1
|
de Bruyn E, Dorn AE, Rossetti G, Fernandez C, Outeiro TF, Schulz JB, Carloni P. Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution. J Chem Inf Model 2024; 64:8215-8226. [PMID: 39462994 PMCID: PMC11558680 DOI: 10.1021/acs.jcim.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Serine 129 can be phosphorylated in pathological inclusions formed by the intrinsically disordered protein human α-synuclein (AS), a key player in Parkinson's disease and other synucleinopathies. Here, molecular simulations provide insight into the structural ensemble of phosphorylated AS. The simulations allow us to suggest that phosphorylation significantly impacts the structural content of the physiological AS conformational ensemble in aqueous solution, as the phosphate group is mostly solvated. The hydrophobic region of AS contains β-hairpin structures, which may increase the propensity of the protein to undergo amyloid formation, as seen in the nonphysiological (nonacetylated) form of the protein in a recent molecular simulation study. Our findings are consistent with existing experimental data with the caveat of the observed limitations of the force field for the phosphorylated moiety.
Collapse
Affiliation(s)
- Emile de Bruyn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Anton Emil Dorn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Faculty
of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Giulia Rossetti
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Claudio Fernandez
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPINAT), Partner of the Max Planck Institute
for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Department
of NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tiago F. Outeiro
- Department
of Experimental Neurodegeneration, Center for Biostructural Imaging
of Neurodegeneration, University Medical
Center Göttingen, 37075 Göttingen, Germany
- Max
Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational
and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE1 7RU, United
Kingdom
| | - Jörg B. Schulz
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
- JARA
Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, 52074 Aachen, Germany
| | - Paolo Carloni
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
2
|
Martins G, Galamba N. Wild-Type α-Synuclein Structure and Aggregation: A Comprehensive Coarse-Grained and All-Atom Molecular Dynamics Study. J Chem Inf Model 2024; 64:6115-6131. [PMID: 39046235 PMCID: PMC11323248 DOI: 10.1021/acs.jcim.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
α-Synuclein (α-syn) is a 140 amino acid intrinsically disordered protein (IDP) and the primary component of cytotoxic oligomers implicated in the etiology of Parkinson's disease (PD). While IDPs lack a stable three-dimensional structure, they sample a heterogeneous ensemble of conformations that can, in principle, be assessed through molecular dynamics simulations. However, describing the structure and aggregation of large IDPs is challenging due to force field (FF) accuracy and sampling limitations. To cope with the latter, coarse-grained (CG) FFs emerge as a potential alternative at the expense of atomic detail loss. Whereas CG models can accurately describe the structure of the monomer, less is known about aggregation. The latter is key for assessing aggregation pathways and designing aggregation inhibitor drugs. Herein, we investigate the structure and dynamics of α-syn using different resolution CG (Martini3 and Sirah2) and all-atom (Amber99sb and Charmm36m) FFs to gain insight into the differences and resemblances between these models. The dependence of the magnitude of protein-water interactions and the putative need for enhanced sampling (replica exchange) methods in CG simulations are analyzed to distinguish between force field accuracy and sampling limitations. The stability of the CG models of an α-syn fibril was also investigated. Additionally, α-syn aggregation was studied through umbrella sampling for the CG models and CG/all-atom models for an 11-mer peptide (NACore) from an amyloidogenic domain of α-syn. Our results show that despite the α-syn structures of Martini3 and Sirah2 with enhanced protein-water interactions being similar, major differences exist concerning aggregation. The Martini3 fibril is not stable, and the binding free energy of α-syn and NACore is positive, opposite to Sirah2. Sirah2 peptides in a zwitterionic form, in turn, display termini interactions that are too strong, resulting in end-to-end orientation. Sirah2, with enhanced protein-water interactions and neutral termini, provides, however, a peptide aggregation free energy profile similar to that found with all-atom models. Overall, we find that Sirah2 with enhanced protein-water interactions is suitable for studying protein-protein and protein-drug aggregation.
Collapse
Affiliation(s)
- Gabriel
F. Martins
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nuno Galamba
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
De Santis E, Alleva S, Minicozzi V, Morante S, Stellato F. Probing the Dynamic Landscape: From Static to Time-Resolved X-Ray Absorption Spectroscopy to Investigate Copper Redox Chemistry in Neurodegenerative Disorders. Chempluschem 2024; 89:e202300712. [PMID: 38526934 DOI: 10.1002/cplu.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Copper (Cu), with its ability to exist in various oxidation states, notably Cu(I) and Cu(II), plays a crucial role in diverse biological redox reactions. This includes its involvement in pathways associated with oxidative stress in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Transmissible Spongiform Encephalopathies. This paper offers an overview of X-ray Absorption Spectroscopy (XAS) studies designed to elucidate the interactions between Cu ions and proteins or peptides associated with these neurodegenerative diseases. The emphasis lies on XAS specificity, revealing the local coordination environment, and on its sensitivity to Cu oxidation states. Furthermore, the paper focuses on XAS applications targeting the characterization of intermediate reaction states and explores the opportunities arising from recent advancements in time-resolved XAS at ultrabright synchrotron and Free Electron Laser radiation sources.
