pharmacy, Hangzhou Jianggan District People's Hospital, Hangzhou, 310016, China
| | - Songqiang Yao
- Department of Pharmacy, Zhejiang Medical & Health Group Hangzhou Hospital, No.1 Banshan Road, Kangjian nong, Hangzhou, 310022, China.
| |
Collapse
|
21
|
Calvo JS, Mulpuri NV, Dao A, Qazi NK, Meloni G. Membrane insertion exacerbates the α-Synuclein-Cu(II) dopamine oxidase activity: Metallothionein-3 targets and silences all α-synuclein-Cu(II) complexes. Free Radic Biol Med 2020; 158:149-161. [PMID: 32712192 PMCID: PMC7484060 DOI: 10.1016/j.freeradbiomed.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Copper binding to α-synuclein (α-Syn), the major component of intracellular Lewy body inclusions in substantia nigra dopaminergic neurons, potentiate its toxic redox-reactivity and plays a detrimental role in the etiology of Parkinson disease (PD). Soluble α-synuclein-Cu(II) complexes possess dopamine oxidase activity and catalyze ROS production in the presence of biological reducing agents via Cu(II)/Cu(I) redox cycling. These metal-centered redox reactivities harmfully promote the oxidation and oligomerization of α-Syn. While this chemistry has been investigated on recombinantly expressed soluble α-Syn, in vivo, α-Syn is acetylated at its N-terminus and is present in equilibrium between soluble and membrane-bound forms. This post-translational modification and membrane-binding alter the Cu(II) coordination environment and binding modes and are expected to affect the α-Syn-Cu(II) reactivity. In this work, we first investigated the reactivity of acetylated and membrane-bound complexes, and subsequently addressed whether the brain metalloprotein Zn7-metallothionein-3 (Zn7MT-3) possesses a multifaceted-role in targeting these aberrant copper interactions and consequent reactivity. Through biochemical characterization of the reactivity of the non-acetylated/N-terminally acetylated soluble or membrane-bound α-Syn-Cu(II) complexes towards dopamine, oxygen, and ascorbate, we reveal that membrane insertion dramatically exacerbates the catechol oxidase-like reactivity of α-Syn-Cu(II) as a result of a change in the Cu(II) coordination environment, thereby potentiating its toxicity. Moreover, we show that Zn7MT-3 can efficiently target all α-Syn-Cu(II) complexes through Cu(II) removal, preventing their deleterious redox activities. We demonstrate that the Cu(II) reduction by the thiolate ligands of Zn7MT-3 and the formation of Cu(I)4Zn4MT-3 featuring an unusual redox-inert Cu(I)4-thiolate cluster is the molecular mechanism responsible for the protective effect exerted by MT-3 towards α-Syn-Cu(II). This work provides the molecular basis for new therapeutic interventions to control the deleterious bioinorganic chemistry of α-Syn-Cu(II).
Collapse
Affiliation(s)
- Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Neha V Mulpuri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Alex Dao
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nabeeha K Qazi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
22
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Bisaglia M, Bubacco L. Copper Ions and Parkinson's Disease: Why Is Homeostasis So Relevant? Biomolecules 2020; 10:biom10020195. [PMID: 32013126 PMCID: PMC7072482 DOI: 10.3390/biom10020195] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
The involvement of copper in numerous physiological processes makes this metal ion essential for human life. Alterations in copper homeostasis might have deleterious consequences, and several neurodegenerative disorders, including Parkinson’s disease (PD), have been associated with impaired copper levels. In the present review, we describe the molecular mechanisms through which copper can exert its toxicity, by considering how it can interfere with other cellular processes known to play a role in PD, such as dopamine metabolism, oxidative stress, and α-synuclein aggregation. The recent experimental evidence that associates copper deficiency and the formation of superoxide dismutase 1 (SOD1) aggregates with the progression of PD is also discussed together with its therapeutic implication. Overall, the recent discoveries described in this review show how either copper deficiency or excessive levels can promote detrimental effects, highlighting the importance of preserving copper homeostasis and opening unexplored therapeutic avenues in the definition of novel disease-modifying drugs.
