1
|
Chen Y, Ke Z, Yuan L, Liang M, Zhang S. Hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline complexes as potential anticancer agents: synthesis, characterization and anticancer evaluation. Dalton Trans 2023; 52:12318-12331. [PMID: 37591821 DOI: 10.1039/d3dt01750h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We synthesized and analyzed nine unique copper(II) hydrazylpyridine salicylaldehyde and 1,10-phenanthroline complexes, [Cu(L1a)(phen)] (Cugdupt1), [Cu(L2a)(phen)]·(CH3CN) (Cugdupt2), [Cu(L3a)(phen)] (Cugdupt3), [Cu(L4a)(phen)]·(CH3CN) (Cugdupt4), [Cu(L5a)(phen)] (Cugdupt5), [Cu(L6a)(phen)] (Cugdupt6), [Cu(L7a)(phen)] (Cugdupt7) [Cu(L8a)(phen)] (Cugdupt8) and [Cu(L9a)(phen)]·0.5(H2O) (Cugdupt9). We were motivated by the intriguing properties of the coupled ligands of hydrazylpyridine, salicylaldehyde, and 1,10-phenanthroline. The MTT assay demonstrated that Cugdupt1-Cugdupt9 have higher anticancer activity than L1H2-L9H2, phen and cisplatin on A549/DDP cancer cells (A549cis). Cugdupt1-Cugdupt9 were superior to cisplatin with IC50 values of 1.6-100.0 fold on A549cis cells (IC50(Cugdupt1-Cugdupt9) = 0.5-30.5 μM, IC50(cisplatin) = 61.5 ± 1.0 μM). However, Cugdupt1-Cugdupt9 had lower cytotoxicity toward the HL-7702 normal cells. Cugdupt1 and Cugdupt8 can induce reduction of mitochondrial respiratory chain complexes I/IV (MRCC-I/IV), mitophagy pathways, and eventually protein regulation and adenosine triphosphate (ATP) depletion in A549cis cells. The findings indicated that Cugdupt1 and Cugdupt8 caused cell death via both ATP diminution and mitophagy pathways. Finally, Cugdupt8 demonstrated high efficacy and no obvious cytotoxicity in A549 tumor-bearing mice. This study thus helps evaluate the potential of the hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline compounds for cisplatin-resistant tumor therapy.
Collapse
Affiliation(s)
- Yating Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Zhilin Ke
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Lingyu Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Meixiang Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| |
Collapse
|
2
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
3
|
Yang H, Lin XJ, Liu Q, Yu H. Effects of protease inhibitors on dentin erosion: an in situ study. Clin Oral Investig 2023; 27:1005-1012. [PMID: 35925407 DOI: 10.1007/s00784-022-04657-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This in situ study aimed to evaluate the effects of the inhibitors of matrix metalloproteinases (MMPs) and cysteine cathepsins on dentin erosion. MATERIALS AND METHODS Ten volunteers participated in this study. Each volunteer wore an intraoral appliance containing 4 dentin specimens subjected to different treatments: deionized water as a control, 1 mM 1,10-phenanthroline (an MMP inhibitor), 50 µM E-64 (a cysteine cathepsin inhibitor), and 1 mM 1,10-phenanthroline + 50 µM E-64. The specimens were dipped in 5 ml of the respective solutions for 30 min at room temperature and then exposed to in vivo erosive challenges by rinsing with 150 ml of a cola drink (4 × 5 min/day) for 7 days. The substance loss of the specimens was measured by profilometry. The transverse sections of the specimens were examined using scanning electron microscopy. Thereafter, the demineralized organic matrix (DOM) of the specimens was removed using type I collagen enzyme and assessed by performing profilometry. The differences in substance loss and DOM thickness among the groups were analyzed by one-way repeated-measures analysis of variance (ANOVA) and Bonferroni's test at a level of P < 0.05. RESULTS Protease inhibitors significantly reduced substance loss in comparison to that of the control group (all P < 0.05). A significantly thicker DOM was observed for the specimens treated with protease inhibitors than for the control specimens (all P < 0.05). No significant differences in substance loss or DOM thickness were found among the MMP inhibitor, cysteine cathepsin inhibitor, and MMP + cysteine cathepsin inhibitor groups. CONCLUSIONS The use of MMP and cysteine cathepsin inhibitors was shown to increase the acid resistance of human dentin, which may be due to the preservation of the DOM. CLINICAL RELEVANCE The application of protease inhibitors could be considered an appropriate preventive strategy for dentin erosion.