Collapse
Affiliation(s)
- Emiliano De Santis
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23, Uppsala, Sweden
| | - Stefania Alleva
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Silvia Morante
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Francesco Stellato
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
4
|
Huang M, Zhang Y, Liu X. The mechanism of cuproptosis in Parkinson's disease. Ageing Res Rev 2024; 95:102214. [PMID: 38311254 DOI: 10.1016/j.arr.2024.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with an increased morbidity. The pathogenesis PD has not been fully elucidated, and whatever mechanism is involved, it ultimately leads to dopamine (DA) neuronal apoptosis. Cuproptosis is a novel form of cell death. Its morphology, biochemical properties, and mechanism of action differ from known forms of cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Copper binds to the lipoylated components of the tricarboxylic acid cycle, causing proteotoxic stress that ultimately leads to cellular cuproptosis. PD has biochemical features such as mitochondrial dysfunction and decreased levels of copper and glutathione in brain regions. This is closely related to the cuproptosis mechanism. However, the specific link between the pathogenesis of PD and cuproptosis is unclear. Herein, we summarizes cuproptosis as the cause of DA neuronal death in PD, and the relationship between cuproptosis and the PD pathogenesis. This article provides a research basis for targeted cuproptosis for PD.
Collapse
Affiliation(s)
- Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
5
|
Savva L, Platts JA. Computational investigation of copper-mediated conformational changes in α-synuclein dimer. Phys Chem Chem Phys 2024; 26:2926-2935. [PMID: 38193190 DOI: 10.1039/d3cp04697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We report molecular dynamics simulation of dimers of α-synuclein, the peptide closely associated with onset of Parkinson's disease, both as metal-free dimer and with inter-chain bridging provided by Cu(II) ions. Our investigation reveals that the presence of copper-induced inter-chain bridging not only stabilizes α-synuclein dimers, but also leads to enhanced β-sheet formation at critical regions within the N-terminal and NAC regions of the protein. These contacts are larger and longer-lived in the presence of copper, and as a result each peptide chain is more extended and less flexible than in the metal-free dimer. The persistence of these inter-peptide contacts underscores their significance in stabilising the dimers, potentially influencing the aggregation pathway. Moreover, the increased flexibility in the two termini, as well as the absence of persistent contacts in the metal-free dimer, correlates with the presence of amorphous aggregates. This phenomenon is known to mitigate fibrillation, while their absence in the metal-bound dimer suggests an increased propensity to form fibrils in the presence of copper ions.
Collapse
Affiliation(s)
- Loizos Savva
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
6
|
Savva L, Platts JA. Exploring the impact of mutation and post-translational modification on α-Synuclein: Insights from molecular dynamics simulations with and without copper. J Inorg Biochem 2023; 249:112395. [PMID: 37820444 DOI: 10.1016/j.jinorgbio.2023.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
We report molecular dynamics simulations of two modifications to α-Synuclein, namely A53T mutation and phosphorylation at Ser129, which have been observed in Parkinson's disease patients. Both modifications are close to known metal binding sites, so as well as each modified peptide we also study Cu(II) bound to N-terminal and C-terminal residues. We show that A53T is predicted to cause increased β-sheet content of the peptide, with a persistent β-hairpin between residues 35-55 particularly notable. Phosphorylation has less effect on secondary structure but is predicted to significantly increase the size of the peptide, especially when bound to Cu(II), which is ascribed to reduced interaction of C-terminal sequence with central non-amyloid component. In addition, estimate of binding free energy to Cu(II) indicates A53T has little effect on metal-ion affinity, whereas phosphorylation markedly enhances the strength of binding. We suggest that the predicted changes in spatial extent and secondary structure of α-Synuclein may have implications for aggregation into Lewy bodies.
Collapse
Affiliation(s)
- Loizos Savva
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
7
|
Ma J, Qin C, Hu X, Lin Z, Li Z, Gao Y. Health risks posed by environmental benzophenone-type ultraviolet filters (BP-UVFs): An investigation into the binding of BP-UVFs to trypsin and their adverse effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132231. [PMID: 37557051 DOI: 10.1016/j.jhazmat.2023.132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Benzophenone-type ultraviolet filters (BP-UVFs) are ubiquitous in the environment, and people frequently ingest them via food chain and drinking water. However, there is no clear information about whether BP-UVFs are detrimental to human health. Herein, experiments using multi-spectroscopy revealed typical BP-UVFs, i.e., benzophenone (BP), 2-hydroxybenzophenone (2-OHBP), 4-hydroxybenzophenone (4-OHBP), 2,2'-dihydroxybenzophenone (2,2'-OHBP), 2,4-dihydroxybenzophenone (2,4-OHBP), 4,4'-dihydroxybenzophenone (4,4'-OHBP), 2,4,4'-trihydroxybenzophenone (2,4,4'-OHBP), 2,2',4,4'-tetraphydroxybenzophenone (2,2',4,4'-OHBP), 2-hydroxy-4-methoxybenzophenone (2-OH-4-MeOBP) and 2,2'-dihydroxy-4-methoxybenzophenone (2,2'-OH-4-MeOBP), could bind to the active site of trypsin with different binding constants (2.69 × 104-1.07 × 106 L/mol), cause structural abnormalities and inhibit the enzymatic activity in varying degrees, indicating that the BP-UVFs ingestion poses a risk to human health. In contrast to previous research, this study systematically analysed the binding mechanism using an innovative combination of molecular docking and advanced quantum chemistry calculations, including molecular dynamics simulations, energy calculations, etc. The results revealed that most amino acids that make up trypsin have a greater positive electrostatic surface potential (ESP). Therefore, the greater the area and distribution of negative ESP in a particular BP-UVFs, the more easily it will bind to trypsin. This provides new insight into the binding of pollutants to proteins. This study suggests a need for better monitoring and control of environmental BP-UVFs.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zekai Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Oliveri V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules 2023; 28:6446. [PMID: 37764220 PMCID: PMC10537474 DOI: 10.3390/molecules28186446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|