1
|
Dimiza F, Hatzidimitriou AG, Psomas G. Manganese(II) Complexes with Non-Steroidal Anti-Inflammatory Drugs: Structure and Biological Activity. Int J Mol Sci 2024; 25:13457. [PMID: 39769224 PMCID: PMC11676910 DOI: 10.3390/ijms252413457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Nine manganese(II) complexes with a series of non-steroidal anti-inflammatory drugs (namely sodium diclofenac, diflunisal, flufenamic acid, sodium meclofenamate, mefenamic acid, and tolfenamic acid) were prepared in the presence of diverse nitrogen donors, i.e., pyridine, 1,10-phenanthroline, 2,2'-bipyridine and neocuproine, as co-ligands and were characterized with spectroscopic techniques and single-crystal X-ray crystallography. The biological profile of the resultant complexes was investigated regarding their antioxidant potency and their interaction with DNA and serum albumins. The complexes interact with calf-thymus DNA in an intercalative mode and bind tightly and reversibly to human and bovine serum albumins studied. In order to assess the antioxidant activity of the Mn(II) complexes, their ability to scavenge 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) free radicals was monitored.
Collapse
Affiliation(s)
| | | | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Perontsis S, Hatzidimitriou AG, Psomas G. Coordination compounds of cobalt(II) with carboxylate non-steroidal anti-inflammatory drugs: structure and biological profile. Dalton Trans 2024; 53:15215-15235. [PMID: 39221624 DOI: 10.1039/d4dt01846j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fourteen cobalt(II) complexes with the non-steroidal anti-inflammatory drugs sodium meclofenamate, tolfenamic acid, mefenamic acid, naproxen, sodium diclofenac, and diflunisal were prepared in the presence or absence of a series of nitrogen-donors (namely imidazole, pyridine, 3-aminopyridine, neocuproine, 2,2'-bipyridine, 1,10-phenanthroline and 2,2'-bipyridylamine) as co-ligands and were characterised by spectroscopic and physicochemical techniques. Single-crystal X-ray crystallography was employed to determine the crystal structure of eight complexes. The biological profile of the complexes was investigated regarding their interaction with serum albumins and DNA, and their antioxidant potency. The interaction of the compounds with calf-thymus DNA takes place via intercalation. The ability of the complexes to cleave pBR322 plasmid DNA at the concentration of 500 μM is rather low. The complexes demonstrated tight and reversible binding to human and bovine serum albumins and the binding site of bovine serum albumin was also examined. In order to assess the antioxidant activity of the compounds, the in vitro scavenging activity towards free radicals, namely 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), and their ability to reduce H2O2 were studied.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Damena T, Desalegn T, Mathura S, Getahun A, Bizuayehu D, Alem MB, Gadisa S, Zeleke D, Demissie TB. Synthesis, Structural Characterization, and Computational Studies of Novel Co(II) and Zn(II) Fluoroquinoline Complexes for Antibacterial and Antioxidant Activities. ACS OMEGA 2024; 9:36761-36777. [PMID: 39220483 PMCID: PMC11359626 DOI: 10.1021/acsomega.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Research into heterocyclic ligands has increased in popularity due to their versatile applications in the biomedical field. Quinoline derivatives with their transition metal complexes are popular scaffolding molecules in the ongoing pursuit of newer and more effective bioactive molecules. Subsequently, this work reports on the synthesis and possible biological application of new Zn(II) and Co(II) complexes with a bidentate quinoline derivative ligand (H2 L), [(H2 L):(E)-2-(((6-fluoro-2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol]. The ligand and its metal complexes were structurally characterized by spectroscopic methods (1H NMR, 13C NMR, Fourier transform infrared (FTIR), UV-vis, fluorescence, and mass spectroscopy), as well as by thermogravimetric and elemental analysis methods. The spectroscopic findings were further supported by density functional theory (DFT) and time-dependent (TD)-DFT calculations. The biological application was examined by investigating the inhibitory action of the complexes against bacterial strains using diffusion and agar dilution methods, and their profiles against two Gram-positive and Gram-negative bacterial strains were supported by molecular docking analysis. To rationalize the in vitro activity and establish the possible mechanism of action, the interactions and binding affinity of the ligand and complexes were investigated against three different bacterial enzymes (Escherichia coli DNA gyrase (PDB ID 6f86), E. coli dihydrofolate reductase B (PDB ID: 7r6g), and Staphylococcus aureus tyrosyl-tRNA synthetase (PDB ID: 1JIJ)) using AutoDock with the standard protocol. The MIC value of 0.20 μg/mL for zinc complex against E. coli and associated binding affinities -7.2 and -9.9 kcal/mol with DNA gyrase (PDB ID 6f86) and dihydrofolate reductase B (PDB ID: 7r6g), as well as the MIC value of 2.4 μg/mL for cobalt(II) complex against Staphylococcus aureus and the associated binding affinity of -10.5 kcal/mol with tyrosyl-tRNA synthetase (PDB ID: 1JIJ), revealed that the complexes' inhibitory actions were strong and comparable with those of the standard drug in the experiments. In addition, the ability of the new quinoline-based complexes to scavenge 1,1-diphenyl-picrylhydrazyl radicals was investigated; the findings suggested that the complexes exhibit potent antioxidant activities, which may be of therapeutic significance.