Collapse
|
24
|
Bacchella C, Nicolis S, Dell'Acqua S, Rizzarelli E, Monzani E, Casella L. Membrane Binding Strongly Affecting the Dopamine Reactivity Induced by Copper Prion and Copper/Amyloid-β (Aβ) Peptides. A Ternary Copper/Aβ/Prion Peptide Complex Stabilized and Solubilized in Sodium Dodecyl Sulfate Micelles. Inorg Chem 2019; 59:900-912. [PMID: 31869218 DOI: 10.1021/acs.inorgchem.9b03153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination between dyshomeostatic levels of catecholamine neurotransmitters and redox-active metals such as copper and iron exacerbates the oxidative stress condition that typically affects neurodegenerative diseases. We report a comparative study of the oxidative reactivity of copper complexes with amyloid-β (Aβ40) and the prion peptide fragment 76-114 (PrP76-114), containing the high-affinity binding site, toward dopamine and 4-methylcatechol, in aqueous buffer and in sodium dodecyl sulfate micelles, as a model membrane environment. The competitive oxidative and covalent modifications undergone by the peptides were also evaluated. The high binding affinity of Cu/peptide to micelles and lipid membranes leads to a strong reduction (Aβ40) and quenching (PrP76-114) of the oxidative efficiency of the binary complexes and to a stabilization and redox silencing of the ternary complex CuII/Aβ40/PrP76-114, which is highly reactive in solution. The results improve our understanding of the pathological and protective effects associated with these complexes, depending on the physiological environment.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Stefania Nicolis
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche , Via P. Gaifami 18 , 95125 Catania , Italy
| | - Enrico Monzani
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Luigi Casella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
25
|
Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas AH, Jaremko M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 2019; 10:215-227. [PMID: 35492549 PMCID: PMC9047971 DOI: 10.1039/c9ra09350h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/14/2019] [Indexed: 01/03/2023] Open
Abstract
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria 09042 Monserrato Italy
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
26
|
Bacchella C, Gentili S, Bellotti D, Quartieri E, Draghi S, Baratto MC, Remelli M, Valensin D, Monzani E, Nicolis S, Casella L, Tegoni M, Dell'Acqua S. Binding and Reactivity of Copper to R 1 and R 3 Fragments of tau Protein. Inorg Chem 2019; 59:274-286. [PMID: 31820933 DOI: 10.1021/acs.inorgchem.9b02266] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tau protein is present in significant amounts in neurons, where it contributes to the stabilization of microtubules. Insoluble neurofibrillary tangles of tau are associated with several neurological disorders known as tauopathies, among which is Alzheimer's disease. In neurons, tau binds tubulin through its microtubule binding domain which comprises four imperfect repeats (R1-R4). The histidine residues contained in these fragments are potential binding sites for metal ions and are located close to the regions that drive the formation of amyloid aggregates of tau. In this study, we present a detailed characterization through potentiometric and spectroscopic methods of the binding of copper in both oxidation states to R1 and R3 peptides, which contain one and two histidine residues, respectively. We also evaluate how the redox cycling of copper bound to tau peptides can mediate oxidation that can potentially target exogenous substrates such as neuronal catecholamines. The resulting quinone oxidation products undergo oligomerization and can competitively give post-translational peptide modifications yielding catechol adducts at amino acid residues. The presence of His-His tandem in the R3 peptide strongly influences both the binding of copper and the reactivity of the resulting copper complex. In particular, the presence of the two adjacent histidines makes the copper(I) binding to R3 much stronger than in R1. The copper-R3 complex is also much more active than the copper-R1 complex in promoting oxidative reactions, indicating that the two neighboring histidines activate copper as a catalyst in molecular oxygen activation reactions.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Silvia Gentili
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Denise Bellotti
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Eleonora Quartieri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Sara Draghi
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Maria Camilla Baratto
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Maurizio Remelli
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Daniela Valensin
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Enrico Monzani
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Stefania Nicolis
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Luigi Casella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
27
|
Tian Y, Stanyon HF, Barritt JD, Mayet U, Patel P, Karamani E, Fusco G, Viles JH. Copper2+ Binding to α-Synuclein. Histidine50 Can Form a Ternary Complex with Cu2+ at the N-Terminus but Not a Macrochelate. Inorg Chem 2019; 58:15580-15589. [DOI: 10.1021/acs.inorgchem.9b02644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yao Tian
