1
|
Kucuk I, Küçükşahin ÖB, Yildirim M, Kabir MZ, Silah H, Celik I, Uslu B. Investigation of the molecular interaction between apraclonidine, an α2-adrenergic receptor agonist, and bovine serum albumin using fluorescence and molecular docking techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125246. [PMID: 39423554 DOI: 10.1016/j.saa.2024.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Apraclonidine (APR) is a potent and selective α2-adrenergic receptor agonist used in the diagnosis of Horner's Syndrome, and the residuals of APR that accumulate in tissues of animals can cause central nervous and cardiovascular systems influences in humans. Therefore, to understand the influence of APR on human health, we examined the interaction of APR with the carrier protein in plasma, bovine serum albumin (BSA). The BSA fluorescence signal was quenched due to the APU-BSA complex formation and a weak binding affinity was estimated between APR and BSA. The inclusion of fluorescence, UV-vis absorption, molecular docking, and dynamics simulation techniques employed to broadly investigate the combination of APR with BSA at typical physiological conditions. The thermodynamic results revealed that enthalpy (ΔH0) and entropy (ΔS0) changes were computed as +11.14 kJ mol-1 and +97.56 J mol-1 K-1, respectively, which represented the binding is principally entropy-driven and the hydrophobic forces acting a significant role in the reaction. Analysis of synchronous and 3-D fluorescence signals revealed microenvironmental variations close to BSA's Trp and Tyr residues upon APR addition. Both the competitive site marker as well as molecular docking results detected that APR exhibited a stronger binding affinity towards Drug Site 2 (DS2) compared to Drug Site 1 (DS1).
Collapse
Affiliation(s)
- Ipek Kucuk
- Başkent University, Faculty of Pharmacy, Department of Analytical Chemistry, 06790 Etimesgut, Ankara, Turkiye; Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye
| | - Öykü Buket Küçükşahin
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye
| | - Merve Yildirim
- Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye; Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 38039 Kayseri, Turkiye
| | - Md Zahirul Kabir
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye
| | - Hülya Silah
- Bilecik Seyh Edebali University, Faculty of Science, Department of Chemistry, 11210 Bilecik, Turkiye.
| | - Ismail Celik
- Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 38039 Kayseri, Turkiye.
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye.
| |
Collapse
|
2
|
Liang L, Lin L, Zhao M. Combination of Lycium barbarum polysaccharide and chlorogenic acid: Characterization of solution property, interaction, and regulatory function on typical gut Bacteroides and pathogens. Food Chem 2025; 471:142779. [PMID: 39813830 DOI: 10.1016/j.foodchem.2025.142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/11/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Lycium barbarum polysaccharide (LBP) is a prebiotic that promotes the proliferation of beneficial bacteria, but lacks of regulatory function on harmful bacteria. In this study, chlorogenic acid (CGA) was used to achieve the functional enhancement of two LBPs (LBP-A and LBP-M). The combination of CGA resulted in changes in the solution properties of LBPs, manifested as increased pseudoplasticity, viscosity, turbidity, and decreased water mobility, absolute potential value, pH value. CGA was non-covalently bound to LBPs through hydrophobic interaction and hydrogen bond. LBP-A had strong affinity with CGA, mainly through hydrophobic interaction, while LBP-M had weak affinity with CGA, mainly through hydrogen bond. Both LBP-CGA complexes exhibited Bacteroides proliferative activity and gut pathogens inhibitory activity, among which LBP-A-CGA complex showed strong inhibitory effects on Escherichia coli and Bacillus cereus, and LBP-M-CGA complex showed strong inhibitory effect on Staphylococcus aureus. This study provided guidance for the development of LBP-CGA as novel prebiotic.
Collapse
Affiliation(s)
- Lisi Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| |
Collapse
|
3
|
Murathan Z, Zahirul Kabir M, Seng J, Mohamad SB, Uslu B. Multi-spectral and docking assessments to explore the combination of an antiviral drug, entecavir with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124792. [PMID: 38981287 DOI: 10.1016/j.saa.2024.124792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Molecular interaction of entecavir (ETV) with the transport protein, albumin from bovine serum (BSA) was explored through multispectral and molecular docking approaches. The BSA fluorescence was appreciably quenched upon ETV binding and the quenching nature was static. The ETV-BSA complexation and the static quenching process were further reiterated using UV-visible absorption spectra. The binding constant (Ka) values of the complex were found as 1.47 × 104-4.0 × 103 M-1, which depicting a modarate binding strength in the ETV-BSA complexation. The experimental outcomes verified that the stable complexation was primarily influenced by hydrophobic interactions, hydrogen bonds and van der Waals forces. Synchronous and 3-D fluorescence spectral results demonstrated that ETV had significant impact on the hydrophobicity and polarity of the molecular environment near Tyr and Trp residues. Competitive site-markers displacement (with warfarin and ketoprofen) results discovered the suitable binding locus of ETV at site I in BSA. The molecular docking assessments also revealed that ETV formed hydrogen bonds and hydrophobic interactions with BSA, predominantly binding to site I (sub-domain IIA) of BSA.
Collapse
Affiliation(s)
- Zeynep Murathan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Md Zahirul Kabir
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| | - Jane Seng
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
4
|
Lv C, Xu J, Pan T, Shi W, Zhang W, Wu Y, Li Y, Cao L, Zhan F, Fan S, Deng J, Zhang L. Spectroscopic study and in vitro anticancer effect toward colorectal cancer cells of a hydroxyaurone leptosidin compound complexed with transferrin. Int J Biol Macromol 2024; 282:136874. [PMID: 39476908 DOI: 10.1016/j.ijbiomac.2024.136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
This paper investigated the interaction between leptosidin, an aurone-based derivative and a subset of the flavone family, and transferrin using a variety of spectroscopic, molecular docking, and molecular dynamic investigations. The anticancer mechanism of leptosidin and transferrin-leptosidin complex against colorectal cancer cells was then assessed. It was demonstrated that the addition of leptosidin resulted in a significant quenching of transferrin's fluorescence intensity and a redshift of 8 nm. Moreover, a static transferrin-leptosidin complex with a single binding capability and logKa values ranging from 4.80 to 4.43 was generated, mostly by hydrogen bonding and electrostatic interactions. Fluctuations and disruptions in the transferrin structure and binding site properties were discovered through molecular docking, synchronous fluorescence spectroscopy, second derivative fluorescence spectroscopy, circular dichroism (CD), and molecular dynamic simulation studies after interaction with leptosidin. Cellular assays showed that complexing leptosidin with transferrin improved its anticancer effects in colorectal cancer cells. Better cellular internalization, membrane leakage, inhibition of colony formation, and upregulation of caspase-9 and -3 expression and activity in comparison with leptosidin were the mechanisms underlying the improved anticancer effect of complex species. Finally, it was demonstrated that the leptosidin-transferrin complex's antiproliferative actions were mediated by the downregulation of the PI3K/Akt signaling pathway in colorectal cancer cells. Further research is necessary to fully understand the evolution of anticancer drug-protein complexes, although this paper may provide insightful information in the interim.
Collapse
Affiliation(s)
- Chunxin Lv
- Oncology Department, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Jiayi Xu
- Geriatric Department, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Wen Shi
- Department of Dermatology, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuesong Wu
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Diagnosis and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yaoxu Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Diagnosis and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing 404100, China; Department of Stomatology, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing University, School of Medicine, Chongqing, 404000, China
| | - Shanshan Fan
- Oncology Department, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China.
