1
|
Xie G, Huang Y, Hu D, Xia Y, Gong M, Zou Z. Potentiation of Catalase-Mediated Plant Thermotolerance by N-Terminal Attachment of Solubilizing/Thermostabilizing Fusion Partners. Int J Mol Sci 2024; 25:12181. [PMID: 39596251 PMCID: PMC11594932 DOI: 10.3390/ijms252212181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Catalase (CAT) plays a crucial role in plant responses to environmental stresses and maintaining redox homeostasis. However, its putative heat lability might compromise its activity and function, thus restricting plant thermotolerance. Herein, we verified Arabidopsis CAT3 was of poor thermostability that was then engineered by fusion expression in Escherichia coli. We found that our selected fusion partners, three hyperacidic mini-peptides and the short rubredoxin from hyperthermophile Pyrococcus furiosus, were commonly effectual to enhance the solubility and thermostability of CAT3 and enlarge its improvement on heat tolerance in E. coli and yeast. Most importantly, this finding was also achievable in plants. Fusion expression could magnify CAT3-mediated thermotolerance in tobacco. Under heat stress, transgenic lines expressing CAT3 fusions generally outperformed native CAT3 which in turn surpassed wild-type tobacco, in terms of seed germination, seedling survival, plant recovery growth, protection of chlorophyll and membrane lipids, elimination of H2O2, as well as mitigation of cell damage in leaves and roots. Moreover, we revealed that the introduced CAT3 or its fusions seemed solely responsible for the enhanced thermotolerance in tobacco. Prospectively, this fusion expression strategy would be applicable to other crucial plant proteins of intrinsic heat instability and thus provide an alternative biotechnological route for ameliorating plant heat tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China; (G.X.); (Y.H.); (D.H.); (Y.X.); (M.G.)
| |
Collapse
|
2
|
Wang Y, Liu Y. Computational Insights into the Non-Heme Diiron Alkane Monooxygenase Enzyme AlkB: Electronic Structures, Dioxygen Activation, and Hydroxylation Mechanism of Liquid Alkanes. Inorg Chem 2024; 63:17056-17066. [PMID: 39238331 DOI: 10.1021/acs.inorgchem.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Alkane monooxygenase (AlkB) is a membrane-spanning metalloenzyme that catalyzes the terminal hydroxylation of straight-chain alkanes involved in the microbially mediated degradation of liquid alkanes. According to the cryoEM structures, AlkB features a unique multihistidine ligand coordination environment with a long Fe-Fe distance in its active center. Up to now, how AlkB employs the diiron center to activate dioxygen and which species is responsible for triggering the hydroxylation are still elusive. In this work, we constructed computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the electronic characteristics of the diiron active center and how AlkB carries out the terminal hydroxylation. Our calculations revealed that the spin-spin interaction between two irons is rather weak. The dioxygen may ligate to either the Fe1 or Fe2 atom and prefers to act as a linker to increase the spin-spin interaction of two irons, facilitating the dioxygen cleavage to generate the highly reactive Fe(IV)═O. Thus, AlkB employs Fe(IV)═O to trigger the hydrogen abstraction. In addition, the previously suggested mechanism that AlkB uses both the dioxygen and Fe-coordinated water to perform hydroxylation was calculated to be unlikely. Besides, our results indicate that AlkB cannot use the Fe-coordinated dioxygen to directly trigger hydrogen abstraction.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Yu F, Zhang B, Liu Y, Luo W, Chen H, Gao J, Ye X, Li J, Xie Q, Peng T, Wang H, Huang T, Hu Z. Biotransformation of HBCDs by the microbial communities enriched from mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134036. [PMID: 38493623 DOI: 10.1016/j.jhazmat.2024.134036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are a sort of persistent organic pollutants (POPs). This research investigated 12 microbial communities enriched from sediments of four mangroves in China to transform HBCDs. Six microbial communities gained high transformation rates (27.5-97.7%) after 12 generations of serial transfer. Bacteria were the main contributors to transform HBCDs rather than fungi. Analyses on the bacterial compositions and binning genomes showed that Alcanivorax (55.246-84.942%) harboring haloalkane dehalogenase genes dadAH and dadBH dominated the microbial communities with high transformation rates. Moreover, expressions of dadAH and dadBH in the microbial communities and Alcanivorax isolate could be induced by HBCDs. Further, it was found that purified proteins DadAH and DadBH showed high conversion rates on HBCDs in 36 h (91.9 ± 7.4 and 101.0 ± 1.8%, respectively). The engineered Escherichia coli BL21 strains harbored two genes could convert 5.7 ± 0.4 and 35.1 ± 0.1% HBCDs, respectively, lower than their cell-free crude extracts (61.2 ± 5.2 and 56.5 ± 8.7%, respectively). The diastereoisomer-specific transforming trend by both microbial communities and enzymes were γ- > α- > β-HBCD, differed from α- > β- > γ-HBCD by the Alcanivorax isolate. The identified transformation products indicated that HBCDs were dehalogenated via HBr elimination (dehydrobromination), hydrolytic and reductive debromination pathways in the enriched cultures. Two enzymes converted HBCDs via hydrolytic debromination. The present research provided theoretical bases for the biotransformation of HBCDs by microbial community and the bioremediation of HBCDs contamination in the environment.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Bing Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Haonan Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Jun'na Gao
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Xueying Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, Guangdong Province, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, Guangdong Province, China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China.
| |
Collapse
|
4
|
Groves JT, Feng L, Austin RN. Structure and Function of Alkane Monooxygenase (AlkB). Acc Chem Res 2023; 56:3665-3675. [PMID: 38032826 PMCID: PMC11623191 DOI: 10.1021/acs.accounts.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Every year, perhaps as much as 800 million tons of hydrocarbons enters the environment; alkanes make up a large percentage of it. Most are transformed by organisms that utilize these molecules as sources of energy and carbon. Both aerobic and anaerobic alkane transformation chemistries exist, capitalizing on the presence of alkanes in both oxic and anoxic environments. Over the past 40 years, tremendous progress has been made in understanding the structure and mechanism of enzymes that catalyze the transformation of methane. By contrast, progress involving enzymes that transform liquid alkanes has been slower with the first structures of AlkB, the predominant aerobic alkane hydroxylase in the environment, appearing in 2023. Because of the fundamental importance of C-H bond activation chemistries, interest in understanding how biology activates and transforms alkanes is high.In this Account, we focus on steps we have taken to understand the mechanism and structure of alkane monooxygenase (AlkB), the metalloenzyme that dominates the transformation of liquid alkanes in the environment (not to be confused with another AlkB that is an α-ketogluturate-dependent enzyme involved in DNA repair). First, we briefly describe what is known about the prevalence of AlkB in the environment and its role in the carbon cycle. Then we review the key findings from our recent high-resolution cryoEM structure of AlkB and highlight important similarities and differences in the structures of members of class III diiron enzymes. Functional studies, which we summarize, from a number of single residue variants enable us to say a great deal about how the structure of AlkB facilitates its function. Next, we overview work from our laboratories using mechanistically diagnostic radical clock substrates to characterize the mechanism of AlkB and contextualize the results we have obtained on AlkB with results we have obtained on other alkane-oxidizing enzymes and explain these results in light of the enzyme's structure. Finally, we integrate recent work in our laboratories with information from prior studies of AlkB, and relevant model systems, to create a holistic picture of the enzyme. We end by pointing to critical questions that still need to be answered, questions about the electronic structure of the active site of the enzyme throughout the reaction cycle and about whether and to what extent the enzyme plays functional roles in biology beyond simply initiating the degradation of alkanes.