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Helen F. Stanyon
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Joseph D Barritt
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Uroosa Mayet
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Pelak Patel
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Elena Karamani
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB1 1EW, United Kingdom
| | - John H. Viles
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
28
|
Selective vulnerability in α-synucleinopathies. Acta Neuropathol 2019; 138:681-704. [PMID: 31006067 PMCID: PMC6800835 DOI: 10.1007/s00401-019-02010-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are neurodegenerative disorders resulting in progressive motor/cognitive deficits among other symptoms. They are characterised by stereotypical brain cell loss accompanied by the formation of proteinaceous aggregations of the protein α-synuclein (α-syn), being, therefore, termed α-synucleinopathies. Although the presence of α-syn inclusions is a common hallmark of these disorders, the exact nature of the deposited protein is specific to each disease. Different neuroanatomical regions and cellular populations manifest a differential vulnerability to the appearance of protein deposits, cell dysfunction, and cell death, leading to phenotypic diversity. The present review describes the multiple factors that contribute to the selective vulnerability in α-synucleinopathies. We explore the intrinsic cellular properties in the affected regions, including the physiological and pathophysiological roles of endogenous α-syn, the metabolic and genetic build-up of the cells and their connectivity. These factors converge with the variability of the α-syn conformational strains and their spreading capacity to dictate the phenotypic diversity and regional vulnerability of each disease. Finally, we describe the exogenous and environmental factors that potentially contribute by igniting and modulating the differential pathology in α-synucleinopathies. In conclusion, we think that it is the confluence of this disruption of the cellular metabolic state and α-syn structural equilibrium through the anatomical connectivity which appears to initiate cascades of pathological processes triggered by genetic, environmental, or stochastic events that result in the "death by a thousand cuts" profile of α-synucleinopathies.
Collapse
|
29
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
30
|
Bloch DN, Kolkowska P, Tessari I, Baratto MC, Sinicropi A, Bubacco L, Mangani S, Pozzi C, Valensin D, Miller Y. Fibrils of α-Synuclein Abolish the Affinity of Cu2+-Binding Site to His50 and Induce Hopping of Cu2+ Ions in the Termini. Inorg Chem 2019; 58:10920-10927. [DOI: 10.1021/acs.inorgchem.9b01337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel N. Bloch
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Paulina Kolkowska
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Isabella Tessari
- Department of Biology, University of Padova, Via U. Bassi 58b 35122, Padova, Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Adalgisa Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Italian National Council for Research, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Firenze, Italy
| | - Luigi Bubacco
- Italian National Council for Research, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Firenze, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
31
|
Pan BB, Yang Y, Liu HZ, Li YH, Su XC. Coordination of Platinum to α-Synuclein Inhibits Filamentous Aggregation in Solution. Chembiochem 2019; 20:1953-1958. [PMID: 30958607 DOI: 10.1002/cbic.201900224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of filamentous aggregates of α-synuclein (AS) in Lewy bodies and neurites is characteristic of neurodegenerative diseases such as Parkinson's disease. Inhibition of AS fibrillation is helpful for understanding of AS aggregate structure and for developing chemical therapies. Herein, we report that the PtII -containing antitumor drug cisplatin suppresses filamentous aggregation of AS in solution. PtII thus contrasts strongly with reported transition-metal ions such as MnII , FeIII , and CuII , which accelerate AS aggregation. Interaction between PtII and the side chains of methionine and histidine residues was essential for inhibition of AS fibrillation. Binding of PtII to AS did not change the protein's overall random coil structure, as indicated by solution-state two-dimensional NMR and circular dichroism spectroscopy; and a solution of the AS⋅PtII complex remained free of filamentous aggregates. Our results constitute interesting new information about the biological chemistry of metal ions in Parkinson's disease and might open new lines of research into the suppression of filamentous aggregation.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Zhong Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Hua Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
32
|
