1
|
Pan C, He X, Xia L, Wei K, Niu Y, Han B. Proteomic Analysis of Salivary Secretions from the Tea Green Leafhopper, Empoasca flavescens Fabrecius. INSECTS 2024; 15:296. [PMID: 38667426 PMCID: PMC11050670 DOI: 10.3390/insects15040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Saliva plays a crucial role in shaping the compatibility of piercing-sucking insects with their host plants. Understanding the complex composition of leafhopper saliva is important for developing effective and eco-friendly control strategies for the tea green leafhopper, Empoasca flavescens Fabrecius, a major piercing-sucking pest in Chinese tea plantations. This study explored the saliva proteins of tea green leafhopper adults using a custom collection device, consisting of two layers of Parafilm stretched over a sucrose diet. A total of 152 proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) following the filter-aided sample preparation (FASP). These proteins were categorized into six groups based on their functions, including enzymes, transport proteins, regulatory proteins, cell structure proteins, other proteins, and unknown proteins. Bioinformatics analyses predicted 16 secreted proteins, which were successfully cloned and transcriptionally analyzed across various tissues and developmental stages. Genes encoding putative salivary secretory proteins, including Efmucin1, EfOBP1, EfOBP2, EfOBP3, Efmucin2, low-density lipoprotein receptor-related protein (EfLRP), EFVg1, and EFVg2, exhibited high expressions in salivary gland (SG) tissues and feeding-associated expressions at different developmental stages. These findings shed light on the potential elicitors or effectors mediating the leafhopper feeding and defense responses in tea plants, providing insights into the coevolution of tea plants and leafhoppers. The study's conclusions open avenues for the development of innovative leafhopper control technologies that reduce the reliance on pesticides in the tea industry.
Collapse
Affiliation(s)
| | | | | | | | - Yuqun Niu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (C.P.); (X.H.); (L.X.); (K.W.); (B.H.)
| | | |
Collapse
|
2
|
Chang X, Guo Y, Xie Y, Ren Y, Bi Y, Wang F, Fang Q, Ye G. Rice volatile compound (E)-β-caryophyllene induced by rice dwarf virus (RDV) attracts the natural enemy Cyrtorhinus lividipennis to prey on RDV insect vectors. PEST MANAGEMENT SCIENCE 2024; 80:874-884. [PMID: 37814777 DOI: 10.1002/ps.7822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Rice dwarf virus (RDV)-induced rice plant volatiles (E)-β-caryophyllene and 2-heptanol modulate the olfactory behavior of RDV insect vectors that promote viral acquisition and transmission. However, it remains elusive whether these two volatiles could influence the behaviors of the natural enemies of RDV insect vectors. Herein, we determined the effects of these two volatiles on the olfactory and predatory behaviors of Cyrtorhinus lividipennis (Hemiptera: Miridae), an important predator of RDV insect vectors in rice paddies. RESULTS The results showed that C. lividipennis preferred RDV-infected rice plant odors over RDV-free rice plant odors. C. lividipennis was attracted by (E)-β-caryophyllene, but showed no behavioral responses to 2-heptanol. The attraction of (E)-β-caryophyllene towards C. lividipennis was further confirmed using oscas1 rice plants, which do not release (E)-β-caryophyllene in response to RDV infection, through a series of complementary assays. The oviposition preference of the RDV vector insect Nephotettix cincticeps (Hemiptera: Cicadellidae) showed no significant difference between RDV-infected and RDV-free wild-type plants, nor between oscas1-RDV and oscas1 plants. However, the predation rate of C. lividipennis for N. cincticeps eggs on RDV-infected plants was higher than that on RDV-free plants, whereas there was no significant difference between oscas1-RDV and oscas1 plants. CONCLUSION (E)-β-caryophyllene induced by RDV attracted more C. lividipennis to prey on N. cincticeps eggs and played a crucial role in plant-virus-vector-enemy interactions. These novel findings will promote the design of new strategies for disease control by controlling the populations of insect vectors, for example recruiting more natural enemies by virus-induced plant volatiles. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuefei Chang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yating Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yujia Xie
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yijia Ren
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaluan Bi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Morin S, Atkinson PW, Walling LL. Whitefly-Plant Interactions: An Integrated Molecular Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:503-525. [PMID: 37816261 DOI: 10.1146/annurev-ento-120120-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.
Collapse
Affiliation(s)
- Shai Morin
- Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel;
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, California, USA;
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA;
| |
Collapse
|
4
|
He F, Gao YW, Ye ZX, Huang HJ, Tian CH, Zhang CX, Chen JP, Li JM, Lu JB. Comparative transcriptomic analysis of salivary glands between the zoophytophagous Cyrtorhinus lividipennis and the phytozoophagous Apolygus lucorum. BMC Genomics 2024; 25:53. [PMID: 38212677 PMCID: PMC10785411 DOI: 10.1186/s12864-023-09956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.
Collapse
Affiliation(s)
- Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Yang-Wei Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Zhengzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
- Institute of Insect Science, Zhejiang University, 310058, Hangzhou, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
5
|
Yuan F, Su M, Li T, Zhang Y, Dietrich CH, Webb MD, Wei C. Functional and evolutionary implications of protein and metal content of leafhopper brochosomes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103962. [PMID: 37178742 DOI: 10.1016/j.ibmb.2023.103962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Brochosomes derived from the specialized glandular segments of the Malpighian tubules (MTs) form superhydrophobic coatings for insects of Membracoidea, and have multiple hypothetical functions. However, the constituents, biosynthesis and evolutionary origin of brochosomes remain poorly understood. We investigated general chemical and physical characteristics of the integumental brochosomes (IBs) of the leafhopper Psammotettix striatus, determined the constituents of IBs, identified the unigenes involved in brochosomal protein synthesis, and investigated the potential associations among brochosomal protein synthesis, amino acid composition of food source, and the possible roles of endosymbionts in brochosome production. The results show that IBs are mainly composed of glycine- and tyrosine-rich proteins and some metal elements, which contain both essential and non-essential amino acids (EAAs and NEAAs) for insects, including EAAs deficient in the sole food source. All 12 unigenes involved in synthesizing the 12 brochosomal proteins (BPs) with high confidence are exclusively highly expressed in the glandular segment of MTs, confirming that brochosomes are synthesized by this segment. The synthesis of BPs is one of the key synapomorphies of Membracoidea but may be lost secondarily in a few lineages. The synthesis of BPs might be related to the symbiosis of leafhoppers/treehoppers with endosymbionts that provide these insects with EAAs, including those are deficient in the sole diet (i.e., plant sap) and could only be made available by the symbionts. We hypothesize that the functional modification of MTs have combined with the application of BPs enabling Membracoidea to colonize and adapt to novel ecological niches, and evolve to the dramatic diversification of this hemipteran group (in particular the family Cicadellidae). This study highlights the importance of evolutionary plasticity and multiple functions of MTs in driving the adaptations and evolution of sap-sucking insects of Hemiptera.