Collapse
Affiliation(s)
- Tadewos Damena
- Department
of Chemistry, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Sadhna Mathura
- School
of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Alemayehu Getahun
- Department
of Biology, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Dereje Bizuayehu
- Department
of Chemistry, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Mamaru Bitew Alem
- Department
of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
- National
Institute for Theoretical and Computational Sciences (NITheCS), Dimbaza 5600, South Africa
| | - Shiferaw Gadisa
- Department
of Physics, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Digafie Zeleke
- Department
of Chemistry, Salale University, P.O. Box 245 Fitche, Ethiopia
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Notwane Rd, P/bag UB, 00704 Gaborone, Botswana
| |
Collapse
|
4
|
Oboňová B, Valentová J, Litecká M, Pašková Ľ, Hricovíniová J, Bilková A, Bilka F, Horváth B, Habala L. Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line. Int J Mol Sci 2024; 25:9166. [PMID: 39273115 PMCID: PMC11395566 DOI: 10.3390/ijms25179166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Several novel copper (II) complexes of reduced Schiff bases containing fluoride substituents were prepared and structurally characterized by single-crystal X-ray diffraction. The complexes exhibited diverse structures, with the central atom in distorted tetrahedral geometry. The biological effects of the products were evaluated, specifically their cytotoxicity, antimicrobial, and antiurease activities, as well as affinity for albumin (BSA) and DNA (ct-DNA). The complexes showed marked cytotoxic activities in the HepG2 hepatocellular carcinoma cell line, considerably higher than the standard cisplatin. The cytotoxicity depended significantly on the substitution pattern. The best activity was observed in the complex with a trifluoromethyl group in position 4 of the benzene ring-the dichloro[(±)-trans-N,N'-bis-(4-trifluoromethylbenzyl)-cyclohexane-1,2-diamine]copper (II) complex, whose activity (IC50 28.7 μM) was higher than that of the free ligand and markedly better than the activity of the standard cisplatin (IC50 336.8 μM). The same complex also showed the highest antimicrobial effect in vitro. The affinity of the complexes towards bovine serum albumin (BSA) and calf thymus DNA (ct-DNA) was established as well, indicating only marginal differences between the complexes. In addition, all complexes were shown to be excellent inhibitors of the enzyme urease, with the IC50 values in the lower micromolar region.