Martínez-Orozco H, Mariño L, Uceda AB, Ortega-Castro J, Vilanova B, Frau J, Adrover M. Nitration and Glycation Diminish the α-Synuclein Role in the Formation and Scavenging of Cu 2+-Catalyzed Reactive Oxygen Species. ACS Chem Neurosci 2019; 10:2919-2930. [PMID: 30973706 DOI: 10.1021/acschemneuro.9b00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human α-synuclein is a small monomeric protein (140 residues) essential to maintain the function of the dopaminergic neurons and the neuronal redox balance. However, it holds a dark side since it is able to clump inside the neurons forming insoluble aggregates known as Lewy bodies, which are considered the hallmark of Parkinson's disease. Sporadic mutations and nonenzymatic post-translational modifications are well-known to stimulate the formation of Lewy bodies. Yet, the effect of nonenzymatic post-translational modifications on the function of α-synuclein has been studied less intense. Therefore, here we study how nitration and glycation mediated by methylglyoxal affect the redox features of α-synuclein. Both diminish the ability of α-synuclein to chelate Cu2+, except when Nε-(carboxyethyl)lysine or Nε-(carboxymethyl)lysine (two advanced glycation end products highly prevalent in vivo) are formed. This results in a lower capacity to prevent the Cu-catalyzed ascorbic acid degradation and to delay the formation of H2O2. However, only methylglyoxal was able to abolish the ability of α-synuclein to inhibit the free radical release. Both nitration and glycation enhanced the α-synuclein availability to be damaged by O2•-, although glycation made α-synuclein less reactive toward HO•. Our data represent the first report describing how nonenzymatic post-translational modifications might affect the redox function of α-synuclein, thus contributing to a better understanding of its pathological implications.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Laura Mariño
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
33
|
Abeyawardhane DL, Heitger DR, Fernández RD, Forney AK, Lucas HR. C-Terminal Cu II Coordination to α-Synuclein Enhances Aggregation. ACS Chem Neurosci 2019; 10:1402-1410. [PMID: 30384594 DOI: 10.1021/acschemneuro.8b00448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structurally dynamic amyloidogenic protein α-synuclein (αS) is universally recognized as a key player in Parkinson's disease (PD). Copper, which acts as a neuronal signaling agent, is also an effector of αS structure, aggregation, and localization in vivo. In humans, αS is known to carry an acetyl group on the starting methionine residue, capping the N-terminal free amine which was a known high-affinity CuII binding site. We now report the first detailed characterization data using electron paramagnetic resonance (EPR) spectroscopy to describe the CuII coordination modes of N-terminally acetylated αS (NAcαS). Through use of EPR hyperfine structure analyses and the Peisach-Blumberg correlation, an N3O1 binding mode was established that involves the single histidine residue at position 50 and a lower population of a second CuII-binding mode that may involve a C-terminal contribution. We additionally generated an N-terminally acetylated disease-relevant variant, NAcH50Q, that promotes a shift in the CuII binding site to the C-terminus of the protein. Moreover, fibrillar NAcH50Q-CuII exhibits enhanced parallel β-sheet character and increased hydrophobic surface area compared to NAcαS-CuII and to both protein variants that lack a coordinated cupric ion. The results presented herein demonstrate the differential impact of distinct CuII binding sites within NAcαS, revealing that C-terminal CuII binding exacerbates the structural consequences of the H50Q missense mutation. Likewise, the global structural modifications that result from N-terminal capping augment the properties of CuII coordination. Hence, consideration of the effect of CuII on NAcαS and NAcH50Q misfolding may shed light on the extrinsic or environmental factors that influence PD pathology.
Collapse
Affiliation(s)
| | - Denver R. Heitger
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ricardo D. Fernández
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ashley K. Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
34
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
35
|
Anion-specific interaction with human NQO1 inhibits flavin binding. Int J Biol Macromol 2019; 126:1223-1233. [PMID: 30615965 DOI: 10.1016/j.ijbiomac.2019.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
Ion binding to biomacromolecules can modulate their activity and stability in vivo. It is of particular interest to understand the structural and energetic basis of anion binding to functional sites of biomacromolecules. In this work, binding of anions to the FAD binding pocket of human NAD(P)H:quinone oxidoreductase 1 (NQO1), a flavoprotein associated with cancer due to a common polymorphism causing a P187S amino acid substitution, was investigated. It is known that NQO1 stability in vivo is strongly modulated by binding of its flavin cofactor. Herein, binding and protein stability analyses were carried out to show that anion binding to the apo-state of NQO1 P187S inhibits FAD binding with increasing strength following the chaotropic behavior of anions. These inhibitory effects were significant for some anions even at low millimolar concentrations. Additional pH dependent analyses suggested that protonation of histidine residues in the FAD binding pocket was not critical for anion or flavin binding. Overall, this detailed biophysical analysis helps to understanding how anions modulate NQO1 functionality in vitro, thus allowing hypothesize that NQO1 stability in vivo could be modulated by differential anion binding and subsequent inhibition of FAD binding.