Collapse
Affiliation(s)
- Feimin Yuan
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minjing Su
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Li
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, 61820, USA
| | - Michael D Webb
- Department of Science (Insects), The Natural History Museum, Cromwell Road, South Kensington, SW7 5BD, London, UK
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Marieshwari BN, Bhuvaragavan S, Sruthi K, Mullainadhan P, Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond. J Comp Physiol B 2023; 193:1-23. [PMID: 36472653 DOI: 10.1007/s00360-022-01468-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Insect life on earth is greatly diversified despite being exposed to several infectious agents due to their diverse habitats and ecological niche. One of the major factors responsible for their successful establishment is having a powerful innate immune system. The most common and effective method used by insects in recognizing pathogen and non-self-substances is the melanization process among others. The key enzyme involved in melanin biosynthesis is the copper containing humoral defense enzyme, phenoloxidase (PO). This review focused on understanding about PO and that had been in research for nearly a century. The review elaborates about evolutionary significance of PO in arthropods, its relationship with mammalian tyrosinases, various substrates, activators and inhibitors involved in the activation of phenoloxidase cascade, as it requires an integrated system of activation that vary among insect species. The enzyme also plays a vital role in insect immunity by involving in several other immune functions like sclerotization, wound healing, opsonization, encapsulation and nodule formation. Further, gene knock down or knock out of PO genes and inhibition of PO-melanization cascade by several mechanisms can also be considered as promising future alternative to control serious pests by making them highly susceptible to any targeted attack.
Collapse
Affiliation(s)
| | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
7
|
Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2022. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Shi J, Jin H, Wang F, Stanley DW, Wang H, Fang Q, Ye G. The larval saliva of an endoparasitic wasp, Pteromalus puparum, suppresses host immunity. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104425. [PMID: 35878702 DOI: 10.1016/j.jinsphys.2022.104425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In the lengthy co-evolution between insects and their animal or plant hosts, insects have evolved a wide range of salivary strategies to help evade host defenses. Although there is a very large literature on saliva of herbivorous and hematophagous insects, little attention has been focused on the saliva of parasitoid wasps. Some parasitoid species are natural enemies that effectively regulate insect population sizes in nature that they are applied for biological control of agricultural pests. Here, we demonstrate the influence of the endoparasitoid, Pteromalus puparum, larval saliva on the cellular and humoral immunity of its host. Larval saliva increases mortality of hemocytes, and inhibits hemocyte spreading, a specific cellular immune action. We report that high saliva concentrations inhibit host cellular encapsulation of foreign invaders. The larval saliva also inhibits melanization in host hemolymph. The saliva inhibits the growth of some bacterial species, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa in vitro. This may promote larvae fitness by protecting them from infections. Insight into such functions of parasitic wasp saliva provides a new insight into host-parasitoid relationships and possibly leads to new agricultural pest management technologies.
Collapse
Affiliation(s)
- Jiamin Shi
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - David W Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA
| | - Huan Wang
- Department of Landscape Architecture Technology, Shanghai Vocational College of Agriculture and Forestry, 658 Zhongshan Second Road, Shanghai 201699, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
9
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
10
|
Chen Q, Liu Y, Long Z, Yang H, Wei T. Viral Release Threshold in the Salivary Gland of Leafhopper Vector Mediates the Intermittent Transmission of Rice Dwarf Virus. Front Microbiol 2021; 12:639445. [PMID: 33613509 PMCID: PMC7890075 DOI: 10.3389/fmicb.2021.639445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022] Open
Abstract
Numerous piercing-sucking insects can persistently transmit viral pathogens in combination with saliva to plant phloem in an intermittent pattern. Insect vectors maintain viruliferous for life. However, the reason why insect vectors discontinuously transmit the virus remains unclear. Rice dwarf virus (RDV), a plant reovirus, was found to replicate and assemble the progeny virions in salivary gland cells of the leafhopper vector. We observed that the RDV virions moved into saliva-stored cavities in the salivary glands of leafhopper vectors via an exocytosis-like mechanism, facilitating the viral horizontal transmission to plant hosts during the feeding of leafhoppers. Interestingly, the levels of viral accumulation in the salivary glands of leafhoppers during the transmitting period were significantly lower than those of viruliferous individuals during the intermittent period. A putative viral release threshold, which was close to 1.79 × 104 copies/μg RNA was proposed from the viral titers in the salivary glands of 52 leafhoppers during the intermittent period. Thus, the viral release threshold was hypothesized to mediate the intermittent release of RDV from the salivary gland cells of leafhoppers. We anticipate that viral release threshold-mediated intermittent transmission by insect vectors is the conserved strategy for the epidemic and persistence of vector-borne viruses in nature.
Collapse
Affiliation(s)
| | | | | | | | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Angelotti-Mendonça J, Bassan MM, Marques JPR, Yamamoto PT, Figueira A, Piedade SMDS, Mourão Filho FAA. Knockdown of calreticulin, laccase, and Snf7 Genes Through RNAi Is Not Effective to Control the Asian Citrus Psyllid (Hemiptera: Livideae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2931-2940. [PMID: 33111946 DOI: 10.1093/jee/toaa240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, transmits the bacteria Candidatus Liberibacter associated with huanglongbing (HLB), a devastating disease of the citrus industry. The use of genetically modified plants is an alternative to control this vector. Conversely, technology based on RNA interference (RNAi) for silencing specific genes of a target insect could be attempted. This work evaluated the knockdown effect of the target genes calreticulin (DcCRT), laccase (DcLAC), and Snf7 (DcSnf7) by RNAi through feeding D. citri in Murraya paniculata leaves after the uptake of an aqueous solution with dsRNA homologous to each vector target gene. Confocal microscopy revealed the uptake of the fluorescent-labeled dsRNA by detached leaves and the symplastic movement, allowing the ingestion by the feeding insect. A reduction in the survival rate was observed only 144 h after the beginning of feeding with dsRNA targeting DcSnf7; however, no reduction in transcript accumulation. The knockdown of the DcCRT and DcLAC genes was detected only 12 and 96 h after insect feeding, respectively. Additionally, a reduction in amino acid excretion from insects fed with dsRNA targets to DcCRT and DcLAC was observed 120 h after the beginning of feeding. However, the effects of the dsRNAs tested here appear to be minimal, both at the transcriptional and phenotype levels. For most concentrations and time points, no effects were observed. Therefore, the knockdown of genes DcCRT, DcLAC, and DcSnf7 do not appear to have the potential to control of D. citri through RNAi-mediated gene silencing.
Collapse
Affiliation(s)
- Jéssika Angelotti-Mendonça
- Departamento de Produção Vegetal, Universidade de São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', Piracicaba, São Paulo, Brazil
| | - Meire M Bassan
- Departamento de Produção Vegetal, Universidade de São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', Piracicaba, São Paulo, Brazil
| | - João Paulo R Marques
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo. Avenida Centenário, Piracicaba, São Paulo, Brazil
| | - Pedro T Yamamoto
- Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', Piracicaba, São Paulo, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo. Avenida Centenário, Piracicaba, São Paulo, Brazil
| | - Sônia Maria De S Piedade
- Departamento de Ciências Exatas, Universidade de São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', Piracicaba, São Paulo, Brazil
| | - Francisco A A Mourão Filho
- Departamento de Produção Vegetal, Universidade de São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', Piracicaba, São Paulo, Brazil
| |
Collapse
|
12
|
Manzano-Nicolas J, Taboada-Rodriguez A, Teruel-Puche JA, Marin-Iniesta F, Garcia-Molina F, Garcia-Canovas F, Tudela-Serrano J, Muñoz-Muñoz JL. Kinetic characterization of the oxidation of catecolamines and related compounds by laccase. Int J Biol Macromol 2020; 164:1256-1266. [DOI: 10.1016/j.ijbiomac.2020.07.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
|
13
|
Zhu J, Zhu K, Li L, Li Z, Qin W, Park Y, He Y. Proteomics of the Honeydew from the Brown Planthopper and Green Rice Leafhopper Reveal They Are Rich in Proteins from Insects, Rice Plant and Bacteria. INSECTS 2020; 11:insects11090582. [PMID: 32882811 PMCID: PMC7564128 DOI: 10.3390/insects11090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Honeydew is a watery fluid excreted by plant sap-feeding insects. It is a waste product for the insect hosts. However, it plays important roles for other organisms, such as serving as a nutritional source for beneficial insects and bacteria, as well as elicitors and effectors modulating plant responses. In this study, shotgun LC-MS/MS analyses were used to identify the proteins in the honeydew from two important rice hemipteran pests, the brown planthopper (Nilaparvata lugens, BPH) and green rice leafhopper (Nephotettix cincticeps, GRH). A total of 277 and 210 proteins annotated to insect proteins were identified in the BPH and GRH honeydews, respectively. These included saliva proteins that may have similar functions as the saliva proteins, such as calcium-binding proteins and apolipophorin, involved in rice plant defenses. Additionally, a total of 52 and 32 Oryza proteins were identified in the BPH and GRH honeydews, respectively, some of which are involved in the plant immune system, such as Pathogen-Related Protein 10, ascorbate peroxidase, thioredoxin and glutaredoxin. Coincidently, 570 and 494 bacteria proteins were identified from the BPH and GRH honeydews, respectively, which included several well-known proteins involved in the plant immune system: elongation factor Tu, flagellin, GroEL and cold-shock proteins. The results of our study indicate that the insect honeydew is a complex fluid cocktail that contains abundant proteins from insects, plants and microbes, which may be involved in the multitrophic interactions of plants-insects-microbes.