Collapse
Affiliation(s)
- Hui Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Qiong Liu
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China. .,Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China. .,Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan. .,Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Yangqiao Zhong Road 246, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Lin X, Tong X, Yang H, Chen Y, Yu H. Do matrix metalloproteinase and cathepsin K inhibitors work synergistically to reduce dentin erosion? J Appl Oral Sci 2023; 31:e20220449. [PMID: 37162106 PMCID: PMC10167948 DOI: 10.1590/1678-7757-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/22/2023] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVES To evaluate the effects of matrix metalloproteinase (MMP) and cathepsin K (catK) inhibitors on resistance to dentin erosion. METHODOLOGY A total of 96 dentin specimens (3×3×2 mm) were prepared and randomly assigned into four groups (n=24): deionized water (DW); 1 µM odanacatib (ODN, catK inhibitor); 1 mM 1,10-phenanthroline (PHEN, MMP inhibitor); and 1 µM odanacatib + 1 mM 1,10-phenanthroline (COM). Each group was further divided into two subgroups for the application of treatment solutions before (PRE) and after erosive challenges (POST). All specimens were subjected to four daily erosive challenges for 5 d. For each erosive challenge, the specimens in subgroup PRE were immersed in the respective solutions before cola drinks, while the specimens in subgroup POST were immersed in the respective solutions after cola drinks (the immersion duration was 5 min in both cases). All specimens were stored in artificial saliva at 37°C between erosive challenges. The erosive dentin loss (EDL) was measured by profilometry. The residual demineralized organic matrix (DOM) of specimens was removed using type VII collagenase and evaluated by profilometry. Both the EDL and thickness of the residual DOM were statistically analyzed by two-way analysis of variance (ANOVA) and Bonferroni's test (α=0.05). The surface topography and transverse sections of the specimens were observed using SEM. MMPs and catK were immunolabeled in the eroded dentin and in situ zymography was performed to evaluate the enzyme activity. RESULTS Significantly lower EDL was found in the groups ODN, PHEN, and COM than in the control group (all p<0.05), while no significant difference in EDL was found among the groups ODN, PHEN, and COM (all p>0.05). The application sequence showed no significant effect on the EDL of the tested groups (p=0.310). A significantly thicker DOM was observed in the group ODN than in the control group regardless of the application sequence (both p<0.05). The treatment with ODN, PHEN, and COM inhibited the gelatinolytic activity by approximately 46.32%, 58.6%, and 74.56%, respectively. CONCLUSIONS The inhibition of endogenous dentinal MMPs and catK increases the acid resistance of human dentin but without an apparent synergistic effect. The inhibition of MMPs and catK is equally effective either before or after the acid challenge.