Collapse
|
36
|
Ilyechova EY, Miliukhina IV, Orlov IA, Muruzheva ZM, Puchkova LV, Karpenko MN. A low blood copper concentration is a co-morbidity burden factor in Parkinson’s disease development. Neurosci Res 2018; 135:54-62. [DOI: 10.1016/j.neures.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
|
37
|
Atrián-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord Chem Rev 2018; 375:38-55. [PMID: 30262932 DOI: 10.1016/j.ccr.2018.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several diseases share misfolding of different peptides and proteins as a key feature for their development. This is the case of important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and type II diabetes mellitus. Even more, metal ions such as copper and zinc might play an important role upon interaction with amyloidogenic peptides and proteins, which could impact their aggregation and toxicity abilities. In this review, the different coordination modes proposed for copper and zinc with amyloid-β, α-synuclein and IAPP will be reviewed as well as their impact on the aggregation, and ROS production in the case of copper. In addition, a special focus will be given to the mutations that affect metal binding and lead to familial cases of the diseases. Different modifications of the peptides that have been observed in vivo and could be relevant for the coordination of metal ions are also described.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Paulina Gonzalez
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Alice Santoro
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Bruno Alies
- Université de Bordeaux, ChemBioPharm INSERM U1212 CNRS UMR 5320, Bordeaux, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
38
|
Kawahara M, Kato-Negishi M, Tanaka K. Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics 2018; 9:619-633. [PMID: 28516990 DOI: 10.1039/c7mt00046d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that disruption of metal homeostasis contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, prion diseases, Lewy body diseases, and vascular dementia. Conformational changes of disease-related proteins (amyloidogenic proteins), such as β-amyloid protein, prion proteins, and α-synuclein, are well-established contributors to neurotoxicity and to the pathogenesis of these diseases. Recent studies have demonstrated that these amyloidogenic proteins are metalloproteins that bind trace elements, including zinc, iron, copper, and manganese, and play significant roles in the maintenance of metal homeostasis. We present a current review of the role of trace elements in the functions and toxicity of amyloidogenic proteins, and propose a hypothesis integrating metal homeostasis and the pathogenesis of neurodegenerative diseases that is focused on the interactions among metals and between metals and amyloidogenic proteins at the synapse, considering that these amyloidogenic proteins and metals are co-localized at the synapse.
Collapse
Affiliation(s)
- M Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | |
Collapse
|
39
|
Karpenko MN, Ilyicheva EY, Muruzheva ZM, Milyukhina IV, Orlov YA, Puchkova LV. Role of Copper Dyshomeostasis in the Pathogenesis of Parkinson's Disease. Bull Exp Biol Med 2018; 164:596-600. [PMID: 29577200 DOI: 10.1007/s10517-018-4039-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Serum concentration of copper, immunoreactive polypeptides of ceruloplasmin and its oxidase activity, and the number of copper atoms per ceruloplasmin molecule were decreased in patients with Parkinson's disease in comparison with the corresponding parameters in age-matched healthy individuals, but the ratio of apoceruloplasmin to holoceruloplasmin in patients with Parkinson's disease was similar in both groups. Treatment of blood serum with Helex 100, a high-affinity copper chelator, revealed reduced content of labile copper atoms per ceruloplasmin molecule in patients with Parkinson's disease in comparison with that in healthy controls. The mechanism underlying impaired metabolic incorporation of labile copper atoms into CP molecule is discussed as a possible cause of copper dyshomeostasis associated with Parkinson's disease.