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, SE1 1UL, United Kingdom.
| | - Lei Zhang
- Department of Gastroenterology, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China.
| |
Collapse
|
5
|
Behera T, Sethi S, Rout J, Bag BP, Behera N. Unravelling molecular interaction of the uranyl(VI) complex with bovine serum albumin. Phys Chem Chem Phys 2024; 26:26431-26442. [PMID: 39392100 DOI: 10.1039/d4cp02529f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Interest in the biotoxicology of uranium resulting from its inherent radioactive as well as chemical properties has been growing intensely in recent years. Indeed, uranium in its stable form as UO22+ species is ubiquitously found on earth, and this form is commonly known as the uranyl(VI) ion. The unusual electronic environment at the core of the uranyl(VI) complex plays an important role in its interaction with biomacromolecules. Based on the spectroscopic and computational studies, we have explored the interaction of the uranyl(VI) complex with BSA. The results showed that the fluorescence intensity of BSA was quenched upon interaction with the uranyl(VI) complex largely through dynamic mode, which was authenticated by Stern-Volmer calculations and fluorescence lifetime measurements at different temperatures. Fluorescence anisotropy and synchronous fluorescence spectroscopy were performed to understand the micro-environments of the fluorophores. Furthermore, the binding constant, standard free energy and number of binding sites were also calculated. Thermodynamic parameters such as ΔH° and ΔS° revealed that the non-covalent interactions played a principal role in the binding of the uranyl(VI) complex to BSA, and the value of ΔG° indicated the spontaneity of the interaction. Using the site marker fluorescent probes, the binding location of the uranyl(VI) complex at the BSA site was established. This was further supported by the molecular docking technique with a docking free energy of -38.91 kJ mol-1, indicating the non-covalent binding of the uranyl(VI) complex with BSA active sites. This piece of work may contribute mostly to understanding the pharmacokinetics of the uranyl(VI) complex and provide fundamental data on its safe usage.
Collapse
Affiliation(s)
- Tankadhar Behera
- School of Chemistry, Sambalpur University, Jyoti Vihar-768019, Sambalpur, Odisha, India.
| | - Sipun Sethi
- School of Chemistry, Sambalpur University, Jyoti Vihar-768019, Sambalpur, Odisha, India.
- Department of Chemistry, Panchayat College, Bargarh, Odisha 768028, India
| | - Jyotiprabha Rout
- School of Chemistry, Sambalpur University, Jyoti Vihar-768019, Sambalpur, Odisha, India.
| | - Bhawani Prasad Bag
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar-768019, Sambalpur, Odisha, India.
| | - Nabakrushna Behera
- School of Chemistry, Sambalpur University, Jyoti Vihar-768019, Sambalpur, Odisha, India.
| |
Collapse
|
6
|
Shahabadi N, Ghaffari L. A comprehensive investigation of the nano-[Cu 2-(DIP) 2-EA] effects on HSA through spectroscopic procedures and computer simulations. Heliyon 2024; 10:e38432. [PMID: 39398021 PMCID: PMC11466673 DOI: 10.1016/j.heliyon.2024.e38432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
In this research, the toxicity of nano-[Cu2-(DIP)2-EA], a metal nano-complex consisting of ellagic acid and bathophenanthroline ligands, on human serum albumin (HSA) at a protein level was investigated. Molecular docking simulations and spectral analyses were conducted in a simulated physiological environment at pH 7.4 to explore the interaction of nano-[Cu2-(DIP)2-EA] with HSA. The results represented an increase in albumin absorption upon exposure to nano-[Cu2-(DIP)2-EA], demonstrating significant interaction between the two compounds. Steady-state and time-resolved fluorescence measurements pointed out that nano-[Cu2-(DIP)2-EA] induced static quenching of the albumin's intrinsic fluorescence with a high binding affinity of approximately 106 mol/L in a 1:1 interaction ratio. The thermodynamic variables clarified that binding of nano-[Cu2-(DIP)2-EA] to albumin occurs spontaneously and primarily driven by van der Waals interactions and H-bonds. The results of the computer simulations and the binding displacement experiments utilizing the site markers warfarin and ibuprofen revealed that nano-[Cu2-(DIP)2-EA] binds to site I within the subdomain IIA of albumin. Circular dichroism analysis elaborated that nano-[Cu2-(DIP)2-EA] slightly perturbed the microenvironment around of tryptophan residues and diminished the α-helix structure stability to a negligible amount.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Lida Ghaffari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
7
|
Dombi G, Tyukodi L, Dobó M, Molnár G, Rozmer Z, Szabó ZI, Fiser B, Tóth G. Enantioselective Binding of Proton Pump Inhibitors to Alpha1-Acid Glycoprotein and Human Serum Albumin-A Chromatographic, Spectroscopic, and In Silico Study. Int J Mol Sci 2024; 25:10575. [PMID: 39408903 PMCID: PMC11477000 DOI: 10.3390/ijms251910575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The enantioselective binding of three proton pump inhibitors (PPIs)-omeprazole, rabeprazole, and lansoprazole-to two key plasma proteins, α1-acid glycoprotein (AGP) and human serum albumin (HSA), was characterized. The interactions between PPI enantiomers and proteins were investigated using a multifaceted analytical approach, including high-performance liquid chromatography (HPLC), fluorescence and UV spectroscopy, as well as in silico molecular docking. HPLC analysis demonstrated that all three PPIs exhibited enantioseparation on an AGP-based chiral stationary phase, suggesting stereoselective binding to AGP, while only lansoprazole showed enantioselective binding on the HSA-based column. Quantitatively, the S-enantiomers of omeprazole and rabeprazole showed higher binding affinity to AGP, while the R-enantiomer of lansoprazole displayed greater affinity for AGP, with a reversal in the elution order observed between the two protein-based columns. Protein binding percentages, calculated via HPLC, were greater than 88% for each enantiomer across both transport proteins, with all enantiomers displaying higher affinity for AGP compared to HSA. Thermodynamic analysis indicated that on the HSA, the more common, enthalpy-controlled enantioseparation was found, while in contrast, on the AGP, entropy-controlled enantioseparation was observed. The study also identified limitations in using fluorescence titration due to the high native fluorescence of the compounds, whereas UV titration was effective for both proteins. The determined logK values were in the range of 4.47-4.83 for AGP and 4.02-4.66 for HSA. Molecular docking supported the experimental findings by revealing the atomic interactions driving the binding process, with the predicted enantiomer elution orders aligning with experimental data. The comprehensive use of these analytical methods provides detailed insights into the enantioselective binding properties of PPIs, contributing to the understanding of their pharmacokinetic differences and aiding in the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Gergely Dombi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes E. 9, 1092 Budapest, Hungary; (G.D.); (M.D.); (G.M.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Levente Tyukodi
- Department of Pharmaceutical Chemistry, University of Pécs, 7624 Pécs, Hungary; (L.T.); (Z.R.)
| | - Máté Dobó
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes E. 9, 1092 Budapest, Hungary; (G.D.); (M.D.); (G.M.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Gergely Molnár
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes E. 9, 1092 Budapest, Hungary; (G.D.); (M.D.); (G.M.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna Rozmer
- Department of Pharmaceutical Chemistry, University of Pécs, 7624 Pécs, Hungary; (L.T.); (Z.R.)