Collapse
Affiliation(s)
- Jinghua Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Kunmiao Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Liang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Zengxin Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Weiwei Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
- Correspondence: ; Tel.: +86-13554408979
| |
Collapse
|
14
|
Debnath R, Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101645] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Manzano-Nicolas J, Marin-Iniesta F, Taboada-Rodriguez A, Garcia-Canovas F, Tudela-Serrano J, Muñoz-Muñoz JL. Development of a method to measure laccase activity on methoxyphenolic food ingredients and isomers. Int J Biol Macromol 2020; 151:1099-1107. [DOI: 10.1016/j.ijbiomac.2019.10.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
|
16
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
17
|
Matsumoto Y, Hattori M. Characterization of multicopper oxidase genes in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), with focus on salivary gland-specific genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21602. [PMID: 31328822 DOI: 10.1002/arch.21602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicopper oxidase (MCO) enzymes are present ubiquitously and act on diverse substrates. Recently, the presence of multiple MCO genes has been described in many insects. Based on sialotranscriptome data, we identified and comprehensively characterized six MCO genes: NcLac1S, 1G, and 2-5 in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). NcLac1S and NcLac1G belong to the MCO1 ortholog of other insects. NcLac2 forms a clade with MCO2s involved in the sclerotization and pigmentation of the cuticle. NcLac3 and NcLac4 form a clade with NlMCO3 -5 of the hemipteran Nilaparvata luges. NcLac5 forms a clade with MCORPs (MCO-related proteins) that lack amino acid residues normally highly conserved in copper-coordinated MCOs. NcLac1S and NcLac3 were specifically expressed in the salivary glands; whereas NcLac5 was primarily expressed in the salivary glands. Only NcLac3 protein is considered to have laccase activity in the salivary glands and salivary sheaths ejected by the insect. NcLac1G expression was relatively high in the testis. NcLac2 and NcLac4 were specifically expressed in the integument and in Malpighian tubules, respectively. Knockdown by RNA interference (RNAi) of either NcLac2 and NcLac5 in nymphs caused high mortality. All NcLac2-knockdown nymphs showed depigmentation and soft cuticle, and eventually died, as did other MCO2-knockdown insects. DsNcLac5-injected nymphs (third, fourth, and fifth-instar) showed high mortality, but injection into adults had no effect on survival or number of eggs deposited, suggesting that NcLac5 is not essential for survival after molting (eclosion). NcLac5 could be a promising target gene for control of N. cincticeps.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Makoto Hattori
- Ex. Insect-Plant Interaction Research Unit, National Institute Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Aptitude of Oxidative Enzymes for Treatment of Wastewater Pollutants: A Laccase Perspective. Molecules 2019; 24:molecules24112064. [PMID: 31151229 PMCID: PMC6600482 DOI: 10.3390/molecules24112064] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 01/28/2023] Open
Abstract
Natural water sources are very often contaminated by municipal wastewater discharges which contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both, which frustrates the universal millenium development goal of provision of the relatively scarce pristine freshwater to water-scarce and -stressed communities, in order to augment their socioeconomic well-being. Seeing that both regulatory measures, as regards the discharge limits of wastewater, and the query for efficient treatment methods remain unanswered, partially, the prospects of enzymatic treatment of wastewater is advisable. Therefore, a reconsideration was assigned to the possible capacity of oxidative enzymes and the respective challenges encountered during their applications in wastewater treatment, and ultimately, the prospects of laccase, a polyphenol oxidase that oxidizes aromatic and inorganic substrates with electron-donating groups in treatment aromatic contaminants of wastewater, in real wastewater situations, since it is assumed to be a vehicle for a greener community. Furthermore, the importance of laccase-driven catalysis toward maintaining mass-energy balance, hence minimizing environmental waste, was comprehensibly elucidated, as well the strategic positioning of laccase in a model wastewater treatment facility for effective treatment of wastewater contaminants.
Collapse
|
19
|
Comparative sialotranscriptome analysis of the rare Chinese cicada Subpsaltria yangi, with identification of candidate genes related to host-plant adaptation. Int J Biol Macromol 2019; 130:323-332. [PMID: 30807802 DOI: 10.1016/j.ijbiomac.2019.02.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023]
Abstract
Little is known about the mechanisms underlying the relationship between changes in salivary proteins and the adaptation of insects to different host-plants. To address this knowledge gap, the transcriptional profiles of salivary glands were compared among three populations of the rare cicada Subpsaltria yangi, in which two populations specialize on Zizyphus jujuba var. spinosa, but the population occurring in the Helan (HL) Mountains is locally specialized on the endemic plant Ephedra lepidosperma. The comparisons indicate that genes related to digestion and detoxification are differentially regulated in populations feeding on different plants, possibly reflecting adaptative changes in salivary proteins of S. yangi in response to different host chemistries. In detail, 38 differentially expressed genes and 21 up-regulated genes related to digestion and detoxification were identified respectively in two pairwise comparisons among the populations using different hosts, with some genes exclusively expressed in the HL population. Our results are consistent with the hypothesis that the host plant shift in the HL population was facilitated by differential regulation of genes related to digestion and detoxification. This study provides new information for elucidating the molecular mechanisms underlying the relationship between changed salivary proteins and the adaptability of plant-feeding insects to novel host plants.