Collapse
Affiliation(s)
- John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
5
|
Vázquez Rosas Landa M, De Anda V, Rohwer RR, Angelova A, Waldram G, Gutierrez T, Baker BJ. Exploring novel alkane-degradation pathways in uncultured bacteria from the North Atlantic Ocean. mSystems 2023; 8:e0061923. [PMID: 37702502 PMCID: PMC10654063 DOI: 10.1128/msystems.00619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE Petroleum pollution in the ocean has increased because of rapid population growth and modernization, requiring urgent remediation. Our understanding of the metabolic response of native microbial communities to oil spills is not well understood. Here, we explored the baseline hydrocarbon-degrading communities of a subarctic Atlantic region to uncover the metabolic potential of the bacteria that inhabit the surface and subsurface water. We conducted enrichments with a 13C-labeled hydrocarbon to capture the fraction of the community actively using the hydrocarbon. We then combined this approach with metagenomics to identify the metabolic potential of this hydrocarbon-degrading community. This revealed previously undescribed uncultured bacteria with unique metabolic mechanisms involved in aerobic hydrocarbon degradation, indicating that temperature may be pivotal in structuring hydrocarbon-degrading baseline communities. Our findings highlight gaps in our understanding of the metabolic complexity of hydrocarbon degradation by native marine microbial communities.
Collapse
Affiliation(s)
- Mirna Vázquez Rosas Landa
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
- Instituto de Ciencias del Mar y Limnologia Universidad Nacional Autónoma de Mexico, Unidad Académica de Ecologia y Biodiversidad Acuática, Mexico City, Mexico
| | - Valerie De Anda
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Robin R. Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Angelina Angelova
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, Edinburgh, United Kingdom
| | - Georgia Waldram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, Edinburgh, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, Edinburgh, United Kingdom
| | - Brett J. Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Guo X, Zhang J, Han L, Lee J, Williams SC, Forsberg A, Xu Y, Austin RN, Feng L. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nat Commun 2023; 14:2180. [PMID: 37069165 PMCID: PMC10110569 DOI: 10.1038/s41467-023-37869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juliet Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shoshana C Williams
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Allison Forsberg
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90007, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Chai J, Guo G, McSweeney SM, Shanklin J, Liu Q. Structural basis for enzymatic terminal C-H bond functionalization of alkanes. Nat Struct Mol Biol 2023; 30:521-526. [PMID: 36997762 PMCID: PMC10113152 DOI: 10.1038/s41594-023-00958-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Alkane monooxygenase (AlkB) is a widely occurring integral membrane metalloenzyme that catalyzes the initial step in the functionalization of recalcitrant alkanes with high terminal selectivity. AlkB enables diverse microorganisms to use alkanes as their sole carbon and energy source. Here we present the 48.6-kDa cryo-electron microscopy structure of a natural fusion from Fontimonas thermophila between AlkB and its electron donor AlkG at 2.76 Å resolution. The AlkB portion contains six transmembrane helices with an alkane entry tunnel within its transmembrane domain. A dodecane substrate is oriented by hydrophobic tunnel-lining residues to present a terminal C-H bond toward a diiron active site. AlkG, an [Fe-4S] rubredoxin, docks via electrostatic interactions and sequentially transfers electrons to the diiron center. The archetypal structural complex presented reveals the basis for terminal C-H selectivity and functionalization within this broadly distributed evolutionary class of enzymes.
Collapse
Affiliation(s)
- Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- NSLS-II, Brookhaven National Laboratory, Upton, NY, USA
| | | | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- NSLS-II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
8
|
Zhang N, Ding M, Yuan Y. Current Advances in Biodegradation of Polyolefins. Microorganisms 2022; 10:1537. [PMID: 36013955 PMCID: PMC9416408 DOI: 10.3390/microorganisms10081537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Polyolefins, including polyethylene (PE), polypropylene (PP) and polystyrene (PS), are widely used plastics in our daily life. The excessive use of plastics and improper handling methods cause considerable pollution in the environment, as well as waste of energy. The biodegradation of polyolefins seems to be an environmentally friendly and low-energy consumption method for plastics degradation. Many strains that could degrade polyolefins have been isolated from the environment. Some enzymes have also been identified with the function of polyolefin degradation. With the development of synthetic biology and metabolic engineering strategies, engineered strains could be used to degrade plastics. This review summarizes the current advances in polyolefin degradation, including isolated and engineered strains, enzymes and related pathways. Furthermore, a novel strategy for polyolefin degradation by artificial microbial consortia is proposed, which would be helpful for the efficient degradation of polyolefin.