Collapse
Affiliation(s)
- Bianka Oboňová
- Department Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Jindra Valentová
- Department Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Miroslava Litecká
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the CAS, Husinec-Řež č.p. 1001, 250 68 Řež, Czech Republic
| | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Jana Hricovíniová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Andrea Bilková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - František Bilka
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Branislav Horváth
- NMR Laboratory, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Ladislav Habala
- Department Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
5
|
Žužek MC. Advances in Cholinesterase Inhibitor Research-An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes. Int J Mol Sci 2024; 25:9049. [PMID: 39201735 PMCID: PMC11354293 DOI: 10.3390/ijms25169049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Chkirate K, Ati GA, Karrouchi K, Fettach S, Chakchak H, Mague JT, Radi S, Adarsh NN, Abbes Faouzi ME, Essassi EM, Garcia Y. Cu II Pyrazolyl-Benzimidazole Dinuclear Complexes with Remarkable Antioxidant Activity. Chembiochem 2023; 24:e202300331. [PMID: 37548339 DOI: 10.1002/cbic.202300331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
Three dinuclear coordination complexes generated from 1-n-butyl-2-((5-methyl-1H-pyrazole-3-yl)methyl)-1H-benzimidazole (L), have been synthesized and characterized spectroscopically and structurally by single crystal X-ray diffraction analysis. Reaction with iron(II) chloride and then copper(II) nitrate led to a co-crystal containing 78 % of [Cu(NO3 )(μ-Cl)(L')]2 (C1 ) and 22 % of [Cu(NO3 )(μ-NO3 )(L')]2 (C2 ), where L was oxidized to a new ligand L' . A mechanism is provided. Reaction with copper chloride led to the dinuclear complex [Cu(Cl)(μ-Cl)(L)]2 (C3 ). The presence of N-H⋅⋅⋅O and C-H⋅⋅⋅O intermolecular interactions in the crystal structure of C1 and C2 , and C-H⋅⋅⋅N and C-H⋅⋅⋅Cl hydrogen bonding in the crystal structure of C3 led to supramolecular structures that were confirmed by Hirshfeld surface analysis. The ligands and their complexes were tested for free radical scavenging activity and ferric reducing antioxidant power. The complex C1 /C2 shows remarkable antioxidant activities as compared to the ligand L and reference compounds.
Collapse
Affiliation(s)
- Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10010, Morocco
| | - Gamal Al Ati
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10010, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat (Morocco)
| | - Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat (Morocco)
| | - Hind Chakchak
- Unités d'Appui Techniques À la Recherche Scientifique (UATRS), Centre National Pour la Recherche Scientifique et Technique (CNRST), Rabat, 10000, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Smaail Radi
- LCAE, Département de Chimie, Faculté des Sciences, Université Mohamed Premier, B. P. 524, 60000, Oujda, Morocco
| | - N N Adarsh
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat (Morocco)
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10010, Morocco
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Lanzarin GAB, Félix LM, Monteiro SM, Ferreira JM, Oliveira PA, Venâncio C. Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects of Thymol and 24-Epibrassinolide in Zebrafish Larvae. Antioxidants (Basel) 2023; 12:1297. [PMID: 37372027 DOI: 10.3390/antiox12061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Thymol (THY) and 24-epibrassinolide (24-EPI) are two examples of plant-based products with promising therapeutic effects. In this study, we investigated the anti-inflammatory, antioxidant and anti-apoptotic effects of the THY and 24-EPI. We used zebrafish (Danio rerio) larvae transgenic line (Tg(mpxGFP)i114) to evaluate the recruitment of neutrophils as an inflammatory marker to the site of injury after tail fin amputation. In another experiment, wild-type AB larvae were exposed to a well known pro-inflammatory substance, copper (CuSO4), and then exposed for 4 h to THY, 24-EPI or diclofenac (DIC), a known anti-inflammatory drug. In this model, the antioxidant (levels of reactive oxygen species-ROS) and anti-apoptotic (cell death) effects were evaluated in vivo, as well as biochemical parameters such as the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), the biotransformation activity of glutathione-S-transferase, the levels of glutathione reduced and oxidated, lipid peroxidation, acetylcholinesterase activity, lactate dehydrogenase activity, and levels of nitric acid (NO). Both compounds decreased the recruitment of neutrophils in Tg(mpxGFP)i114, as well as showed in vivo antioxidant effects by reducing ROS production and anti-apoptotic effects in addition to a decrease in NO compared to CuSO4. The observed data substantiate the potential of the natural compounds THY and 24-EPI as anti-inflammatory and antioxidant agents in this species. These results support the need for further research to understand the molecular pathways involved, particularly their effect on NO.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jorge M Ferreira
- Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), 4200-135 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Movahedi E, Razmazma H, Rezvani A, Nowroozi A, Ebrahimi A, Eigner V, Dusek M, Arjmand F. A novel Cu(II)-based DNA-intercalating agent: Structural and biological insights using biophysical and in silico techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122438. [PMID: 36758364 DOI: 10.1016/j.saa.2023.122438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A new mixed-ligand Cu(II) complex formulated as [Cu(dipic)(amp)(H2O)].H2O (dipic: pyridine-2,6-dicarboxylic acid, amp: 2-amino-4-methylpyridine), was synthesized and structurally characterized by FTIR spectroscopy, CHN analysis, and the single-crystal X-ray crystallographic method. The complex crystallizes in an orthorhombic space group Pna21, and the coordination environment around the metal center was found to be a pentacoordinate CuN2O2OW distorted square-pyramidal geometry. In order to systematically explore a detailed in vitro and in silico study of the DNA binding of the title complex, various biophysical (UV-Vis absorption spectroscopy, fluorescence, competitive binding with ethidium bromide) and theoretical (DFT, molecular docking simulation, and QM/MM) methods were applied which revealed that the complex could intercalate with the insertion of the amp ligand between the DNA base pairs. The experimental thermodynamic parameters of the interaction revealed the spontaneity of the process and the domination of the hydrophobic interactions in the association and stabilization of the DNA-Cu(II) complex adduct, which was in line with the docking and QM/MM data. In vitro cytotoxic potential of the complex against the human breast adenocarcinoma (MCF-7) cells was examined using MTT assay, which indicated that cancerous cells showed inhibition in presence of the complex.