Collapse
|
20
|
Matsumoto Y, Hattori M. The green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), salivary protein NcSP75 is a key effector for successful phloem ingestion. PLoS One 2018; 13:e0202492. [PMID: 30183736 PMCID: PMC6124752 DOI: 10.1371/journal.pone.0202492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
Nephotettix cincticeps, a prevalent rice pest, injects gelling and watery saliva into plant tissues during the sucking process. Certain components within the saliva are believed to interact with plant cellular constituents and play important roles in overcoming host plant defense responses. Based on our previous analysis of the salivary gland transcriptome and secreted saliva proteome of N. cincticeps, in this study, we analyzed the biological functions of salivary protein, NcSP75 (N. cincticepssalivary protein 75 kD). NcSP75, a salivary glands-specific gene, showed low similarities to any previously reported sequences. Knockdown of NcSP75 by RNA interference (RNAi) reduced the longevity of treated nymphs to approximately half of the longevity of controls and caused severe developmental retardation. Furthermore, the knockdown of NcSP75 decreased the survival rate of adults, and reduced the number of deposited eggs and hatched nymphs. Thus, the adverse effects caused by the knockdown of NcSP75 were observed throughout the lifetime of N. cincticeps, when feeding on rice plants. In contrast, no reduction was observed in the survival rate of the knockdown of NcSP75 adults fed on an artificial diet. Electrical penetration graph measurements taken from adult females feeding on rice plants showed a significantly shorter duration of phloem ingestion associated with the knockdown of NcSP75 than the knockdown of the enhanced green fluorescent protein (EGFP). Furthermore, the total sugar content of the honeydew was lower when NcSP75 was knocked down. These results suggest that the NcSP75 protein contribute to successful and sustainable ingestion from the sieve elements of rice plants. The NcSP75 protein of N. cincticeps can, accordingly, be considered as a key effector for establishing compatible interaction with rice plants and could be a potential target for controlling this species.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Makoto Hattori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Wu MH, Lee CC, Hsiao AS, Yu SM, Wang AHJ, Ho THD. Kinetic analysis and structural studies of a high-efficiency laccase from Cerrena sp. RSD1. FEBS Open Bio 2018; 8:1230-1246. [PMID: 30087829 PMCID: PMC6070645 DOI: 10.1002/2211-5463.12459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/08/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
A high‐efficiency laccase, DLac, was isolated from Cerrena sp. RSD1. The kinetic studies indicate that DLac is a diffusion‐limited enzyme. The crystal structure of DLac was determined to atomic resolution, and its overall structure shares high homology to monomeric laccases, but displays unique substrate‐binding loops from those in other laccases. The substrate‐binding residues with small side chain and the short substrate‐binding loop IV broaden the substrate‐binding cavity and may facilitate large substrate diffusion. Unlike highly glycosylated fungal laccases, the less‐glycosylated DLac contains one highly conserved glycosylation site at N432 and an unique glycosylation site at N468. The N‐glycans stabilize the substrate‐binding loops and the protein structure, and the first N‐acetylglucosamine is crucial for the catalytic efficiency. Additionally, a fivefold increase in protein yield is achieved via the submerged culture method for industrial applications. Database The atomic coordinates of the structure of DLac from Cerrena sp. RSD1 and structural factors have been deposited in the RCSB Protein Data Bank (PDB ID: 5Z1X).
Collapse
Affiliation(s)
- Meng-Hsuan Wu
- Institute of Plant and Microbial Biology Academia Sinica Taipei Taiwan.,Department of Life Sciences National Cheng Kung University Tainan Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry Academia Sinica Taipei Taiwan
| | - An-Shan Hsiao
- Institute of Plant and Microbial Biology Academia Sinica Taipei Taiwan
| | - Su-May Yu
- Institute of Molecular Biology Academia Sinica Taipei Taiwan.,Agricultural Biotechnology Center National Chung Hsing University Taichung Taiwan.,Department of Life Sciences National Chung Hsing University Taichung Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry Academia Sinica Taipei Taiwan
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology Academia Sinica Taipei Taiwan.,Agricultural Biotechnology Center National Chung Hsing University Taichung Taiwan.,Department of Life Sciences National Chung Hsing University Taichung Taiwan
| |
Collapse
|
22
|
Cusumano A, Duvic B, Jouan V, Ravallec M, Legeai F, Peri E, Colazza S, Volkoff AN. First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:68-80. [PMID: 29477467 DOI: 10.1016/j.jinsphys.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Bernard Duvic
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Véronique Jouan
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Marc Ravallec
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Fabrice Legeai
- BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes Cedex, France
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Anne-Nathalie Volkoff
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| |
Collapse
|
23
|
Zhang Y, Fan J, Francis F, Chen J. Molecular characterization and gene silencing of Laccase 1 in the grain aphid, Sitobion avenae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21446. [PMID: 29323436 DOI: 10.1002/arch.21446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laccase 1 (Lac1), a polyphenol oxidase, has been proposed to be involved in insect iron metabolism and immunity responses. However, little information is available on the roles of Lac 1 in insect-plant interactions. The grain aphid Sitobion avenae is one of the most destructive pests of cereal, directly drawing phloem sap and transmitting viruses. In the present study, we first cloned the open reading frame (ORF) of Lac 1 from S. avenae, and the putative protein sequence was predicted to have a carboxyl-terminal transmembrane domain. We found that SaLac1 had higher expression levels in the fourth and adult stages using reverse transcription real-time quantitative PCR (RT-qPCR). SaLac 1 was highly expressed in the salivary gland and midgut and also in wingless compared with winged morphs. After feeding on aphid-resistant wheat with a high total phenol content, the expression level of SaLac 1 increased significantly. RNA interference (RNAi) by oral feeding successfully inhibited the transcript levels of SaLac 1, and the knockdown of Lac 1 significantly decreased the survival rate of S. avenae on aphid-resistant wheat. Our study demonstrated that S. avenae Lac1 was involved in the detoxification of phenolic compounds in wheat and was essential for the aphid to adapt to resistant plants.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Liege, Belgium
| | - Jia Fan
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Liege, Belgium
| | - Julian Chen
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
24
|
Agrawal K, Chaturvedi V, Verma P. Fungal laccase discovered but yet undiscovered. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0190-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Rivera-Vega LJ, Galbraith DA, Grozinger CM, Felton GW. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni). PLoS One 2017; 12:e0182636. [PMID: 28792546 PMCID: PMC5549731 DOI: 10.1371/journal.pone.0182636] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/22/2017] [Indexed: 02/03/2023] Open
Abstract
Generalist herbivores feed on a wide array of plants and need to adapt to varying host qualities and defenses. One of the first insect derived secretions to come in contact with the plant is the saliva. Insect saliva is potentially involved in both the pre-digestion of the host plant as well as induction/suppression of plant defenses, yet how the salivary glands respond to changes in host plant at the transcriptional level is largely unknown. The objective of this study was to determine how the labial salivary gland transcriptome varies according to the host plant on which the insect is feeding. In order to determine this, cabbage looper (Trichoplusia ni) larvae were reared on cabbage, tomato, and pinto bean artificial diet. Labial glands were dissected from fifth instar larvae and used to extract RNA for RNASeq analysis. Assembly of the resulting sequencing reads resulted in a transcriptome library for T. ni salivary glands consisting of 14,037 expressed genes. Feeding on different host plant diets resulted in substantial remodeling of the gland transcriptomes, with 4,501 transcripts significantly differentially expressed across the three treatment groups. Gene expression profiles were most similar between cabbage and artificial diet, which corresponded to the two diets on which larvae perform best. Expression of several transcripts involved in detoxification processes were differentially expressed, and transcripts involved in the spliceosome pathway were significantly downregulated in tomato-reared larvae. Overall, this study demonstrates that the transcriptomes of the salivary glands of the cabbage looper are strongly responsive to diet. It also provides a foundation for future functional studies that can help us understand the role of saliva of chewing insects in plant-herbivore interactions.