Collapse
Affiliation(s)
- Ni Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Hayton TW, Shafaat HS. Periodic TableTalks: An Oasis of Science within a Conference Desert. Inorg Chem 2022; 61:5965-5971. [PMID: 35465679 PMCID: PMC11717434 DOI: 10.1021/acs.inorgchem.2c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Williams SC, Luongo D, Orman M, Vizcarra CL, Austin RN. An alkane monooxygenase (AlkB) family in which all electron transfer partners are covalently bound to the oxygen-activating hydroxylase. J Inorg Biochem 2022; 228:111707. [PMID: 34990970 PMCID: PMC8799515 DOI: 10.1016/j.jinorgbio.2021.111707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Alkane monooxygenase (AlkB) is a non-heme diiron enzyme that catalyzes the hydroxylation of alkanes. It is commonly found in alkanotrophic organisms that can live on alkanes as their sole source of carbon and energy. Activation of AlkB occurs via two-electron reduction of its diferric active site, which facilitates the binding, activation, and cleavage of molecular oxygen for insertion into an inert CH bond. Electrons are typically supplied by NADH via a rubredoxin reductase (AlkT) to a rubredoxin (AlkG) to AlkB, although alternative electron transfer partners have been observed. Here we report a family of AlkBs in which both electron transfer partners (a ferredoxin and a ferredoxin reductase) appear as an N-terminal gene fusion to the hydroxylase (ferr_ferrR_AlkB). This enzyme catalyzes the hydroxylation of medium chain alkanes (C6-C14), with a preference for C10-C12. It requires only NADH for activity. It is present in a number of bacteria that are known to be human pathogens. A survey of the genome neighborhoods in which is it found suggest it may be involved in alkane metabolism, perhaps facilitating growth of pathogens in non-host environments.
Collapse
|
11
|
Williams SC, Austin RN. An Overview of the Electron-Transfer Proteins That Activate Alkane Monooxygenase (AlkB). Front Microbiol 2022; 13:845551. [PMID: 35295299 PMCID: PMC8918992 DOI: 10.3389/fmicb.2022.845551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alkane-oxidizing enzymes play an important role in the global carbon cycle. Alkane monooxygenase (AlkB) oxidizes most of the medium-chain length alkanes in the environment. The first AlkB identified was from P. putida GPo1 (initially known as P. oleovorans) in the early 1970s, and it continues to be the family member about which the most is known. This AlkB is found as part of the OCT operon, in which all of the key proteins required for growth on alkanes are present. The AlkB catalytic cycle requires that the diiron active site be reduced. In P. putida GPo1, electrons originate from NADH and arrive at AlkB via the intermediacy of a flavin reductase and an iron–sulfur protein (a rubredoxin). In this Mini Review, we will review what is known about the canonical arrangement of electron-transfer proteins that activate AlkB and, more importantly, point to several other arrangements that are possible. These other arrangements include the presence of a simpler rubredoxin than what is found in the canonical arrangement, as well as two other classes of AlkBs with fused electron-transfer partners. In one class, a rubredoxin is fused to the hydroxylase and in another less well-explored class, a ferredoxin reductase and a ferredoxin are fused to the hydroxylase. We review what is known about the biochemistry of these electron-transfer proteins, speculate on the biological significance of this diversity, and point to key questions for future research.
Collapse
Affiliation(s)
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College, Columbia University, New York City, NY, United States
- *Correspondence: Rachel Narehood Austin,
| |
Collapse
|