Collapse
Affiliation(s)
- Elaheh Movahedi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Hafez Razmazma
- Laboratory of Computational Quantum Chemistry and Drug Design, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Rezvani
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Alireza Nowroozi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Ali Ebrahimi
- Laboratory of Computational Quantum Chemistry and Drug Design, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221, Prague 8, Czech Republic
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221, Prague 8, Czech Republic
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| |
Collapse
|
9
|
Dimiza F, Barmpa A, Chronakis A, Hatzidimitriou AG, Sanakis Y, Papadopoulos AN, Psomas G. Iron(III) Complexes with Non-Steroidal Anti-Inflammatory Drugs: Structure, Antioxidant and Anticholinergic Activity, and Interaction with Biomolecules. Int J Mol Sci 2023; 24:ijms24076391. [PMID: 37047364 PMCID: PMC10094617 DOI: 10.3390/ijms24076391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
One the main research goals of bioinorganic chemists is the synthesis of novel coordination compounds possessing biological potency. Within this context, three novel iron(III) complexes with the non-steroidal anti-inflammatory drugs diflunisal and diclofenac in the presence or absence of the nitrogen donors 1,10-phenanthroline or pyridine were isolated and characterized by diverse techniques. The complexes were evaluated for their ability to scavenge in vitro free radicals such as hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, revealing their selective potency towards hydroxyl radicals. The in vitro inhibitory activity of the complexes towards the enzymes acetylcholinesterase and butyrylcholinesterase was evaluated, and their potential to achieve neuroprotection appeared promising. The interaction of the complexes with calf-thymus DNA was examined in vitro, revealing their ability to intercalate in-between DNA nucleobases. The affinity of the complexes for serum albumins was evaluated in vitro and revealed their tight and reversible binding.
Collapse
|
10
|
Structural and Biological Properties of Heteroligand Copper Complexes with Diethylnicotinamide and Various Fenamates: Preparation, Structure, Spectral Properties and Hirshfeld Surface Analysis. INORGANICS 2023. [DOI: 10.3390/inorganics11030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Herein, we discuss the synthesis, structural and spectroscopic characterization, and biological activity of five heteroligand copper(II) complexes with diethylnicotinamide and various fenamates, as follows: flufenamate (fluf), niflumate (nifl), tolfenamate (tolf), clonixinate (clon), mefenamate (mef) and N, N-diethylnicotinamide (dena). The complexes of composition: [Cu(fluf)2(dena)2(H2O)2] (1), [Cu(nifl)2(dena)2] (2), [Cu(tolf)2(dena)2(H2O)2] (3), [Cu(clon)2(dena)2] (4) and [Cu(mef)2(dena)2(H2O)2] (5), were synthesized, structurally (single-crystal X-ray diffraction) and spectroscopically characterized (IR, EA, UV-Vis and EPR). The studied complexes are monomeric, forming a distorted tetragonal bipyramidal stereochemistry around the central copper ion. The crystal structures of all five complexes were determined and refined with an aspheric model using the Hirshfeld atom refinement method. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state. The redox properties of the complexes were studied and evaluated via cyclic voltammetry. The complexes exhibited good superoxide scavenging activity as determined by an NBT assay along with a copper-based redox-cycling mechanism, resulting in the formation of ROS, which, in turn, predisposed the studied complexes for their anticancer activity. The ability of complexes 1–4 to interact with calf thymus DNA was investigated using absorption titrations, viscosity measurements and an ethidium-bromide-displacement-fluorescence-based method, suggesting mainly the intercalative binding of the complexes to DNA. The affinity of complexes 1–4 for bovine serum albumin was determined via fluorescence emission spectroscopy and was quantitatively characterized with the corresponding binding constants. The cytotoxic properties of complexes 1–4 were studied using the cancer cell lines A549, MCF-7 and U-118MG, as well as healthy MRC-5 cells. Complex 4 exhibited moderate anticancer activity on the MCF-7 cancer cells with IC50 = 57 μM.