Collapse
Affiliation(s)
- Loren J. Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
- * E-mail:
| | - David A. Galbraith
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| | - Christina M. Grozinger
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| | - Gary W. Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
26
|
Shi L, Chan S, Li C, Zhang S. Identification and characterization of a laccase from Litopenaeus vannamei involved in anti-bacterial host defense. FISH & SHELLFISH IMMUNOLOGY 2017; 66:1-10. [PMID: 28476665 DOI: 10.1016/j.fsi.2017.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Phenoloxidases (POs) are a family of enzymes including tyrosinases, catecholases and laccases, which play an important role in immune defences of various invertebrates. Whether or not laccase exists in shrimp and its function is still poorly understood. In this study, a laccase (LvLac) was cloned and identified from Litopenaeus vannamei for the first time. The full length of LvLac is 3406 bp, including a 2034 bp open reading frame (ORF) coding for a putative protein of 677 amino acids with a signal peptide of 33 aa. LvLac contains three Cu-oxidase domains with copper binding centers formed by 10 histidines, one cysteine and one methionine, respectively. Phylogenetic analysis revealed that LvLac was close to insects laccase 1 family. LvLac expression was most abundant in heart and the crude LvLac protein could catalyze the oxidation of hydroquinone. Real-time PCR showed that LvLac expression was responsive to Vibrio parahaemolyticus, Micrococcus lysodeikticus and white spot syndrome virus (WSSV) infection. Knockdown of LvLac enhanced the sensitivity of shrimps to V. parahaemolyticus and M. lysodeikticus challenge, suggesting that LvLac may play a positive role against bacterial pathogens.
Collapse
Affiliation(s)
- Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Siuming Chan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
27
|
Secretory laccase 1 in Bemisia tabaci MED is involved in whitefly-plant interaction. Sci Rep 2017; 7:3623. [PMID: 28620217 PMCID: PMC5472608 DOI: 10.1038/s41598-017-03765-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/04/2017] [Indexed: 12/02/2022] Open
Abstract
The whitefly Bemisia tabaci is a phloem-feeding pest that lives predominantly on herbaceous species and causes serious damage to hosts. Whitefly saliva is thought to contain proteins that modulate plant defences and facilitate feeding. A predicted secreted protein, laccase 1 (LAC1), was found in the salivary gland transcriptome of B. tabaci and might be existed in the watery saliva of B. tabaci. As LAC1 has a potential role in detoxification of secondary plant compounds in insects, we speculated that it may participate in the insect’s response to plant defences. Here, we cloned the complete cDNA of LAC1 and found that (1) LAC1 was highly expressed in the salivary gland (SG) and midgut; (2) LAC1 transcript level in head (containing SG) was 2.1 times higher in plant-fed than in diet-fed whiteflies and 1.6 times higher in the head and 23.8 times higher in the midgut of whiteflies that fed on jasmonic acid (JA)-sprayed plants than on control plants; and (3) silencing LAC1 decreased the survival rate of plant-fed whiteflies but had a marginal effect on whiteflies raised on an artificial diet. These results indicate that LAC1 enables whiteflies to overcome the chemical defences of host plants and might act as an effector in saliva.
Collapse
|
28
|
Lahiri A, Hedl M, Yan J, Abraham C. Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes. Nat Commun 2017; 8:15614. [PMID: 28593945 PMCID: PMC5472760 DOI: 10.1038/ncomms15614] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Functional consequences for most inflammatory disease-associated loci are incompletely defined, including in the LACC1 (C13orf31) region. Here we show that human peripheral and intestinal myeloid-derived cells express laccase domain-containing 1 (LACC1); LACC1 is expressed in both the cytoplasm and mitochondria. Upon NOD2 stimulation of human macrophages, LACC1 associates with the NOD2-signalling complex, and is critical for optimal NOD2-induced signalling, mitochondrial ROS (mtROS) production, cytokine secretion and bacterial clearance. LACC1 constitutively associates with succinate dehydrogenase (SDH) subunit A, and amplifies pattern recognition receptor (PRR)-induced SDH activity, an important contributor to mtROS production. Relative to LACC1 Ile254, cells transfected with Crohn's disease-risk LACC1 Val254 or LACC1 with mutations of the nearby histidines (249,250) have reduced PRR-induced outcomes. Relative to LACC1 Ile254 carriers, Val254 disease-risk carrier macrophages demonstrate decreased PRR-induced mtROS, signalling, cytokine secretion and bacterial clearance. Therefore, LACC1 is critical for amplifying PRR-induced outcomes, an effect that is attenuated by the LACC1 disease-risk variant.
Collapse
Affiliation(s)
- Amit Lahiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Matija Hedl
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Jie Yan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| | - Clara Abraham
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06510, USA
| |
Collapse
|
29
|
Wu S, Huang Z, Rebeca CL, Zhu X, Guo Y, Lin Q, Hu X, Wang R, Liang G, Guan X, Zhang F. De novo characterization of the pine aphid Cinara pinitabulaeformis Zhang et Zhang transcriptome and analysis of genes relevant to pesticides. PLoS One 2017; 12:e0178496. [PMID: 28570707 PMCID: PMC5453536 DOI: 10.1371/journal.pone.0178496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
The pine aphid Cinara pinitabulaeformis Zhang et Zhang is the main pine pest in China, it causes pine needles to produce dense dew (honeydew) which can lead to sooty mold (black filamentous saprophytic ascomycetes). Although common chemical and physical strategies are used to prevent the disease caused by C. pinitabulaeformis Zhang et Zhang, new strategies based on biological and/or genetic approaches are promising to control and eradicate the disease. However, there is no information about genomics, proteomics or transcriptomics to allow the design of new control strategies for this pine aphid. We used next generation sequencing technology to sequence the transcriptome of C. pinitabulaeformis Zhang et Zhang and built a transcriptome database. We identified 80,259 unigenes assigned for Gene Ontology (GO) terms and information for a total of 11,609 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs). A total of 10,806 annotated unigenes were analyzed to identify the represented biological pathways, among them 8,845 unigenes matched with 228 KEGG pathways. In addition, our data describe propagative viruses, nutrition-related genes, detoxification related molecules, olfactory related receptors, stressed-related protein, putative insecticide resistance genes and possible insecticide targets. Moreover, this study provides valuable information about putative insecticide resistance related genes and for the design of new genetic/biological based strategies to manage and control C. pinitabulaeformis Zhang et Zhang populations.
Collapse
Affiliation(s)
- Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Zhicheng Huang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | | | - Xiaoli Zhu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Qiannan Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xiong Guan
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| |
Collapse
|
30
|
Matsumoto Y, Hattori M. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:152-164. [PMID: 26728387 DOI: 10.1002/arch.21315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Insect-Plant Interaction Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Makoto Hattori
- Insect-Plant Interaction Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
31
|
Bourguignon T, Šobotník J, Brabcová J, Sillam-Dussès D, Buček A, Krasulová J, Vytisková B, Demianová Z, Mareš M, Roisin Y, Vogel H. Molecular Mechanism of the Two-Component Suicidal Weapon of Neocapritermes taracua Old Workers. Mol Biol Evol 2015; 33:809-19. [PMID: 26609080 DOI: 10.1093/molbev/msv273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In termites, as in many social insects, some individuals specialize in colony defense, developing diverse weaponry. As workers of the termite Neocapritermes taracua (Termitidae: Termitinae) age, their efficiency to perform general tasks decreases, while they accumulate defensive secretions and increase their readiness to fight. This defensive mechanism involves self-sacrifice through body rupture during which an enzyme, stored as blue crystals in dorsal pouches, converts precursors produced by the labial glands into highly toxic compounds. Here, we identify both components of this activated defense system and describe the molecular basis responsible for the toxicity of N. taracua worker autothysis. The blue crystals are formed almost exclusively by a specific protein named BP76. By matching N. taracua transcriptome databases with amino acid sequences, we identified BP76 to be a laccase. Following autothysis, the series of hydroquinone precursors produced by labial glands get mixed with BP76, resulting in the conversion of relatively harmless hydroquinones into toxic benzoquinone analogues. Neocapritermes taracua workers therefore rely on a two-component activated defense system, consisting of two separately stored secretions that can react only after suicidal body rupture, which produces a sticky and toxic cocktail harmful to opponents.