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540142 Targu Mures, Romania;
- Sz-Imfidum Ltd., 525401 Lunga nr 504, 525401 Targu Mures, Romania
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary;
- Department of Biology and Chemistry, Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, Transcarpathia, 90200 Beregszasz, Ukraine
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-149 Łódź, Poland
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes E. 9, 1092 Budapest, Hungary; (G.D.); (M.D.); (G.M.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
8
|
Han W, Yang Y, Zhang H, Qiao H, Zhang Y, Zhang Z, Wang J. Interaction of different chloro-substituted phenylurea herbicides (diuron and chlortoluron) with bovine serum albumin: Insights from multispectral study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124338. [PMID: 38678839 DOI: 10.1016/j.saa.2024.124338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
In this work, the interaction between different chloro-substituted phenylurea herbicides (diuron (DIU) and chlortoluron (CHL)) and BSA were investigated and compared at three different temperatures (283 K, 298 K and 310 K) adopting UV-vis, fluorescence, and circular dichroism spectra. The quenching mechanism of the interaction was also proposed. The energy transfer between BSA and DIU/CHL was investigated. The binding sites of DIU/CHL and BSA and the variations in the microenvironment of amino acid residues were studied. The changes of the secondary structure of BSA were analyzed. The results indicate that both DIU and CHL can significantly interact with BSA, and the degree of the interaction between DIU/CHL and BSA increases with the increase of the DIU/CHL concentration. The fluorescence quenching of BSA by DIU/CHL results from the combination of static and dynamic quenching. The DIU/CHL has a weak to moderate binding affinity for BSA, and the binding stoichiometry is 1:1. Their binding processes are spontaneous, and hydrophobic interaction, hydrogen bonds and van der Waals forces are the main interaction forces. DIU/CHL has higher affinity for subdomain IIA (Site I) of BSA than subdomain IIIA (Site II), and also interacts with tryptophan more than tyrosine residues. The energy transfer can occur from BSA to DIU/CHL. By comparison, the strength of the interaction of DIU-BSA is always greater than that of CHL-BSA, and DIU can destroy the secondary structure of BSA molecules greater than CHL and thus the potential toxicity of DIU is higher due to DIU with more chlorine substituents than CHL. It is expected that this study on the interaction can offer in-depth insights into the toxicity of phenylurea herbicides, as well as their impact on human and animal health at the molecular level.
Collapse
Affiliation(s)
- Wenhui Han
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Ying Yang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Honglu Zhang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Heng Qiao
- Qingdao ECH Testing Limited Company, Qingdao 266109, China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhaohong Zhang
- School of Environment, Liaoning University, Shenyang 110036, China.
| | - Jun Wang
- School of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
9
|
Gammal RNE, Elmansi H, El-Emam AA, Belal F, Hammouda MEA. In-Vitro Study of the Binding of Atorvastatin with Adenine using Multi-Spectroscopic Approaches. J Fluoresc 2024:10.1007/s10895-024-03785-8. [PMID: 38958903 DOI: 10.1007/s10895-024-03785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Atorvastatin-an oral lipid regulating drug is a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), which is the rate determining enzyme for cholesterol synthesis. Adenine is a purine nucleobase that is found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) to generate genetic information. The binding mechanism of atorvastatin and adenine was studied for the first time utilizing various techniques, including UV-visible spectrophotometry, spectrofluorimetry, synchronous fluorescence spectroscopy (SF), Fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET), and metal ion complexation. The fluorescence spectra of the complex indicated that atorvastatin is bound to adenine via hydrophobic interaction through a spontaneous binding process, and the fluorescence quenching mechanism was found to be static quenching with a binding constant of 1.4893 × 104 Lmol-1 at 298 K. Various temperature settings were used to investigate thermodynamic characteristics, such as binding forces, binding constants, and the number of binding sites. The interaction parameters, including the standard enthalpy change (ΔHο) and standard entropy change (ΔSο) were calculated using Van't Hoff's equation to be 42.82 kJmol-1 and 208.9 Jmol-1K-1, respectively. The findings demonstrated that the adenine- atorvastatin binding was endothermic. Furthermore, the results of the experiments revealed that some metal ions (K+, Ca+2, Co+2, Cu+2, and Al+3) facilitate the binding interaction between atorvastatin and adenine. Slight changes are observed in the FTIR spectra of adenine, indicating the binding interaction between adenine and atorvastatin.
Collapse
Affiliation(s)
- Reem N El Gammal
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed E A Hammouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt (HUE), New Damietta, Egypt
| |
Collapse
|
10
|
Binacchi F, Giorgi E, Salvadori G, Cirri D, Stifano M, Donati A, Garzella L, Busto N, Garcia B, Pratesi A, Biver T. Exploring the interaction between a fluorescent Ag(I)-biscarbene complex and non-canonical DNA structures: a multi-technique investigation. Dalton Trans 2024; 53:9700-9714. [PMID: 38775704 DOI: 10.1039/d4dt00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.
Collapse
Affiliation(s)
- Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Ester Giorgi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Mariassunta Stifano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Aurora Donati
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Linda Garzella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Natalia Busto
- Departamento de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores s/n, 09001 Burgos, Spain
| | - Begona Garcia
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
11
|
Tongkanarak K, Loupiac C, Neiers F, Chambin O, Srichana T. Evaluating the biomolecular interaction between delamanid/formulations and human serum albumin by fluorescence, CD spectroscopy and SPR: Effects on protein conformation, kinetic and thermodynamic parameters. Colloids Surf B Biointerfaces 2024; 239:113964. [PMID: 38761495 DOI: 10.1016/j.colsurfb.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Delamanid is an anti-tuberculosis drug used for the treatment of drug-resistant tuberculosis. Since delamanid has a high protein bound potential, even patients with low albumin levels should experience high and rapid delamanid clearance. However, the interaction between delamanid and albumin should be better controlled to optimize drug efficacy. This study was designed to evaluate the binding characteristics of delamanid to human serum albumin (HSA) using various methods: fluorescence spectroscopy, circular dichroism (CD), surface plasmon resonance (SPR), and molecular docking simulation. The fluorescence emission band without any shift indicated the interaction was not affected by the polarity of the fluorophore microenvironment. The reduction of fluorescence intensity at 344 nm was proportional to the increment of delamanid concentration as a fluorescence quencher. UV-absorbance measurement at the maximum wavelength (λmax, 280 nm) was evaluated using inner filter effect correction. The HSA conformation change was explained by the intermolecular energy transfer between delamanid and HSA during complex formation. The study, which was conducted at temperatures of 298 K, 303 K, and 310 K, revealed a static quenching mechanism that correlated with a decreased of bimolecular quenching rate constant (kq) and binding constant (Ka) at increased temperatures. The Ka was 1.75-3.16 × 104 M-1 with a specific binding site with stoichiometry 1:1. The negative enthalpy change, negative entropy change, and negative Gibbs free energy change demonstrated an exothermic-spontaneous reaction while van der Waals forces and hydrogen bonds played a vital role in the binding. The molecular displacement approach and molecular docking confirmed that the binding occurred mainly in subdomain IIA, which is a hydrophobic pocket of HSA, with a theoretical binding free energy of -9.33 kcal/mol. SPR exhibited a real time negative sensorgram that resulted from deviation of the reflex angle due to ligand delamanid-HSA complex forming. The binding occurred spontaneously after delamanid was presented to the HSA surface. The SPR mathematical fitting model revealed that the association rate constant (kon) was 2.62 × 108 s-1M-1 and the dissociation rate constant (koff) was 5.65 × 10-3 s-1. The complexes were performed with an association constant (KA) of 4.64 × 1010 M-1 and the dissociation constant (KD) of 2.15 × 10-11 M. The binding constant indicated high binding affinity and high stability of the complex in an equilibrium. Modified CD spectra revealed that conformation of the HSA structure was altered by the presence of delamanid during preparation of the proliposomes that led to the reduction of secondary structure stabilization. This was indicated by the percentage decrease of α-helix. These findings are beneficial to understanding delamanid-HSA binding characteristics as well as the drug administration regimen.