Collapse
Affiliation(s)
- M N Karpenko
- Institute of Experimental Medicine, St. Petersburg, Russia.,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - E Yu Ilyicheva
- Institute of Experimental Medicine, St. Petersburg, Russia. .,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.
| | - Z M Muruzheva
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - I V Milyukhina
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Yu A Orlov
- St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia
| | - L V Puchkova
- Institute of Experimental Medicine, St. Petersburg, Russia.,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
40
|
The Coordination Abilities of Three Novel Analogues of Saliva Peptides: The Influence of Structural Modification on the Copper Binding. Int J Pept Res Ther 2017; 23:409-418. [PMID: 29170620 PMCID: PMC5681609 DOI: 10.1007/s10989-016-9569-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 11/16/2022]
Abstract
Three novel analogues of salivary peptides as sialorphin (QHNPR) and opiorphin (QRFSR) were synthesized by the solid-phase method. The sequences of these ligands were following: AHNPR, QANPR and QRFPR. The aim of our work was investigation in what way some structural modifications may impact on coordination abilities of studied peptides. In this work we presented the interaction of pentapeptides with copper(II) ions in wide range of pH. To determine the coordination model of ligands there were carried out several studies by spectroscopy (UV–Vis, CD) methods and potentiometric measurements.
Collapse
|
41
|
Dell'Acqua S, Bacchella C, Monzani E, Nicolis S, Di Natale G, Rizzarelli E, Casella L. Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress. Inorg Chem 2017; 56:11317-11325. [PMID: 28846410 DOI: 10.1021/acs.inorgchem.7b01757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper(II) binding to prion peptides does not prevent Cu redox cycling and formation of reactive oxygen species (ROS) in the presence of reducing agents. The toxic effects of these species are exacerbated in the presence of catecholamines, indicating that dysfunction of catecholamine vesicular sequestration or recovery after synaptic release is a dangerous amplifier of Cu induced oxidative stress. Cu bound to prion peptides including the high affinity site involving histidines adjacent to the octarepeats exhibits marked catalytic activity toward dopamine and 4-methylcatechol. The resulting quinone oxidation products undergo parallel oligomerization and endogenous peptide modification yielding catechol adducts at the histidine binding ligands. These modifications add to the more common oxidation of Met and His residues produced by ROS. Derivatization of Cu-prion peptides is much faster than that undergone by Cu-β-amyloid and Cu-α-synuclein complexes in the same conditions.
Collapse
Affiliation(s)
- Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Stefania Nicolis
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppe Di Natale
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via P. Gaifami 18, Catania, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via P. Gaifami 18, Catania, Italy
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
42
|
Cheignon C, Jones M, Atrián-Blasco E, Kieffer I, Faller P, Collin F, Hureau C. Identification of key structural features of the elusive Cu-Aβ complex that generates ROS in Alzheimer's disease. Chem Sci 2017; 8:5107-5118. [PMID: 28970897 PMCID: PMC5613283 DOI: 10.1039/c7sc00809k] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is linked to the etiology of Alzheimer's disease (AD), the most common cause of dementia in the elderly. Redox active metal ions such as copper catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ) peptide encountered in AD. We propose that this reaction proceeds through a low-populated Cu-Aβ state, denoted the "catalytic in-between state" (CIBS), which is in equilibrium with the resting state (RS) of both Cu(i)-Aβ and Cu(ii)-Aβ. The nature of this CIBS is investigated in the present work. We report the use of complementary spectroscopic methods (X-ray absorption spectroscopy, EPR and NMR) to characterize the binding of Cu to a wide series of modified peptides in the RS. ROS production by the resulting Cu-peptide complexes was evaluated using fluorescence and UV-vis based methods and led to the identification of the amino acid residues involved in the Cu-Aβ CIBS species. In addition, a possible mechanism by which the ROS are produced is also proposed. These two main results are expected to affect the current vision of the ROS production mechanism by Cu-Aβ but also in other diseases involving amyloidogenic peptides with weakly structured copper binding sites.