Collapse
Affiliation(s)
- Xiujiao Lin
- Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
- Fujian Medical University, Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fuzhou, China
| | - Xinwen Tong
- Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
- Fujian Medical University, Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fuzhou, China
| | - Hui Yang
- Tohoku University, Graduate School of Dentistry, Liaison Center for Innovative Dentistry, Sendai, Japan
| | - Yiying Chen
- Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
- Fujian Medical University, Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fuzhou, China
| | - Hao Yu
- Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
- Fujian Medical University, Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fuzhou, China
- Nagasaki University, Graduate School of Biomedical Sciences, Department of Applied Prosthodontics, Nagasaki, Japan
| |
Collapse
|
5
|
Caro-Ramírez JY, Rivas MG, Gonzalez PJ, Williams PAM, Naso LG, Ferrer EG. Copper(II) cation and bathophenanthroline coordination enhance therapeutic effects of naringenin against lung tumor cells. Biometals 2022; 35:1059-1076. [PMID: 35931942 DOI: 10.1007/s10534-022-00422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
Abstract
The development of new anticancer compounds is one of the challenges of bioinorganic and medicinal chemistry. Naringenin and its metal complexes have been recognized as promising inhibitors of cell proliferation, having enormous potential to act as an antioxidant and antitumorigenic agent. Lung cancer is the second most commonly diagnosed type of cancer. Therefore, this study is devoted to investigate the effects of Cu(II), naringenin (Nar), binary Cu(II)-naringenin complex (CuNar), and the Cu(II)-naringenin containing bathophenanthroline as an auxiliary ligand (CuNarBatho) on adenocarcinoma human alveolar basal epithelial cells (A549 cells) that are used as models for the study of drug therapies against lung cancer. The ternary complex shows selectivity being high cytotoxic against malignant cells. The cell death generated by CuNarBatho involves ROS production, loss of mitochondrial membrane potential, and depletion of GSH level and GSH/GSSG ratio. The structure-relationship activity was assessed by comparison with the reported Cu(II)-naringenin-phenanthroline complex. The CuNarBatho complex was synthesized and characterized by elemental analysis, molar conductivity, mass spectrometry, thermogravimetric measurements and UV-VIS, FT-IR, EPR, Raman and 1H-NMR spectroscopies. In addition, the binding to bovine serum albumin (BSA) was studied at the physiological conditions (pH = 7.4) by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina
| | - María G Rivas
- Departamento de Física, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA, Santa Fe, Argentina
| | - Pablo J Gonzalez
- Departamento de Física, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA, Santa Fe, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina.
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Falkievich DB, Martínez Medina JJ, Alegre WS, López Tévez LL, Franca CA, Ferrer EG, Williams PAM. Computational studies, antimicrobial activity, inhibition of biofilm production and safety profile of the cadmium complex of 1,10‐phenanthroline and cyanoguanidine. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Carlos A. Franca
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| | - Evelina G. Ferrer
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| | - Patricia A. M. Williams
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| |
Collapse
|
7
|
Das A, Sharma P, Gomila RM, Frontera A, Verma AK, Sarma B, Bhattacharyya MK. Synthesis, structural topologies and anticancer evaluation of phenanthroline-based 2,6-pyridinedicarboxylato Cu(II) and Ni(II) compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Abstract
Metal complexation in general improves the biological properties of ligands. We have previously measured the anticancer effects of the oxidovanadium(IV) cation with chrysin complex, VO(chrys)2. In the present study, we synthesized and characterized a new complex generated by the replacement of one chrysin ligand by phenanthroline (phen), VO(chrys)phenCl, to confer high planarity for DNA chain intercalation and more lipophilicity, giving rise to a better cellular uptake. In effect, the uptake of vanadium has been increased in the complex with phen and the cytotoxic effect of this complex proved higher in the human lung cancer A549 cell line, being involved in its mechanisms of action, the production of cellular reactive oxygen species (ROS), the decrease of the natural antioxidant compound glutathione (GSH) and the ratio GSH/GSSG (GSSG, oxidized GSH), and mitochondrial membrane damage. Cytotoxic activity studies using the non-tumorigenic HEK293 cell line showed that [VO(chrys)phenCl] exhibits selectivity action towards A549 cells after 24 h incubation. The interaction with bovine serum albumin (BSA) by fluorometric determinations showed that the complex could be carried by the protein and that the binding of the complex to BSA occurs through H-bond and van der Waals interactions.