Collapse
Affiliation(s)
- Krittawan Tongkanarak
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Camille Loupiac
- Univ. Bourgogne Franche - Comté, L'Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, Joint Unit Food Processing and Microbiology, Food and Wine Physico-Chemistry Unit, 1 esplanade Erasme, Dijon 21000, France
| | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, 7 bd Jeanne d'Arc, Dijon 21000, France
| | - Odile Chambin
- Univ. Bourgogne Franche - Comté, L'Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, Joint Unit Food Processing and Microbiology, Food and Wine Physico-Chemistry Unit, 1 esplanade Erasme, Dijon 21000, France; Department of Pharmaceutical Technology, Faculty of Health Sciences, Université de Bourgogne, 7 bd Jeanne d'Arc, Dijon Cedex 21079, France
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
12
|
Nepfumbada C, Mthombeni NH, Sigwadi R, Ajayi RF, Feleni U, Mamba BB. Functionalities of electrochemical fluoroquinolone sensors and biosensors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3394-3412. [PMID: 38110684 PMCID: PMC10794289 DOI: 10.1007/s11356-023-30223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 12/20/2023]
Abstract
Fluoroquinolones (FQs) are a class of broad-spectrum antimicrobial agents that are used to treat variety of infectious diseases. This class of antibiotics was being used for patients exhibiting early symptoms of a human respiratory disease known as the COVID-19 virus. As a result, this outbreak causes an increase in drug-resistant strains and environmental pollution, both of which pose serious threats to biota and human health. Thus, to ensure public health and prevent antimicrobial resistance, it is crucial to develop effective detection methods for FQs determination in water bodies even at trace levels. Due to their characteristics like specificity, selectivity, sensitivity, and low detection limits, electrochemical biosensors are promising future platforms for quick and on-site monitoring of FQs residues in a variety of samples when compared to conventional detection techniques. Despite their excellent properties, biosensor stability continues to be a problem even today. However, the integration of nanomaterials (NMs) could improve biocompatibility, stability, sensitivity, and speed of response in biosensors. This review concentrated on recent developments and contemporary methods in FQs biosensors. Furthermore, a variety of modification materials on the electrode surface are discussed. We also pay more attention to the practical applications of electrochemical biosensors for FQs detection. In addition, the existing challenges, outlook, and promising future perspectives in this field have been proposed. We hope that this review can serve as a bedrock for future researchers and provide new ideas for the development of electrochemical biosensors for antibiotics detection in the future.
Collapse
Affiliation(s)
- Collen Nepfumbada
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Nomcebo H Mthombeni
- Department of Chemical Engineering, Faculty of the Built Environment, Durban University of Technology, Steve Biko Campus, Durban, 4001, South Africa
| | - Rudzani Sigwadi
- Department of Chemical Engineering, University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Rachel F Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa.
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
13
|
Alqarni AM, Haredy AM, Abdelrahman KS, Soltan OM, Abdel-Aal MAA, Alrofaidi MA, Aalamri A, Osman ME, Alamri AA, Hamad AA. Application of a white and green spectrofluorimetric approach for facile quantification of amlodipine, a hypotensive drug, in batch materials, dosage forms, and biological fluids; content homogeneity testing. LUMINESCENCE 2024; 39:e4661. [PMID: 38286594 DOI: 10.1002/bio.4661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 01/31/2024]
Abstract
The suggested study adheres to a particular protocol to ensure that the process is environmentally friendly and sustainable. It is worth mentioning that several tools have been adopted as prospective measures of the method greenness. Fortunately, the established analytical method is identified as white by the white analytical chemistry (WAC) concept, which uses the red/ green/blue color scheme (RGB 12 tool) to combine ecological and functional factors for the first time in studying of the cited drug. Amlodipine (AMD), a cardiovascular treating agent, belongs to the dihydropyridine class of oral calcium channel-blocking agents. This article presents a novel, simple, green, one-pot-processed, fast, and ultrasensitive fluorimetric approach for monitoring and assessment of AMD using molecular-size-dependent fluorescence augmentation of the light scattering-driven signal of eosin, a biological stain at a wavelength of 415 nm. This enhancement was directly proportional to the size of the produced complex. The linearity range was from 30 to 900 ng mL-1 , with corresponding sensitivity limits (detection and quantitation levels) of 9.2 and 28 ng mL-1 , respectively. The planned approach was also successfully used to track AMD content in bulk, dosage forms, and bio-fluids (human plasma and urine). The developed method's eco-friendliness was established by different eco-rating metric tools.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed M Haredy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Merit University, New Sohag, Egypt
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mohamed A A Abdel-Aal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mohammad A Alrofaidi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulwahab Aalamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Pharmacy College, University of Hail, Hail, Saudi Arabia
| | - Ahmed Awadh Alamri
- Medical Services, Ministry of Interior-Security Forces Hospital in Najran, Najran, Saudi Arabia
| | - Ahmed Abdulhafez Hamad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
14
|
Bresciani G, Boni S, Funaioli T, Zacchini S, Pampaloni G, Busto N, Biver T, Marchetti F. Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies. Inorg Chem 2023; 62:12453-12467. [PMID: 37478132 PMCID: PMC10410612 DOI: 10.1021/acs.inorgchem.3c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/23/2023]
Abstract
We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction (PhCCPh exchange) of [Ru2Cp2(CO)(μ-CO){μ-η1:η3-C(Ph)═C(Ph)C(═O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc), 3-C6H4(Asp), 2-naphthyl; Cp = η5-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding μ-alkenyl derivatives 5-7, in 40-86% yields. All products were characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry (1, 2, 5, 7) and single-crystal X-ray diffraction (5, 7) analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparable to that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma), and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistance in A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) induced an increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus, CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 is ineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity for this nucleic acid. Complexes 5-7 can interact with the albumin protein with a thermodynamic signature dominated by hydrophobic interactions. Overall, we show that organometallic species based on the Ru2Cp2(CO)x scaffold (x = 2, 3) are active against cancer cells, with different incorporated fragments influencing the interactions with nucleic acids and the production of ROS.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Serena Boni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di
Chimica Industriale “Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Natalia Busto
- University
of Burgos, Departamento de
Química, Plaza
Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Tarita Biver
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
15
|
Zhang L, Wang P, Zhou XQ, Bretin L, Zeng X, Husiev Y, Polanco EA, Zhao G, Wijaya LS, Biver T, Le Dévédec SE, Sun W, Bonnet S. Cyclic Ruthenium-Peptide Conjugates as Integrin-Targeting Phototherapeutic Prodrugs for the Treatment of Brain Tumors. J Am Chem Soc 2023. [PMID: 37379365 DOI: 10.1021/jacs.3c04855] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 μM for the binding of Λ-[1]Cl2 to αIIbβ3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.
Collapse
Affiliation(s)
- Liyan Zhang
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Peiyuan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Xiaolong Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yurii Husiev
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ehider A Polanco
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gangyin Zhao
- Leiden Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Lukas S Wijaya
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Sylvia E Le Dévédec
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
16
|
Grabowska O, Samsonov SA, Chmurzyński L, Wyrzykowski D, Żamojć K. Investigation of hexacyanoferrate(II)/(III) charge-dependent interactions with bovine and human serum albumins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122505. [PMID: 36809739 DOI: 10.1016/j.saa.2023.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/21/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In the present paper, the binding interactions of highly negative-charged ions, namely hexacyanoferrates(II/III), i.e. [Fe(CN)6]4- and [Fe(CN)6]3- with bovine and human serum albumins (BSA and HSA, respectively) have been studied for the first time in an aqueous solution (10 mM cacodylate buffer of pH 7.0) using steady-state fluorescence spectroscopy, isothermal titration calorimetry, and CD spectroscopy supported by molecular dynamics-based computational approaches. The Stern-Volmer equation as well as its modifications suggested that hexacyanoferrates(II/III) effectively quenched the intrinsic fluorescence of the albumins through a static mechanism. The proteins under study possess only one binding site on the surface capable of binding one mole of hexacyanoferrates(II/III) ions per one mole of albumin (HSA or BSA). The formation of albumin complexes is an enthalpy-driven process (|ΔHITC| > |TΔSITC|). The strength of the interactions depends mainly on the type of albumin, and changes as follows: BSA-K3[Fe(CN)6] ∼ BSA-K4[Fe(CN)6] > HSA-K3[Fe(CN)6] ∼ HSA-K4[Fe(CN)6]. Finally, potential binding sites of bovine and human serum albumins have been investigated and discussed based on a competitive fluorescence displacement assay (with warfarin and ibuprofen as site markers) and molecular dynamics simulations.