Collapse
Affiliation(s)
- Thomas Bourguignon
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jana Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David Sillam-Dussès
- Institute of Research for Development-Sorbonne Universités, iEES-Paris, Bondy, France University Paris 13-Sorbonne Paris Cité, LEEC, Villetaneuse, France
| | - Aleš Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Krasulová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blahoslava Vytisková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Zuzana Demianová
- IMP-the Research Institute of Molecular Pathology, Vienna, Austria
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
32
|
Forootanfar H, Faramarzi MA. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol Prog 2015; 31:1443-63. [DOI: 10.1002/btpr.2173] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/30/2015] [Indexed: 12/07/2022]
Affiliation(s)
- Hamid Forootanfar
- Dept. of Pharmaceutical Biotechnology, Faculty of Pharmacy; Kerman University of Medical Sciences; Kerman Iran
| | - Mohammad Ali Faramarzi
- Dept. of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center; Tehran University of Medical Sciences; Tehran 1417614411 Iran
| |
Collapse
|
33
|
Hattori M, Komatsu S, Noda H, Matsumoto Y. Proteome Analysis of Watery Saliva Secreted by Green Rice Leafhopper, Nephotettix cincticeps. PLoS One 2015; 10:e0123671. [PMID: 25909947 PMCID: PMC4409333 DOI: 10.1371/journal.pone.0123671] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
The green rice leafhopper, Nephotettix cincticeps, is a vascular bundle feeder that discharges watery and gelling saliva during the feeding process. To understand the potential functions of saliva for successful and safe feeding on host plants, we analyzed the complexity of proteinaceous components in the watery saliva of N. cincticeps. Salivary proteins were collected from a sucrose diet that adult leafhoppers had fed on through a membrane of stretched parafilm. Protein concentrates were separated using SDS-PAGE under reducing and non-reducing conditions. Six proteins were identified by a gas-phase protein sequencer and two proteins were identified using LC-MS/MS analysis with reference to expressed sequence tag (EST) databases of this species. Full -length cDNAs encoding these major proteins were obtained by rapid amplification of cDNA ends-PCR (RACE-PCR) and degenerate PCR. Furthermore, gel-free proteome analysis that was performed to cover the broad range of salivary proteins with reference to the latest RNA-sequencing data from the salivary gland of N. cincticeps, yielded 63 additional protein species. Out of 71 novel proteins identified from the watery saliva, about 60 % of those were enzymes or other functional proteins, including GH5 cellulase, transferrin, carbonic anhydrases, aminopeptidase, regucalcin, and apolipoprotein. The remaining proteins appeared to be unique and species- specific. This is the first study to identify and characterize the proteins in watery saliva of Auchenorrhyncha species, especially sheath-producing, vascular bundle-feeders.
Collapse
Affiliation(s)
- Makoto Hattori
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Hiroaki Noda
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yukiko Matsumoto
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
34
|
Matsumoto Y, Suetsugu Y, Nakamura M, Hattori M. Transcriptome analysis of the salivary glands of Nephotettix cincticeps (Uhler). JOURNAL OF INSECT PHYSIOLOGY 2014; 71:170-176. [PMID: 25450428 DOI: 10.1016/j.jinsphys.2014.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
The green rice leafhopper (GRH), Nephotettix cincticeps, is one of the most important pests of rice in temperate Asian countries. GRH, a vascular feeder, secretes watery and gelling saliva in the process of feeding on phloem and xylem sap. It is known that GRH saliva contains several bioactive proteins, including enzymes such as laccase and beta-glucosidase. In this study, we performed transcriptome analysis of salivary glands of GRH using Illumina paired-end sequencing. Of 51,788 assembled contigs, 16,017 (30.9%) showed significant similarity to known proteins in the NCBI nr database, while 34,978 (67.5%) could not be annotated by similarity search, Pfam, or gene ontology (GO). Contigs (905) with predicted signal peptides and no putative transmembrane domains are suggested to represent secreted protein coding genes. Among the 76 most highly expressed putative secretory protein contigs, 68 transcripts were found to be salivary gland-specific or at least -dominant, but not expressed in stomach or Malpighian tubules. However, 45 of the 68 transcripts were unknown proteins. These findings suggest that most of the GRH transcripts encoding secreted proteins expressed in salivary glands are species and/or tissue specific. Our results provide a fundamental list of genes involved in GRH-Poaceae host plant interactions including successful feeding and plant pathogen transmission.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yoshitaka Suetsugu
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| | - Masatoshi Nakamura
- National Institute of Agrobiological Sciences, Kobuchizawa 6585, Hokuto, Yamanashi 408-0044, Japan.
| | - Makoto Hattori
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
35
|
Sharma A, Khan AN, Subrahmanyam S, Raman A, Taylor GS, Fletcher MJ. Salivary proteins of plant-feeding hemipteroids - implication in phytophagy. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:117-36. [PMID: 24280006 DOI: 10.1017/s0007485313000618] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many hemipteroids are major pests and vectors of microbial pathogens, infecting crops. Saliva of the hemipteroids is critical in enabling them to be voracious feeders on plants, including the economically important ones. A plethora of hemipteroid salivary enzymes is known to inflict stress in plants, either by degrading the plant tissue or by affecting their normal metabolism. Hemipteroids utilize one of the following three strategies of feeding behaviour: salivary sheath feeding, osmotic-pump feeding and cell-rupture feeding. The last strategy also includes several different tactics such as lacerate-and-flush, lacerate-and-sip and macerate-and-flush. Understanding hemipteroid feeding mechanisms is critical, since feeding behaviour directs salivary composition. Saliva of the Heteroptera that are specialized as fruit and seed feeders, includes cell-degrading enzymes, auchenorrhynchan salivary composition also predominantly consists of cell-degrading enzymes such as amylase and protease, whereas that of the Sternorhyncha includes a variety of allelochemical-detoxifying enzymes. Little is known about the salivary composition of the Thysanoptera. Cell-degrading proteins such as amylase, pectinase, cellulase and pectinesterase enable stylet entry into the plant tissue. In contrast, enzymes such as glutathione peroxidase, laccase and trehalase detoxify plant chemicals, enabling the circumvention of plant-defence mechanisms. Salivary enzymes such as M1-zinc metalloprotease and CLIP-domain serine protease as in Acyrthosiphon pisum (Aphididae), and non-enzymatic proteins such as apolipophorin, ficolin-3-like protein and 'lava-lamp' protein as in Diuraphis noxia (Aphididae) have the capacity to alter host-plant-defence mechanisms. A majority of the hemipteroids feed on phloem, hence Ca++-binding proteins such as C002 protein, calreticulin-like isoform 1 and calmodulin (critical for preventing sieve-plate occlusion) are increasingly being recognized in hemipteroid-plant interactions. Determination of a staggering variety of proteins shows the complexity of hemipteroid saliva: effector proteins localized in hemipteran saliva suggest a similarity to the physiology of pathogen-plant interactions.