Collapse
Affiliation(s)
- Clémence Cheignon
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
- UMR 152 Pharma Dev , Université de Toulouse , IRD , UPS , France
| | - Megan Jones
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Elena Atrián-Blasco
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Isabelle Kieffer
- Observatoire des Sciences de l'Univers de Grenoble (OSUG) , CNRS UMS 832 , 414 Rue de la Piscine , 38400 Saint Martin d'Hères , France
- BM30B/FAME , ESRF , The European Synchrotron , 71 Avenue des Martyrs , 38000 Grenoble , France
| | - Peter Faller
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Fabrice Collin
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
- UMR 152 Pharma Dev , Université de Toulouse , IRD , UPS , France
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| |
Collapse
|
43
|
Okita Y, Rcom-H'cheo-Gauthier AN, Goulding M, Chung RS, Faller P, Pountney DL. Metallothionein, Copper and Alpha-Synuclein in Alpha-Synucleinopathies. Front Neurosci 2017; 11:114. [PMID: 28420950 PMCID: PMC5380005 DOI: 10.3389/fnins.2017.00114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Metallothioneins (MTs) are proteins that function by metal exchange to regulate the bioavailability of metals, such as zinc and copper. Copper functions in the brain to regulate mitochondria, neurotransmitter production, and cell signaling. Inappropriate copper binding can result in loss of protein function and Cu(I)/(II) redox cycling can generate reactive oxygen species. Copper accumulates in the brain with aging and has been shown to bind alpha-synuclein and initiate its aggregation, the primary aetiological factor in Parkinson's disease (PD), and other alpha-synucleinopathies. In PD, total tissue copper is decreased, including neuromelanin-bound copper and there is a reduction in copper transporter CTR-1. Conversely cerebrospinal fluid (CSF) copper is increased. MT-1/2 expression is increased in activated astrocytes in alpha-synucleinopathies, yet expression of the neuronal MT-3 isoform may be reduced. MTs have been implicated in inflammatory states to perform one-way exchange of copper, releasing free zinc and recent studies have found copper bound to alpha-synuclein is transferred to the MT-3 isoform in vitro and MT-3 is found bound to pathological alpha-synuclein aggregates in the alpha-synucleinopathy, multiple systems atrophy. Moreover, both MT and alpha-synuclein can be released and taken up by neural cells via specific receptors and so may interact both intra- and extra-cellularly. Here, we critically review the role of MTs in copper dyshomeostasis and alpha-synuclein aggregation, and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuho Okita
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| | | | - Michael Goulding
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Peter Faller
- Centre National de la Recherche Scientifique, Institut de Chimie UMR 7177, Université de StrasbourgStrasbourg, France.,University of Strasbourg Institute for Advanced StudyStrasbourg, France
| | - Dean L Pountney
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| |
Collapse
|
44
|
Toni M, Massimino ML, De Mario A, Angiulli E, Spisni E. Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach. Front Neurosci 2017; 11:3. [PMID: 28154522 PMCID: PMC5243831 DOI: 10.3389/fnins.2017.00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the β sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression “prion-like diseases” refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid β, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and on low intake of meat, could play a preventive or delaying role in prion and prion-like neurodegenerative diseases. In this review, metal role in the onset of prion and prion-like diseases is dealt with from a nutritional, cellular, and molecular point of view.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Maria L Massimino
- National Research Council (CNR), Neuroscience Institute c/o Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Elisa Angiulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
45
|
|
46
|
Role of neurotoxicants and traumatic brain injury in α-synuclein protein misfolding and aggregation. Brain Res Bull 2016; 133:60-70. [PMID: 27993598 DOI: 10.1016/j.brainresbull.2016.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
Abstract
Protein misfolding and aggregation are key pathological features of many neurodegenerative diseases including Parkinson's disease (PD) and other forms of human Parkinsonism. PD is a complex and multifaceted disorder whose etiology is not fully understood. However, several lines of evidence support the multiple hit hypothesis that genetic vulnerability and environmental toxicants converge to trigger PD pathology. Alpha-synuclein (α-Syn) aggregation in the brain is an important pathophysiological characteristic of synucleinopathies including PD. Epidemiological and experimental studies have shown that metals and pesticides play a crucial role in α-Syn aggregation leading to the onset of various neurodegenerative diseases including PD. In this review, we will emphasize key findings of several epidemiological as well as experimental studies of metal- and pesticide-induced α-Syn aggregation and neurodegeneration. We will also discuss other factors such as traumatic brain injury and oxidative insult in the context of α-Syn-related neurodegenerative processes.
Collapse
|
47
|
Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity. Proc Natl Acad Sci U S A 2016; 113:E6506-E6515. [PMID: 27708160 DOI: 10.1073/pnas.1606791113] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity.
Collapse
|