Collapse
Affiliation(s)
- Ola Grabowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Krzysztof Żamojć
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
17
|
Arsenault-Escobar S, Fuentes-Galvez JF, Orellana C, Bollo S, Sierra-Rosales P, Miranda-Rojas S. Unveiling the tartrazine binding mode with ds-DNA by UV-visible spectroscopy, electrochemical, and QM/MM methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122400. [PMID: 36739665 DOI: 10.1016/j.saa.2023.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Here, we studied the interaction between the food colorant tartrazine (TZ) and double stranded DNA (dsDNA), using spectroscopic, electrochemical, and computational methods such as QM/MM combined with TD-DFT. Despite the UV-vis spectroscopy is widely used to study the interaction between molecules, for the case of TZ there are discrepancies in the analyses presented in the literature available, presenting both hyperchromic and hypochromic effects and consequently different rationalizations for their results. Herein we propose the combination of UV-vis experiments with the design of high-level computational models capable of reproducing the experimental behavior to finally define the proper binding mode at the molecular scale together with the rationalization of the experimental optical response due to the complex formation. To complement the UV-vis experiments, we propose the use of electrochemical measurements, to support the results obtained through UV-vis spectroscopy, as it has been successfully used for the determination of interaction modes between small molecules and biomolecules in any condition. Our UV-vis spectroscopy experiments showed only a hypochromic effect of the absorption spectra of TZ after interaction with DNA, indicative of TZ being deeply buried in the DNA structure. The effect of ionic strength in the experimental procedures led to the dissociation of TZ, thus indicating that the interaction mode was groove binding. On the other hand, the electrochemical studies showed an irreversible reduction peak of TZ, which after the interaction with DNA exhibited a positive shift in potential that can be attributed to groove binding. The binding constant for TZ-DNA was calculated as 4.45x104M-1 (UV-vis) and 5.75x104M-1 (electrochemistry), in line with other groove binder azo dyes. Finally, through the QM/MM calculations we found that the minor-groove binding mode interacting in zones rich in adenine and thymine was the model best suited to reproduce the experimental UV-vis response.
Collapse
Affiliation(s)
- S Arsenault-Escobar
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile
| | - J F Fuentes-Galvez
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile
| | - C Orellana
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - S Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile. Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile. Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - P Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile.
| | - S Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile.
| |
Collapse
|
18
|
El Gammal RN, Elmansi H, El-Emam AA, Belal F, Elzahhar PA, Belal ASF, Hammouda MEA. Insights on the in-vitro binding interaction between donepezil and bovine serum albumin. BMC Chem 2023; 17:31. [PMID: 37024940 PMCID: PMC10077752 DOI: 10.1186/s13065-023-00944-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
In this work, the binding mechanism between donepezil (DNP) and bovine serum albumin (BSA) was established using several techniques, including fluorimetry, UV- spectrophotometry, synchronous fluorimetry (SF), fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET) besides molecular docking study. The fluorescence quenching mechanism of DNP-BSA binding was a combined dynamic and static quenching. The thermodynamic parameters, binding forces, binding constant, and the number of binding sites were determined using a different range of temperature settings. Van't Hoff's equation was used to calculate the reaction parameters, including enthalpy change (ΔHο) and entropy change (ΔSο). The results pointed out that the DNP-BSA binding was endothermic. It was shown that the stability of the drug-protein system was predominantly due to the intermolecular hydrophobic forces. Additionally, the site probing method revealed that subdomain IIA (Site I) is where DNP and BSA's binding occurs. This was validated using a molecular docking study with the most stable DNP configuration. This study might help to understand DNP's pharmacokinetics profile and toxicity as well as provides crucial information for its safe use and avoiding its toxicity.
Collapse
Affiliation(s)
- Reem N El Gammal
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Mohammed E A Hammouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt (HUE), New Damietta, Egypt
| |
Collapse
|
19
|
Batibay GS, Keser Karaoglan G, Gumrukcu Kose G, Ozcelik Kazancioglu E, Metin E, Danisman Kalindemirtas F, Erdem Kuruca S, Arsu N. DNA groove binder and significant cytotoxic activity on human colon cancer cells: Potential of a dimeric zinc (II) phthalocyanine derivative. Biophys Chem 2023; 295:106974. [PMID: 36827854 DOI: 10.1016/j.bpc.2023.106974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The interaction of a multi-component system consisting of benzene-1,4-diyldimethanimine-bridged dimeric zinc-phthalocyanine groups (4OMPCZ) with calf thymus DNA (ct-DNA) was investigated using UV-Vis absorption, fluorescence emission spectroscopy methods, and viscosity measurements. The binding constant, Kb, which is an important parameter to gain information about the binding mode, was found as 9.7 × 107 M-1 from the UV-Vis absorption studies. Another important spectrophotometric tool is competitive displacement assays with Ethidium bromide and Hoechst 33342. Through this experiment, a higher KSV value was obtained with Hoechst for the phthalocyanine derivative, 4OMPCZ, and the ct-DNA complex than with ethidium bromide. Additionally, molecular docking studies were conducted to calculate the theoretical binding constant and visualize the interactions of 4OMPCZ with a model DNA. According to docking results, although the interactions are mainly located in the major groove of the DNA helix, due to the wrapping, these interactions can also be extended to the minor groove of the DNA. Spectrophotometric, molecular docking, and viscosity studies revealed that the interaction of 4OMPCZ with DNA is likely to be via the major and minor grooves. The in vitro cytotoxic activity of 4OMPCZ was evaluated by MTT assay on human colon cancer cells (HT29) after 72 h of treatment. 4OMPCZ indicated significant cytotoxic activity when stimulated with UV light compared to the standard chemotherapy drugs, fluorouracil (5-FU), and cisplatin on HT29 colon cancer cells. The IC50 value of 4OMPCZ displayed considerably lower concentrations compared to the standard drugs, 5-FU, and cisplatin.
Collapse
Affiliation(s)
- Gonul S Batibay
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Gulnur Keser Karaoglan
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Gulsah Gumrukcu Kose
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | | | - Eyup Metin
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey; Turkish-German University, Department of Materials Science and Technology, 34820 Istanbul, Turkey
| | - Ferdane Danisman Kalindemirtas
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Physiology, Erzincan 24100, Turkey; Istanbul University, Faculty of Medicine, Department of Physiology, 34093 Istanbul, Turkey
| | - Serap Erdem Kuruca
- Atlas University, Faculty of Medicine, Department of Physiology, Istanbul 34403, Turkey; Istanbul University, Faculty of Medicine, Department of Physiology, 34093 Istanbul, Turkey
| | - Nergis Arsu
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey.
| |
Collapse
|
20
|
Zahirul Kabir M, Tayyab H, Erkmen C, Kurbanoglu S, Mohamad SB, Uslu B. Characterization of Climbazole-Bovine serum albumin interaction by experimental and in silico approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122197. [PMID: 36470090 DOI: 10.1016/j.saa.2022.122197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Interactive association of an antifungal drug, climbazole (CBZ) with the carrier protein in bovine circulation, bovine serum albumin (BSA) was explored by fluorescence and absorption spectroscopy along with in silico techniques. The fluorescence and absorption spectral alterations of the protein upon addition of CBZ affirmed the complex foration between CBZ and BSA. The inverse temperature dependence behaviour of the KSV values as well as the hyperchromic result of the protein's absorption signals characterized CBZ-triggered quenching of BSA fluorescence as the static quenching. A weak binding affinity (Ka = 3.12-1.90-× 103 M-1) was reported towards the CBZ-BSA association process. Interpretation of thermodynamic data (entropy change = +14.68 J mol-1 K-1 and enthalpy change = -15.07 kJ mol-1) and in silico analyses anticipated that hydrophobic forces, van der Waals forces and hydrogen bonds were the key intermolecular forces in the complex stabilization. Inclusion of CBZ to BSA produced microenvironmental perturbations around Tyr and Trp residues, and also significantly defended temperature-induced destabilization of BSA. The binding locus of CBZ was detected in the proximity of Sudlow's sites I (subdomain IIA) and II (subdomain IIIA) of BSA, exhibiting greater preference towards site II, as revealed by competitive site-marker displacement investigations and in silico analysis. The stability of the CBZ-BSA complex was further validated by the molecular dynamics simulation assessments.