Collapse
Affiliation(s)
- A Sharma
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - A N Khan
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - S Subrahmanyam
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - A Raman
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - G S Taylor
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia
| | - M J Fletcher
- Orange Agricultural Institute, NSW Department of Primary Industries, Forest Road, Orange, NSW 2800, Australia
| |
Collapse
|
36
|
Le Bris C, Paillard C, Stiger-Pouvreau V, Guérard F. Laccase-like activity in the hemolymph of Venerupis philippinarum: characterization and kinetic properties. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1804-12. [PMID: 24075997 DOI: 10.1016/j.fsi.2013.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 02/05/2023]
Abstract
The phenoloxidases (POs) include tyrosinases (EC 1.14.18.1), catecholases (EC 1.10.3.1) and laccases (EC 1.10.3.2) and are known to play a role in the immune defences of many invertebrates. For the Manila clam, Venerupis philippinarum, the exact role is not known, especially with regard to defences against Brown Ring Disease (BRD), which leads to high mortalities along European coasts. In order to understand the role and functioning of PO in V. philippinarum, the first step, and aim of this study, was to biochemically characterize the PO activity in the circulating hemolymph. Various substrates were tested and the common PO substrates L-DOPA, Catechol and dopamine exhibited good affinity with the enzyme and consequent low K(m) values (3.75, 1.97, 4.91 mM, respectively). A single tyrosinase-specific substrate, PHPPA, was oxidized, but the affinity for it was low (K(m) = 47.33 mM). Three tested laccase-specific substrates were oxidized by V. philippinarum PO (PPD, OPD and hydroquinone) and affinity was higher than for PHPPA. The results obtained with the substrate were confirmed by the use of different inhibitors: CTAB, a laccase-specific inhibitor inhibited PO activity greatly but not completely, whereas 4-Hr, specific to catecholases and tyrosinases, inhibited PO activity to a lesser extent. The results lead us to conclude that V. philippinarum PO activity in the circulating hemolymph, is mainly a laccase-like activity but there is also a smaller-scale tyrosinase-like activity. The inhibition mechanisms were also determined using dose-response substrate concentration for an inhibitor concentration equal or close to the IC50. Optimal conditions for the enzyme activity were also determined using L-DOPA as substrate, showing that its optimal temperature and pH are around 40 °C and 8.4 respectively. The enzyme is denatured for temperatures above 50 °C.
Collapse
Affiliation(s)
- Cédric Le Bris
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR-IUEM-UBO, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest Iroise - rue Dumont d'Urville, 29280 Plouzané, France.
| | | | | | | |
Collapse
|
37
|
Laccase is upregulated via stress pathways in the phytopathogenic fungus Sclerotinia sclerotiorum. Fungal Biol 2013; 117:528-39. [DOI: 10.1016/j.funbio.2013.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/22/2013] [Accepted: 05/26/2013] [Indexed: 11/18/2022]
|
38
|
DeLay B, Mamidala P, Wijeratne A, Wijeratne S, Mittapalli O, Wang J, Lamp W. Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1626-1634. [PMID: 23063500 DOI: 10.1016/j.jinsphys.2012.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The potato leafhopper, Empoasca fabae, is a pest of economic crops in the United States and Canada, where it causes damage known as hopperburn. Saliva, along with mechanical injury, leads to decreases in gas exchange rates, stunting and chlorosis. Although E. fabae saliva is known to induce plant responses, little knowledge exists of saliva composition at the molecular level. We subjected the salivary glands of E. fabae to Roche 454-pyrosequencing which resulted significant number (30,893) of expressed sequence tags including 2805 contigs and 28,088 singletons. A high number of sequences (78%) showed similarity to other insect species in GenBank, including Triboliumcastaneum, Drosophilamelanogaster and Acrythosiphonpisum. KEGG analysis predicted the presence of pathways for purine and thiamine metabolic, biosynthesis of secondary metabolites, drug metabolism, and lysine degradation. Pfam analysis showed a high number of cellulase and carboxylesterase protein domains. Expression analysis of candidate genes (alpha amylase, lipase, pectin lyase, etc.) among different tissues revealed tissue-specific expression of digestive enzymes in E. fabae. This is the first study to characterize the sialotranscriptome of E. fabae and the first for any species in the family of Cicadellidae. Due to the status of these insects as economic pests, knowledge of which genes are active in the salivary glands is important for understanding their impact on host plants.
Collapse
Affiliation(s)
- Bridget DeLay
- Department of Entomology, University of Maryland, College Park, MD, United States.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lang M, Kanost MR, Gorman MJ. Multicopper oxidase-3 is a laccase associated with the peritrophic matrix of Anopheles gambiae. PLoS One 2012; 7:e33985. [PMID: 22479493 PMCID: PMC3313952 DOI: 10.1371/journal.pone.0033985] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/22/2012] [Indexed: 01/10/2023] Open
Abstract
The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives. AgMCO3 is a mosquito-specific gene that is expressed predominantly in adult midguts and Malpighian tubules. To determine its enzymatic function, we purified recombinant AgMCO3 and analyzed its activity. AgMCO3 oxidized hydroquinone (a p-diphenol), the five o-diphenols tested, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and p-phenylenediamine, but not ferrous iron. The catalytic efficiencies of AgMCO3 were similar to those of cuticular laccases (MCO2 orthologs), except that AgMCO3 oxidized all of the phenolic substrates with similar efficiencies whereas the MCO2 isoforms were less efficient at oxidizing catechol or dopa. These results demonstrate that AgMCO3 can be classified as a laccase and suggest that AgMCO3 has a somewhat broader substrate specificity than MCO2 orthologs. In addition, we observed AgMCO3 immunoreactivity in the peritrophic matrix, which functions as a selective barrier between the blood meal and midgut epithelial cells, protecting the midgut from mechanical damage, pathogens, and toxic molecules. We propose that AgMCO3 may oxidize toxic molecules in the blood meal leading to detoxification or to cross-linking of the molecules to the peritrophic matrix, thus targeting them for excretion.
Collapse
Affiliation(s)
- Minglin Lang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- College of Life Science, Agricultural University of Hebei, Baoding, China
| | - Michael R. Kanost
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Maureen J. Gorman
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Hattori M, Nakamura M, Komatsu S, Tsuchihara K, Tamura Y, Hasegawa T. Molecular cloning of a novel calcium-binding protein in the secreted saliva of the green rice leafhopper Nephotettix cincticeps. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:1-9. [PMID: 22019571 DOI: 10.1016/j.ibmb.2011.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 05/31/2023]
Abstract
Green rice leafhoppers (Nephotettix cincticeps) secrete watery and coagulable saliva in the feeding process. In our study, the watery salivary secretion was concentrated by ultrafiltration from "fed diet" and subjected to SDS-PAGE. The N-terminal amino acid sequence of the most predominant band at 84 kDa (designated NcSP84) was analyzed by Edman degradation. This sequence was completely consistent with the most abundant protein in the salivary gland extracts, which was separated by two-dimensional gel electrophoresis. Based on the N-terminal amino acid sequence, the complete cDNA of this protein was cloned by 5'- and 3'-RACE using degenerate primers. The deduced NcSP84 contained an open reading frame of 2061 bp encoding a putative 687 amino acids with a putative signal sequence composed of 19 amino acids. The nucleotide and amino acid sequences of NcSP84 did not share statistically significant homology with any sequences in public databases. Motif search predicted that this protein had EF-hands, the most common motif found in Ca(2+) -binding proteins. As predicted, NcSP84 exhibited Ca(2+)-binding activity. The SDS-PAGE mobility of purified NcSP84 bound to Ca(2+) tended to decline discretely, depending on the concentration of CaCl(2) with which it was mixed for 1h before adding SDS buffer. In situ hybridization and immunohistochemistry showed that the NcSP84 gene and gene product were expressed and stored in type III cells, which are the largest lobes in the primary salivary glands. The NcSP84 protein was detected in the phloem sap of rice exposed to leafhoppers, verifying that the NcSP84 protein was injected into the sieve tubes. These results suggest that NcSP84 could be secreted into the sieve tubes during feeding, which might bind Ca(2+) ions that flow into sieve tubes in response to stylet puncturing. This might suppress sieve-element clogging and facilitate continuous ingestion from sieve tubes.