Collapse
|
11
|
Lazou M, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Transition metal(II) complexes with the non–steroidal anti–inflammatory drug oxaprozin: Characterization and biological profile. J Inorg Biochem 2023; 243:112196. [PMID: 36966675 DOI: 10.1016/j.jinorgbio.2023.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
A series of copper(II), nickel(II) and cobalt(II) complexes with the non-steroidal anti-inflammatory drug oxaprozin (Hoxa) have been synthesized and characterized by diverse techniques. The crystal structures of two copper(II) complexes, namely the dinuclear complex [Cu2(oxa)4(DMF)2] (1) and the polymeric complex {[Cu2(oxa)4]·2MeOH·0.5MeOH}2 (12) were determined by single-crystal X-ray diffraction studies. In order to evaluate in vitro the antioxidant activity of the resultant complexes, their scavenging ability towards 1,1-diphenyl-picrylhydrazyl (DPPH), hydroxyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was investigated revealing their high effectiveness against these radicals. The binding of the complexes to bovine serum albumin and human serum albumin was examined and the corresponding determined albumin-binding constants showed a tight and reversible interaction. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques including UV-vis spectroscopy, cyclic voltammetry, DNA-viscosity measurements and competitive studies with ethidium bromide. Intercalation may be proposed as the most possible DNA-interaction mode of the complexes.
Collapse
|
12
|
Christidou A, Zavalani K, Hatzidimitriou AG, Psomas G. Copper(II) complexes with 3,5-dihalogeno-salicylaldehydes: Synthesis, structure and interaction with DNA and albumins. J Inorg Biochem 2023; 238:112049. [PMID: 36327500 DOI: 10.1016/j.jinorgbio.2022.112049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Eight copper(II) complexes of 3,5-dichloro-salicyladehyde or 3,5-dibromo-salicyladehyde (3,5-diX-saloH, X = Br or Cl) were synthesized in the absence or presence of a N,N'-donor co-ligand such as 2,2'-bipyridylamine, 1,10-phenanthroline, or 2,2'-bipyridine. The resultant compounds were formulated as [Cu(3,5-diX-salo)2(MeOH)2] (1-2) and [Cu(3,5-diX-salo)(N,N'-donor)Cl] (3-8) and were characterized by diverse techniques. The crystal structures of three complexes were determined by single-crystal X-ray crystallography. Diverse techniques were employed in order to investigate the interaction of the complexes with calf-thymus DNA which showed intercalation as the most possible mode of their interaction. The affinity of the complexes for bovine serum albumin and human serum albumin was evaluated by fluorescence emission spectroscopy in order to calculate the binding constants which suggested a tight and reversible binding. SYNOPSIS: A series of copper(II) complexes with 3,5-dihalogen-substituted salicylaldehydes as ligands were isolated and characterized. In vitro biological studies showed the intercalation of the compounds with calf-thymus DNA and their tight and reversible binding with serum albumins.
Collapse
Affiliation(s)
- Aphrodite Christidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Konstantina Zavalani
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece.
| |
Collapse
|
13
|
Nachon F, Brazzolotto X, Dias J, Courageux C, Drożdż W, Cao XY, Stefankiewicz AR, Lehn JM. Grid-Type Quaternary Metallosupramolecular Compounds Inhibit Human Cholinesterases through Dynamic Multivalent Interactions. Chembiochem 2022; 23:e202200456. [PMID: 36193860 DOI: 10.1002/cbic.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Indexed: 01/25/2023]
Abstract
We report the implementation of coordination complexes containing two types of cationic moieties, i. e. pyridinium and ammonium quaternary salt, as potential inhibitors of human cholinesterase enzymes. Utilization of ligands containing NNO-coordination site and binding zinc metal ion allowed mono- and tetra-nuclear complexes to be obtained with corner and grid structural type, respectively, thus affecting the overall charge of the compounds (from +1 to +8). We were able to examine for the first time the multivalency effect of metallosupramolecular species on their inhibitory abilities towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Importantly, resolution of the crystal structures of the obtained enzyme-substrate complexes provided a better understanding of the inhibition process at the molecular level.