Collapse
|
9
|
Masuri S, Vaňhara P, Cabiddu MG, Moráň L, Havel J, Cadoni E, Pivetta T. Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action. Molecules 2021; 27:49. [PMID: 35011273 PMCID: PMC8746828 DOI: 10.3390/molecules27010049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| |
Collapse
|
10
|
Saccharomyces cerevisiae DNA repair pathways involved in repair of lesions induced by mixed ternary mononuclear Cu(II) complexes based on valproic acid with 1,10-phenanthroline or 2,2'- bipyridine ligands. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503390. [PMID: 34454693 DOI: 10.1016/j.mrgentox.2021.503390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 11/21/2022]
Abstract
The sodium valproate has been largely used as an anti-epilepsy drug and, recently, as a putative drug in cancer therapy. However, the treatment with sodium valproate has some adverse effects. In this sense, more effective and secure complexes than sodium valproate should be explored in searching for new active drugs. This study aims to evaluate the cytotoxicity of sodium valproate, mixed ternary mononuclear Cu(II) complexes based on valproic acid (VA) with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) ligands - [Cu2(Valp)4], [Cu(Valp)2Phen] and [Cu(Valp)2Bipy] - in yeast Saccharomyces cerevisiae, proficient or deficient in different repair pathways, such as base excision repair (BER), nucleotide excision repair (NER), translesion synthesis (TLS), DNA postreplication repair (PRR), homologous recombination (HR) and non-homologous end-joining (NHEJ). The results indicated that the Cu(II) complexes have higher cytotoxicity than sodium valproate in the following order: [Cu(Valp)2Phen] > [Cu(Valp)2Bipy] > [Cu2(Valp)4] > sodium valproate. The treatment with Cu(II) complexes and sodium valproate induced mutations in S. cerevisiae. The data indicated that yeast strains deficient in BER (Ogg1p), NER (complex Rad1p-Rad10p) or TLS (Rev1p, Rev3p and Rad30p) proteins are associated with increased sensitivity to sodium valproate. The BER mutants (ogg1Δ, apn1Δ, rad27Δ, ntg1Δ and ntg2Δ) showed increased sensitivity to Cu(II) complexes. DNA damage induced by the complexes requires proteins from NER (Rad1p and Rad10p), TLS (Rev1p, Rev3p and Rad30p), PRR (Rad6 and Rad18p) and HR (Rad52p and Rad50p) for efficient repair. Therefore, Cu(II) complexes display enhanced cytotoxicity when compared to the sodium valproate and induce distinct DNA lesions, indicating a potential application as cytotoxic agents.
Collapse
|
11
|
Fei BL, Hui CN, Wei Z, Kong LY, Long JY, Qiao C, Chen ZF. Copper(II) and iron(III) complexes of chiral dehydroabietic acid derived from natural rosin: metal effect on structure and cytotoxicity. Metallomics 2021; 13:6188400. [PMID: 33765148 DOI: 10.1093/mtomcs/mfab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
A novel optically pure dinuclear copper(II) complex of a rosin derivative dehydroabietic acid (DHA, HL) was synthesized and fully characterized. The in vitro antitumor activities of the copper(II) complex Cu2(µ2-O)(L)4(DMF)2 (1) were explored and compared with those of a trinuclear iron(III) complex [Fe3(µ3-O)(L)6(CH3OH)2(CH3O)]·H2O (2). 1 was more cytotoxic than 2, and the in vitro cytotoxicity of 1 was comparable to that of cisplatin and oxaliplatin. The metal coordination improved the cytotoxicity of DHA. 1 could arrest cycle in G1 phase and induce apoptosis in MCF-7 cell. 1 increased reactive oxygen species level, GSSG/GSH ratio, and Ca2+ production, and caused the loss of mitochondrial membrane potential (Δψm) in MCF-7 cells. The up-regulated Bax and down-regulated Bcl-2 expression levels, caspase-9/caspase-3 activation, and the release of Cyt c demonstrate that 1 triggered mitochondria-mediated intrinsic apoptosis in MCF-7 cells. Caspase-8/caspase-4 activation and up-regulated Fas expression indicate that death receptor-mediated extrinsic apoptosis was included. Comet assay and up-regulated γ-H2AX and p53 expressions confirmed that 1 caused DNA damage in MCF-7 cells. Moreover, 1 led to enhancement of the biomarker of lipid peroxidation and the indicator of protein carbonylation in MCF-7 cells. All the results suggest that 1 could kill MCF-7 cells by generating oxidative stress, impairing DNA, promoting lipid peroxidation and protein carbonylation, and inducing apoptosis and autophagy. Furthermore, 1 also displayed antimetastatic activities with inhibition of cell invasion and migration, together with antiangiogenesis properties. On the whole, copper complex based on rosin derivatives is worth developing as metal-based antitumor drugs.
Collapse
Affiliation(s)
- Bao-Li Fei
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Chun-Nuan Hui
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zuzhuang Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Ling-Yan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian-Ying Long
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chunhua Qiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|