Collapse
Affiliation(s)
- Md Zahirul Kabir
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Hafsa Tayyab
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, 06110, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
21
|
Ravele T, Fuku XG, Hlongwa NW, Nkambule TTI, Gumbi NN, Sekhosana KE. Advances in Electrochemical Systems for Detection of Anti‐Androgens in Water Bodies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Thompho Ravele
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Xolile G. Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Ntuthuko W. Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Thabo T. I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Kutloano E. Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| |
Collapse
|
22
|
Zheng SJ, Zheng N, Zhang ML, Wu FF, Yang SD, Cheng XH, Bao HY, Zhang R. Probing the binding mechanism of the verbascoside and human serum albumin by fluorescence spectroscopy and molecular docking approach. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-03002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Khalili L, Dehghan G, Akbar Moosavi-Movahedi A, Yoon Y, Khataee A. In vitro and in silico insights into the molecular interaction mechanism of acetylshikonin with bovine serum albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Lyndem S, Gazi R, Belwal VK, Bhatta A, Jana M, Roy AS. Binding of bioactive esculin and esculetin with hen egg white lysozyme: Spectroscopic and computational methods to comprehensively elucidate the binding affinities, interacting forces, and conformational alterations at molecular level. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
El Gammal RN, Elmansi H, El-Emam AA, Belal F, Hammouda MEA. Exploring the molecular interaction of mebendazole with bovine serum albumin using multi-spectroscopic approaches and molecular docking. Sci Rep 2022; 12:11582. [PMID: 35804178 PMCID: PMC9270458 DOI: 10.1038/s41598-022-15696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
This article presents the binding interaction between mebendazole (MBZ) and bovine serum albumin. The interaction has been studied using different techniques, such as fluorescence quenching spectroscopy, UV–visible spectroscopy, synchronous fluorescence spectroscopy, fourier transform infrared, and fluorescence resonance energy transfer in addition to molecular docking. Results from Stern Volmer equation stated that the quenching for MBZ-BSA binding was static. The fluorescence quenching spectroscopic study was performed at three temperature settings. The binding constant (kq), the number of binding sites (n), thermodynamic parameters (ΔHο, ΔSο and ΔGο), and binding forces were determined. The results exhibited that the interaction was endothermic. It was revealed that intermolecular hydrophobic forces led to the stabilization of the drug-protein system. Using the site marker technique, the binding between MBZ and BSA was found to be located at subdomain IIA (site I). This was furtherly approved using the molecular docking technique with the most stable MBZ configuration. This research may aid in understanding the pharmacokinetics and toxicity of MBZ and give fundamental data for its safe usage to avoid its toxicity.
Collapse
Affiliation(s)
- Reem N El Gammal
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed E A Hammouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt (HUE), New Damietta, Egypt
| |
Collapse
|
26
|
Kamali A, Jahmidi-Azizi N, Oliva R, Winter R. Deep sea osmolytes in action: their effect on protein-ligand binding under high pressure stress. Phys Chem Chem Phys 2022; 24:17966-17978. [PMID: 35775876 DOI: 10.1039/d2cp01769e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because organisms living in the deep sea and in the sub-seafloor must be able to cope with hydrostatic pressures up to 1000 bar and more, their biomolecular processes, including ligand-binding reactions, must be adjusted to keep the associated volume changes low in order to function efficiently. Almost all organisms use organic cosolvents (osmolytes) to protect their cells from adverse environmental conditions. They counteract osmotic imbalance, stabilize the structure of proteins and maintain their function. We studied the binding properties of the prototypical ligand proflavine to two serum proteins with different binding pockets, BSA and HSA, in the presence of two prominent osmolytes, trimethylamine-N-oxide (TMAO) and glycine betaine (GB). TMAO and GB play an important role in the regulation and adaptation of life in deep-sea organisms. To this end, pressure dependent fluorescence spectroscopy was applied, supplemented by circular dichroism (CD) spectroscopy and computer modeling studies. The pressure-dependent measurements were also performed to investigate the intimate nature of the complex formation in relation to hydration and packing changes caused by the presence of the osmolytes. We show that TMAO and GB are able to modulate the ligand binding process in specific ways. Depending on the chemical make-up of the protein's binding pocket and thus the thermodynamic forces driving the binding process, there are osmolytes with specific interaction sites and binding strengths with water that are able to mediate efficient ligand binding even under external stress conditions. In the binding of proflavine to BSA and HSA, the addition of both compatible osmolytes leads to an increase in the binding constant upon pressurization, with TMAO being the most efficient, rendering the binding process also insensitive to pressurization even up to 2 kbar as the volume change remains close to zero. This effect can be corroborated by the effects the cosolvents impose on the strength and dynamics of hydration water as well as on the conformational dynamics of the protein.
Collapse
Affiliation(s)
- Armin Kamali
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| | - Nisrine Jahmidi-Azizi
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| |
Collapse
|
27
|
Ribeiro N, Albino M, Ferreira A, Escrevente C, Barral DC, Pessoa JC, Reis CP, Gaspar MM, Correia I. Liposomal Formulations of a New Zinc(II) Complex Exhibiting High Therapeutic Potential in a Murine Colon Cancer Model. Int J Mol Sci 2022; 23:ijms23126728. [PMID: 35743176 PMCID: PMC9223407 DOI: 10.3390/ijms23126728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the second leading cause of cancer-related mortality. Many current therapies rely on chemotherapeutic agents with poor specificity for tumor cells. The clinical success of cisplatin has prompted the research and design of a huge number of metal-based complexes as potential chemotherapeutic agents. In this study, two zinc(II) complexes, [ZnL2] and [ZnL(AcO)], where AcO is acetate and L is an organic compound combining 8-hydroxyquinoline and a benzothiazole moiety, were developed and characterized. Analytical and spectroscopic studies, namely, NMR, FTIR, and UV-Vis allowed us to establish the complexes’ structures, demonstrating the ligand-binding versatility: tetradentate in [ZnL(AcO)] and bidentate in [ZnL2]. Complexes were screened in vitro using murine and human colon cancer cells cultured in 2D and 3D settings. In 2D cells, the IC50 values were <22 µM, while in 3D settings, much higher concentrations were required. [ZnL(AcO)] displayed more suitable antiproliferative properties than [ZnL2] and was chosen for further studies. Moreover, based on the weak selectivity of the zinc-based complex towards cancer cell lines in comparison to the non-tumorigenic cell line, its incorporation in long-blood-circulating liposomes was performed, aiming to improve its targetability. The resultant optimized liposomal nanoformulation presented an I.E. of 76% with a mean size under 130 nm and a neutral surface charge and released the metal complex in a pH-dependent manner. The antiproliferative properties of [ZnL(AcO)] were maintained after liposomal incorporation. Preliminary safety assays were carried out through hemolytic activity that never surpassed 2% for the free and liposomal forms of [ZnL(AcO)]. Finally, in a syngeneic murine colon cancer mouse model, while free [ZnL(AcO)] was not able to impair tumor progression, the respective liposomal nanoformulation was able to reduce the relative tumor volume in the same manner as the positive control 5-fluorouracil but, most importantly, using a dosage that was 3-fold lower. Overall, our results show that liposomes were able to solve the solubility issues of the new metal-based complex and target it to tumor sites.