Collapse
Affiliation(s)
- Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - Charlotte Courageux
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Xiao-Yu Cao
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
14
|
Synthesis, characterization, antioxidant potential, and cytotoxicity screening of new Cu(II) complexes with 4-(arylchalcogenyl)-1H-pyrazoles ligands. J Inorg Biochem 2022; 237:112013. [PMID: 36183642 DOI: 10.1016/j.jinorgbio.2022.112013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Two new Cu(II) complexes based on 4-(arylchalcogenyl)-1H-pyrazoles monodentate bis(ligand) containing selenium or sulfur groups (2a and 2b) have been synthesized and characterized by IR spectroscopy, high-resolution mass spectrometry (HRMS), and by X-ray crystallography. In the effort to propose new applications for the biomedical area, we evaluated the antioxidant activity and cytotoxicity of the newly synthesized complexes. The antioxidant activity of the Cu(II) complexes (2a - 2b) were assessed through their ability to inhibit the formation of reactive species (RS) induced by sodium azide and to scavenge the synthetic radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+). Both copper complexes containing selenium (2a) and sulfur (2b) presented in vitro antioxidant activity. The (1a - 1b and 2a - 2b) compounds did not show cytotoxicity in V79 cells at low concentrations. Furthermore, the antiproliferative activity of free ligands (1a - 1b) and their complexes (2a - 2b) were tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and HepG2 (hepatocarcinoma). Also, 2a was tested against U2OS (osteosarcoma). Our results demonstrated that 1a and 1b show little or no growth inhibition activities on human cell lines.The 2a compound exhibited good cytotoxic activity toward human tumor cell lines. However, 2a showed no selectivity, with a selectivity index of 1.12-1.40. Complex 2b was selective for the MCF-7 human tumor cell lines with IC50 of 59 ± 2 μM. This study demonstrates that the Cu(II) complexes 2a and 2b represent promising antitumoral compounds, and further studies are necessary to understand the molecular mechanisms of these effects.
Collapse
|
15
|
Copper(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines: Anticancer, antioxidant, antigenotoxic effects and interaction with DNA and albumins. J Inorg Biochem 2022; 235:111942. [DOI: 10.1016/j.jinorgbio.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
16
|
Fouad R, Shebl M, Saif M, Gamal S. Novel copper nano-complex based on tetraazamacrocyclic backbone: Template synthesis, structural elucidation, cytotoxic, DNA binding and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Bhattacherjee P, Roy M, Naskar A, Tsai H, Ghosh A, Patra N, John RP. A trinuclear copper (II) complex of naproxen‐appended salicylhydrazide: Synthesis, crystal structure, DNA binding and molecular docking study. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Prama Bhattacherjee
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Mousam Roy
- Department of Biochemistry Bose Institute Kolkata India
| | - Avigyan Naskar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Hsieh‐Chih Tsai
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
- Advanced Membrane Materials Center National Taiwan University of Science and Technology Taipei Taiwan
| | | | - Niladri Patra
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Rohith P. John
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
18
|
Jozefíková F, Perontsis S, Koňáriková K, Švorc Ľ, Mazúr M, Psomas G, Moncol J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J Inorg Biochem 2021; 228:111696. [PMID: 35030390 DOI: 10.1016/j.jinorgbio.2021.111696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
Abstract
Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.
Collapse
Affiliation(s)
- Flóra Jozefíková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Katarína Koňáriková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 81372 Bratislava, Slovakia
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Milan Mazúr
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
19
|
Shao J, Zhang Q, Wei J, Yuchi Z, Cao P, Li SQ, Wang S, Xu JY, Yang S, Zhang Y, Wei JX, Tian JL. Synthesis, crystal structures, anticancer activities and molecular docking studies of novel thiazolidinone Cu(II) and Fe(III) complexes targeting lysosomes: special emphasis on their binding to DNA/BSA. Dalton Trans 2021; 50:13387-13398. [PMID: 34473154 DOI: 10.1039/d1dt02180j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel [CuL2Cl]Cl·H2O (1) and [FeL2Cl2]Cl·MeOH·CHCl3·H2O (2) complexes of (Z)-N'-((E)-3-methyl-4-oxothiazolidin-2-ylidene)picolinohydrazonamide (L) as antitumor agents were designed and synthesized in order to explore DNA and serum albumin interaction. X-ray diffraction revealed that both 1 and 2 were a triclinic crystal system with P1̄ space group, which consisted of a positive electric main unit, a negative chloride ion and some solvent molecules. The complexes with DNA and bovine serum albumin (BSA) were studied by fluorescence and electronic absorption spectrometry. The results indicated that there was moderate intercalative binding mode between the complexes and DNA with Kapp values of 2.40 × 105 M-1 (1) and 6.49 × 105 M-1 (2). Agarose gel electrophoresis experiment showed that both 1 and 2 exhibited obvious DNA cleavage activity via an oxidative DNA damage pathway, and the cleavage activities of 1 were stronger than those of 2. Cytotoxicity assay showed that 1 had a more effective antitumor activity than 2. The two complexes were bound to BSA by a high affinity and quenched the fluorescence of BSA through a static mechanism. The thermodynamic parameters suggested that hydrophobic interactions played a key role in the binding process. The binding energy xpscore of 1 and 2 were -10.529 kcal mol-1 and -10.826 kcal mol-1 by docking studies, and this suggested that the binding process was spontaneous. Complex 1 displayed a lysosome-specific targeting behavior with a Pearson coefficient value of 0.82 by confocal laser scanning microscopy (CLSM), and accumulated in the lysosomes, followed by the disruption of lysosomal integrity.
Collapse
Affiliation(s)
- Jia Shao
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, P. R. China.
| | - Qiang Zhang
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shao-Qing Li
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Shan Wang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, P. R. China.
| | - Jing-Yuan Xu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Shuang Yang
- Medical College of Nankai University, Tianjin 300071, P. R.China
| | - Yi Zhang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, P. R. China.
| | - Jin-Xia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
| | - Jin-Lei Tian
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
20
|
Malis G, Geromichalou E, Geromichalos GD, Hatzidimitriou AG, Psomas G. Copper(II) complexes with non-steroidal anti-inflammatory drugs: Structural characterization, in vitro and in silico biological profile. J Inorg Biochem 2021; 224:111563. [PMID: 34399232 DOI: 10.1016/j.jinorgbio.2021.111563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 01/25/2023]
Abstract
Six novel copper(II) complexes with the non-steroidal anti-inflammatory drugs ibuprofen, loxoprofen, fenoprofen and clonixin as ligands were synthesized and characterized by diverse techniques including single-crystal X-ray crystallography. The in vitro scavenging activity of the complexes against 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) free radicals and the ability to reduce H2O2 were studied in the context of the antioxidant activity studies. The complexes may interact with calf-thymus DNA via intercalation as revealed by the techniques employed. The affinity of the complexes for bovine and human serum albumins was evaluated by fluorescence emission spectroscopy and the corresponding binding constants were determined. Molecular docking simulations on the crystal structure of calf-thymus DNA, human and bovine serum albumins were also employed in order to study in silico the ability of the studied compounds to bind to these target biomacromolecules, in terms of impairment of DNA and transportation through serum albumins, to explain the observed in vitro activity and to establish a possible mechanism of action.
Collapse
Affiliation(s)
- Georgios Malis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR -54124 Thessaloniki, Greece
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - George D Geromichalos
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR -54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR -54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR -54124 Thessaloniki, Greece.