Collapse
Affiliation(s)
- Nádia Ribeiro
- Centro Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.); (J.C.P.)
| | - Melissa Albino
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.A.); (C.P.R.)
| | - Andreia Ferreira
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.E.); (D.C.B.)
| | - Cristina Escrevente
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.E.); (D.C.B.)
| | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.E.); (D.C.B.)
| | - João Costa Pessoa
- Centro Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.); (J.C.P.)
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.A.); (C.P.R.)
- IBEB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.A.); (C.P.R.)
- Correspondence: (M.M.G.); (I.C.)
| | - Isabel Correia
- Centro Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.); (J.C.P.)
- Correspondence: (M.M.G.); (I.C.)
| |
Collapse
|
28
|
Zhang C, Tan X, Yang X, Wang L. Process and mechanism between water-extracted organic matter and trace metallic ions in sediments of Yangtze River estuary. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121041. [PMID: 35228083 DOI: 10.1016/j.saa.2022.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
In order to better understand the bioavailability, toxicity, migration and transformation behaviors of trace metals in river estuary, this study deeply investigated the interactions between organic matters in sediments and trace metals. The results suggested that both protein-like molecules and marine humic acids could react with trace metals (Cu2+ and Cd2+). These two fluorescent substances fixed trace metals through carboxyl group, hydroxyl group, and phenol hydroxyl group, and protein-like molecules were more sensitive than marine humic acids. Moreover, Cu2+ possessed stronger binding ability and more active sites with both protein-like molecules and marine humic acids. Hence, Cd2+ exhibited higher environmental risks due to the higher migration and transformation. The thermodynamic results revealed that the reaction between WEOM and trace metals was spontaneous and exothermic, and low temperature was favorable for immobilization of Cu2+ or Cd2+.This study could help to understand environmental behaviors and impact of trace metals on the sediments of Yangtze River estuary.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xue Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China.
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, Shanghai 200438, China.
| |
Collapse
|
29
|
Khan RA, AlFawaz A, Farshori NN, Paul A, Jaafar MH, Alsalme A. Aminobenzimidazoles based (η
6
‐p‐cymene)Ruthenium (II) complexes as Nascent Anticancer Chemotherapeutics: Synthesis, Crystal Structure, DFT Studies, HSA Interactions, Molecular Docking, and Cytotoxicity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Amal AlFawaz
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Nida N. Farshori
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh KSA
| | - Anup Paul
- Centro de Quimica Estrutural, Instituto Superior Tecnio, Unversidade de Lisboa Lisboa Portugal
| | - Mohammed H. Jaafar
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Ali Alsalme
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| |
Collapse
|
30
|
Effect of complexation between cobinamides and bovine serum albumin on their reactivity toward cyanide. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Sohtun WP, Kathiravan A, Asha Jhonsi M, Aashique M, Bera S, Velusamy M. Synthesis, crystal structure, BSA binding and antibacterial studies of Ni(II) complexes derived from dithiocarbazate based ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Abdelaziz MA, Shaldam M, El-Domany RA, Belal F. Multi-Spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120298. [PMID: 34464920 DOI: 10.1016/j.saa.2021.120298] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Dapagliflozin (DAPA) is a selective sodium-glucose cotransporter-2 inhibitor that reduces renal glucose reabsorption. The drug has recently become a crucial milestone in the management of diabetes and heart failure. In this study, the interaction of DAPA with bovine serum albumin (BSA) was investigated for the first time using various fluorescence spectroscopic techniques, UV-absorption spectroscopy, molecular docking, and molecular dynamic (MD) simulation. The fluorescence spectroscopic titration study performed at different temperatures showed that DAPA quenched the fluorescence of BSA through a combination of dynamic and static mechanisms, which was confirmed by UV absorption, fluorescence-resonance energy transfer measurements, and MD simulation. The binding thermodynamic parameters demonstrated that the binding stoichiometry between BSA and DAPA was 1:1. Competitive binding experiments using site-specific markers as well as molecular docking studies showed that DAPA binds to site I on BSA. The positive values of enthalpy change (ΔH) and entropy change (ΔS) revealed that hydrophobic forces played a predominant role in the binding of DAPA to BSA, whereas the negative value of Gibbs free energy change (ΔG) indicated the spontaneity of the interaction. Moreover, the synchronous fluorescence spectroscopy has shown that DAPA binding to the protein molecule occurs in the vicinity of the tryptophan residue. These findings were confirmed by the molecular docking and MD simulation studies.
Collapse
Affiliation(s)
- Mohamed A Abdelaziz
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| |
Collapse
|
33
|
Study on the cytotoxic, antimetastatic and albumin binding properties of the oxidovanadium(IV) chrysin complex. Structural elucidation by computational methodologies. Chem Biol Interact 2022; 351:109750. [PMID: 34813780 DOI: 10.1016/j.cbi.2021.109750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
We have previously synthesized and characterized the chrysin coordination complex with the oxidovanadium(IV) cation (VIVO(chrys)2) and characterized in ethanolic solution and in solid state. Because suitable single crystals for X-ray diffraction determinations could not be obtained, in the present work, we elucidate the geometrical parameters of this complex by computational methodologies. The optimization and vibrational investigation were carried out both in ethanolic solution and in gas phase. The computational results support the experimentally proposed geometries of the VIVO(chrys)2 complex, thus leading to the conclusion that the complex exists as conformers with trans-octahedral geometry in ethanolic solution and as conformers with cis-octahedral geometry in the solid state. The complex also exists as conformers with trans-octahedral geometry in aqueous media. The active species formed after dissolution in DMSO showed anticancer and antimetastatic behavior in human lung cell line A549 with moderate binding (Kaca. 105 M-1) to bovine serum albumin (BSA). The interaction through hydrogen bonding and van der Waals forces resulted in a spontaneous process. Site marker competitive experiments showed binding sites for chrysin mainly located in site II (subdomain IIIA) and in site I (subdomain IIIA) for the complex. FT-IR spectral measurements showed evidences of the alterations of protein secondary structure in the presence of chrysin and VIVO(chrys)2.
Collapse
|
34
|
Khan RA, BinSharfan II, Alterary SS, Alsaeedi H, Qais FA, AlFawaz A, Hadi AD, Alsalme A. Organometallic (η
6
‐
p
‐cymene)ruthenium(II) complexes with thiazolyl‐based organic twigs: En route towards targeted delivery via human serum albumin of the potential anticancer agents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Ibtisam I. BinSharfan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Seham S. Alterary
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Huda Alsaeedi
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences Aligarh Muslim University Aligarh India
| | - Amal AlFawaz
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Arman D. Hadi
- Department of Chemistry University of Texas at San Antonio San Antonio TX USA
| | - Ali Alsalme
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|
35
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Grabowska O, Kogut MM, Żamojć K, Samsonov SA, Makowska J, Tesmar A, Chmur K, Wyrzykowski D, Chmurzyński L. Effect of Tetraphenylborate on Physicochemical Properties of Bovine Serum Albumin. Molecules 2021; 26:6565. [PMID: 34770974 PMCID: PMC8588492 DOI: 10.3390/molecules26216565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The binding interactions of bovine serum albumin (BSA) with tetraphenylborate ions ([B(Ph)4]-) have been investigated by a set of experimental methods (isothermal titration calorimetry, steady-state fluorescence spectroscopy, differential scanning calorimetry and circular dichroism spectroscopy) and molecular dynamics-based computational approaches. Two sets of structurally distinctive binding sites in BSA were found under the experimental conditions (10 mM cacodylate buffer, pH 7, 298.15 K). The obtained results, supported by the competitive interactions experiments of SDS with [B(Ph)4]- for BSA, enabled us to find the potential binding sites in BSA. The first site is located in the subdomain I A of the protein and binds two [B(Ph)4]- ions (logK(ITC)1 = 7.09 ± 0.10; ΔG(ITC)1 = -9.67 ± 0.14 kcal mol-1; ΔH(ITC)1 = -3.14 ± 0.12 kcal mol-1; TΔS(ITC)1 = -6.53 kcal mol-1), whereas the second site is localized in the subdomain III A and binds five ions (logK(ITC)2 = 5.39 ± 0.06; ΔG(ITC)2 = -7.35 ± 0.09 kcal mol-1; ΔH(ITC)2 = 4.00 ± 0.14 kcal mol-1; TΔS(ITC)2 = 11.3 kcal mol-1). The formation of the {[B(Ph)4]-}-BSA complex results in an increase in the thermal stability of the alfa-helical content, correlating with the saturation of the particular BSA binding sites, thus hindering its thermal unfolding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (O.G.); (M.M.K.); (K.Ż.); (S.A.S.); (J.M.); (A.T.); (K.C.); (L.C.)
| | | |
Collapse
|
37
|
Schoch S, Hadiji M, Pereira SAP, Saraiva MLMFS, Braccini S, Chiellini F, Biver T, Zacchini S, Pampaloni G, Dyson PJ, Marchetti F. A Strategy to Conjugate Bioactive Fragments to Cytotoxic Diiron Bis(cyclopentadienyl) Complexes. Organometallics 2021; 40:2516-2528. [PMID: 34475610 PMCID: PMC8397425 DOI: 10.1021/acs.organomet.1c00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/19/2022]
Abstract
![]()
A series of bioactive
molecules were synthesized from the condensation
of aspirin or chlorambucil with terminal alkynes bearing alcohol or
amine substituents. Insertion of the resulting alkynes into the iron–carbyne
bond of readily accessible diiron bis(cyclopentadienyl) μ-aminocarbyne
complexes, [1a,b]CF3SO3, afforded novel diiron complexes with a bridging vinyliminium ligand,
[2–10]CF3SO3, functionalized with a bioactive moiety. All compounds were characterized
by elemental analysis and IR and multinuclear NMR spectroscopy and
in three cases by single-crystal X-ray diffraction. Moreover, the
D2O solubility, stability in D2O and cell culture
media, and octanol–water partition coefficients of diiron complexes
were determined spectroscopically. The cytotoxicity of the complexes
was assessed in the tumorigenic A2780 and A2780cisR and the nontumorigenic
HEK 293T cell lines. Some complexes exhibit high potency and the ability
to overcome resistance in A2780cisR cells (aspirin complexes) or high
selectivity relative to HEK 293T cells (chlorambucil complexes). Further
studies indicate that the complexes significantly trigger intracellular
ROS production, irrespective of the nature of the bioactive fragment.
DNA alkylation and protein binding studies were also undertaken.
Collapse
Affiliation(s)
- Silvia Schoch
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah A P Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, da Universidade do Porto, Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, da Universidade do Porto, Porto, Portugal
| | - Simona Braccini
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Federica Chiellini
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Tarita Biver
- University of Pisa, Dipartimento di Farmacia, 56126 Pisa, Italy.,University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", 40136 Bologna, Italy
| | - Guido Pampaloni
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabio Marchetti
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| |
Collapse
|
38
|
Thermodynamic Evaluation of the Interactions between Anticancer Pt(II) Complexes and Model Proteins. Molecules 2021; 26:molecules26082376. [PMID: 33921819 PMCID: PMC8072931 DOI: 10.3390/molecules26082376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4′-phenyl-2,2′:6′,2″-terpyridine)](CF3SO3) (1), [PtI(4′-phenyl-2,2′:6′,2″-terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene) (3)] with selected model proteins (hen egg-white lysozyme, HEWL, and ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions in their mechanisms of action. Multiple techniques such as differential scanning calorimetry (DSC), electrospray ionization mass spectrometry (ESI-MS) and UV-Vis absorbance titrations were used to enlighten the details of the binding to the different biosubstrates. On the one hand, it may be concluded that the affinity of 3 for the proteins is low. On the other hand, 1 and 2 strongly bind them, but with major binding mode differences when switching from HEWL to RNase A. Both 1 and 2 bind to HEWL with a non-specific (DSC) and non-covalent (ESI-MS) binding mode, dominated by a 1:1 binding stoichiometry (UV-Vis). ESI-MS data indicate a protein-driven chloride loss that does not convert into a covalent bond, likely due to the unfavourable complexes’ geometries and steric hindrance. This result, together with the significant changes of the absorbance profiles of the complex upon interaction, suggest an electrostatic binding mode supported by some stacking interaction of the aromatic ligand. Very differently, in the case of RNase A, slow formation of covalent adducts occurs (DSC, ESI-MS). The reactivity is higher for the iodo-compound 2, in agreement with iodine lability higher than chlorine.
Collapse
|
39
|
Macii F, Detti R, Bloise FR, Giannarelli S, Biver T. Spectroscopic Analysis of the Binding of Paraquat and Diquat Herbicides to Biosubstrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2412. [PMID: 33801256 PMCID: PMC7967551 DOI: 10.3390/ijerph18052412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
The study of the interaction of persistent organic pollutants with biosubstrates helps to unravel the pathways for toxicity, however, few mechanistic data are present in the literature for these systems. We analyzed the binding of paraquat (PQ) and diquat (DQ) herbicides to natural calf thymus DNA and a DNA G-quadruplex by spectrophotometric titrations, ethidium bromide exchange tests, viscometry, and melting experiments. The interaction with bovine serum albumin (BSA) protein was studied spectrofluorimetrically at different temperatures. The retention of the targets on positive, negative, and neutral micellar aggregates and liposomes was analyzed by ultrafiltration experiments. Despite some favorable features, PQ and DQ only externally bind natural DNA and do not interact with DNA oligonucleotides. Both herbicides bind bovine serum albumin (BSA). PQ binds BSA mainly according to an electrostatics-driven process. However, ultrafiltration data also show that some hydrophobic contribution participates in the features of these systems. The practical problems related to unfavorable spectroscopic signals and inner filter effects are also discussed. Overall, both herbicides show a low affinity for nucleic acids and weak penetration into liposomes; in addition, the equilibrium constants values found for BSA system suggest optimal conditions for transport in the body.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Rebecca Detti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Francesca Rita Bloise
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
40
|
Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. INORGANICS 2021. [DOI: 10.3390/inorganics9020017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In aqueous media, VIV- and VV-ions and compounds undergo chemical changes such as hydrolysis, ligand exchange and redox reactions that depend on pH and concentration of the vanadium species, and on the nature of the several components present. In particular, the behaviour of vanadium compounds in biological fluids depends on their environment and on concentration of the many potential ligands present. However, when reporting the biological action of a particular complex, often the possibility of chemical changes occurring has been neglected, and the modifications of the complex added are not taken into account. In this work, we highlight that as soon as most vanadium(IV) and vanadium(V) compounds are dissolved in a biological media, they undergo several types of chemical transformations, and these changes are particularly extensive at the low concentrations normally used in biological experiments. We also emphasize that in case of a biochemical interaction or effect, to determine binding constants or the active species and/or propose mechanisms of action, it is essential to evaluate its speciation in the media where it is acting. This is because the vanadium complex no longer exists in its initial form.
Collapse
|