| |
Collapse
|
21
|
Perontsis S, Chasapis CT, Hatzidimitriou AG, Psomas G. Synthesis, characterization and (in vitro and in silico) biological activity of a series of dioxouranium(VI) complexes with non-steroidal anti-inflammatory drugs. J Inorg Biochem 2021; 223:111534. [PMID: 34273715 DOI: 10.1016/j.jinorgbio.2021.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The reaction of the dioxouranium(VI) ion with a series of non-steroidal anti-inflammatory drugs (NSAIDs), namely mefenamic acid, indomethacin, diclofenac, diflunisal and tolfenamic acid, as ligands in the absence or presence of diverse N,N'-donors (1,10-phenanthroline,2,2'-bipyridine or 2,2'-bipyridylamine) as co-ligands led to the formation of ten complexes bearing the formulas [UO2(NSAID-O,O')2(O-donor)2] or [UO2(NSAID-O,O')2(N,N'-donor)], respectively. The complexes were characterized with diverse spectroscopic techniques and the crystal structures of three complexes were determined by single-crystal X-ray crystallography. The biological profile of the resultant complexes was assessed in vitro and in silico. The in vitro studies include their antioxidant properties (ability to scavenge free radicals 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and to reduce H2O2), their interaction with DNA (linear calf-thymus DNA or supercoiled circular pBR322 plasmid DNA) and their affinity for serum albumins (bovine and human serum albumin). In silico molecular docking calculations were performed regarding the behavior of the complexes towards DNA and their binding to both albumins.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christos T Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
22
|
Barmpa A, Geromichalos GD, Hatzidimitriou AG, Psomas G. Nickel(II)-meclofenamate complexes: Structure, in vitro and in silico DNA- and albumin-binding studies, antioxidant and anticholinergic activity. J Inorg Biochem 2021; 222:111507. [PMID: 34139455 DOI: 10.1016/j.jinorgbio.2021.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Five novel nickel(II) complexes with the non-steroidal anti-inflammatory drug sodium meclofenamate (Na-mclf) have been synthesized and characterized in the absence or co-existence of the nitrogen-donors imidazole (Himi), 2,2'-bipyridylamine (bipyam), 2,2'-bipyridylketoxime (Hpko) and 2,9-dimethyl-1,10-phenanthroline (neoc); namely [Ni(mclf-O)2(Himi)2(MeOH)2], [Ni(mclf-O)2(MeOH)4], [Ni(mclf-O)(mclf-O,O')(bipyam)(MeOH)]·0.25MeOH, [Ni(mclf-O,O')2(neoc)] and [Ni(mclf-O)2(Hpko-N,N')2]·MeOH·0.5H2O. The affinity of the complexes for calf-thymus (CT) DNA was investigated by various techniques and intercalation is suggested as the most possible interaction mode. The interaction of the complexes for bovine and human serum albumins was also investigated in order to determine the binding constants, concluding that the complexes bind reversibly to albumins for the transportation towards their target cells or tissues and their release upon arrival at biotargets. The antioxidant activity of the compounds was evaluated via their ability to scavenge 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) free radicals and to reduce H2O2. For the determination of the anticholinergic ability of the complexes the in vitro inhibitory activity against the enzymes acetylcholinesterase and butyrylcholinesterase was evaluated and presented promising results. The in silico molecular modeling calculations employed provide useful insights for the understanding of the mechanism of action of the studied complexes at a molecular level. This applies on both the impairment of DNA by its binding with the studied complexes and transportation through serum albumins, as well as the ability of these compounds to act as anticholinergic agents.
Collapse
Affiliation(s)
- Amalia Barmpa
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George D Geromichalos
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
23
|
Dimiza F, Hatzidimitriou AG, Sanakis Y, Papadopoulos AN, Psomas G. Trinuclear and tetranuclear iron(III) complexes with fenamates: Structure and biological profile. J Inorg Biochem 2021; 218:111410. [PMID: 33721718 DOI: 10.1016/j.jinorgbio.2021.111410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
The interaction of FeCl3 with the fenamate non-steroidal anti-inflammatory drugs has led to the formation and isolation of trinuclear iron(III) complexes, while in the presence of the nitrogen-donors 2,2'-bipyridine or pyridine tetranuclear iron(III) complexes were derived. The five resultant complexes were characterized by diverse techniques (including infrared, electronic and Mössbauer spectroscopy) and their crystal structures were determined by single-crystal X-ray crystallography. These complexes are the first structurally characterized Fe(III)-fenamato complexes. The complexes were evaluated for their ability to scavenge in vitro free radicals such as hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid). The in vitro binding affinity of the complexes to calf-thymus (CT) DNA was examined and their interaction with serum albumins was also investigated. In total, the complexes present promising activity against the radicals tested, and they may bind tightly to CT DNA possibly via intercalation and reversibly to serum albumins.
Collapse
Affiliation(s)
- Filitsa Dimiza
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Ag. Paraskevi, Attiki, Greece
| | - Athanasios N Papadopoulos
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|