Collapse
Affiliation(s)
- Makoto Hattori
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Shraddha, Shekher R, Sehgal S, Kamthania M, Kumar A. Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 2011; 2011:217861. [PMID: 21755038 PMCID: PMC3132468 DOI: 10.4061/2011/217861] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/30/2011] [Accepted: 04/16/2011] [Indexed: 11/21/2022] Open
Abstract
Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.
Collapse
Affiliation(s)
- Shraddha
- Department of Biotechnology, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh 202001, India
| | | | | | | | | |
Collapse
|
42
|
Luna-Acosta A, Rosenfeld E, Amari M, Fruitier-Arnaudin I, Bustamante P, Thomas-Guyon H. First evidence of laccase activity in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2010; 28:719-726. [PMID: 20109560 DOI: 10.1016/j.fsi.2010.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/13/2010] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
Phenoloxidases (POs) are a family of enzymes including tyrosinases, catecholases and laccases, which play an important role in immune defence mechanisms in various invertebrates. The aim of this study was to thoroughly identify the PO-like activity present in the hemolymph of the Pacific oyster Crassostrea gigas, by using different substrates (i.e. dopamine and p-phenylenediamine, PPD) and different PO inhibitors. In order to go deeper in this analysis, we considered separately plasma and hemocyte lysate supernatant (HLS). In crude plasma, oxygraphic assays confirmed the presence of true oxidase activities. Moreover, the involvement of peroxidase(s) was excluded. In contrast to other molluscs, no tyrosinase-like activity was detected. With dopamine as substrate, PO-like activity was inhibited by the PO inhibitors tropolone, phenylthiourea (PTU), salicylhydroxamic acid and diethyldithio-carbamic acid, by a specific inhibitor of tyrosinases and catecholases, i.e. 4-hexylresorcinol (4-HR), and by a specific inhibitor of laccases, i.e. cetyltrimethylammonium bromide (CTAB). With PPD as substrate, PO-like activity was inhibited by PTU and CTAB. In precipitated protein fractions from plasma, and with dopamine and PPD as substrates, PTU and 4-HR, and PTU and CTAB inhibited PO-like activity, respectively. In precipitated protein fractions from hemocyte lysate supernatant, PTU and CTAB inhibited PO-like activity, independently of the substrate. Taken together, these results suggest the presence of both catecholase- and laccase-like activities in plasma, and the presence of a laccase-like activity in HLS. To the best of our knowledge, this is the first time that a laccase-like activity is identified in a mollusc by using specific substrates and inhibitors for laccase, opening new perspectives for studying the implication of this enzyme in immune defence mechanisms of molluscs of high economic value such as C. gigas.
Collapse
Affiliation(s)
- Andrea Luna-Acosta
- Littoral Environnement et Sociétés, UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | | | | | | | | |
Collapse
|
43
|
Dittmer NT, Kanost MR. Insect multicopper oxidases: diversity, properties, and physiological roles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:179-188. [PMID: 20219675 DOI: 10.1016/j.ibmb.2010.02.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 05/28/2023]
Abstract
Multicopper oxidases (MCOs) are a group of related proteins that are ubiquitous in nature. They perform a wide variety of functions including pigmentation, lignin synthesis and degradation, iron homeostasis, and morphogenesis. The laccases of fungi are intensely studied for their biotechnological potential as a more environmentally friendly alternative to harsh or toxic chemicals used for certain industrial applications. Research into insect MCOs has recently attracted renewed interest as it is evident that they have diverse roles in insect physiology. MCO mRNA or enzymatic activity has been detected in extracts from epidermis, midgut, Malpighian tubules, salivary glands, and reproductive tissues. Genome sequencing has allowed for the identification of MCO genes and revealed that the number of genes can vary between species. The function of one of the genes, MCO2, has been demonstrated to be a laccase-type phenoloxidase critical for cuticle sclerotization. However, the enzymatic properties and physiological functions of the remaining MCOs remain to be elucidated. A better understanding of the roles MCOs play in insect biology may help to develop new control measures of pest species.
Collapse
Affiliation(s)
- Neal T Dittmer
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506-0116, USA.
| | | |
Collapse
|
44
|
Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:25. [PMID: 19832970 PMCID: PMC2768689 DOI: 10.1186/1754-6834-2-25] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 10/15/2009] [Indexed: 05/03/2023]
Abstract
BACKGROUND Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i) a host gut cDNA library and (ii) a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. RESULTS Over 10,000 expressed sequence tags (ESTs) were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist) glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450). Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. CONCLUSION To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort has been conducted in a single termite species. This sequence database represents an important new genomic resource for use in further studies of collaborative host-symbiont termite digestion, as well as development of coevolved host and symbiont-derived biocatalysts for use in industrial biomass-to-bioethanol applications. Additionally, this study demonstrates that: (i) phenoloxidase activities are prominent in the R. flavipes gut and are not symbiont derived, (ii) expands the known number of host and symbiont glycosyl hydrolase families in Reticulitermes, and (iii) supports previous models of lignin degradation and host-symbiont collaboration in cellulose/hemicellulose digestion in the termite gut. All sequences in this paper are available publicly with the accession numbers FL634956-FL640828 (Termite Gut library) and FL641015-FL645753 (Symbiont library).
Collapse
Affiliation(s)
- Aurélien Tartar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Division of Math, Science and Technology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marsha M Wheeler
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Current address : Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - Xuguo Zhou
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Current address : Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Monique R Coy
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Drion G Boucias
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Michael E Scharf
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Dittmer NT, Gorman MJ, Kanost MR. Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:596-606. [PMID: 19576986 PMCID: PMC2733336 DOI: 10.1016/j.ibmb.2009.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/16/2009] [Accepted: 06/25/2009] [Indexed: 05/13/2023]
Abstract
Laccases belong to the group of multicopper oxidases that exhibit wide substrate specificity for polyphenols and aromatic amines. They are found in plants, fungi, bacteria, and insects. In insects the only known role for laccase is in cuticle sclerotization. However, extracting laccase from the insect's cuticle requires proteolysis, resulting in an enzyme that is missing its amino-terminus. To circumvent this problem, we expressed and purified full-length and amino-terminally truncated recombinant forms of laccase-2 from the tobacco hornworm, Manduca sexta. We also purified the endogenous enzyme from the pharate pupal cuticle and used peptide mass fingerprinting analysis to confirm that it is laccase-2. All three enzymes had pH optima between 5 and 5.5 when using N-acetyldopamine (NADA) or N-beta-alanyldopamine-alanyldopamine (NBAD) as substrates. The laccases exhibited typical Michaelis-Menten kinetics when NADA was used as a substrate, with K(m) values of 0.46 mM, 0.43 mM, and 0.63 mM, respectively, for the full-length recombinant, truncated recombinant, and cuticular laccases; the apparent k(cat) values were 100 min(-1), 80 min(-1), and 290 min(-1). The similarity in activity of the two recombinant laccases suggests that laccase-2 is expressed in an active form rather than as a zymogen, as had been previously proposed. This conclusion is consistent with the detection of activity in untanned pupal wing cuticle using the laccase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Immunoblot analysis of proteins extracted from both tanned and untanned cuticle detected only a single protein of 84 kDa, consistent with the full-length enzyme. With NBAD as substrate, the full-length recombinant and cuticular laccases showed kinetics indicative of substrate inhibition, with K(m) values of 1.9 mM and 0.47 mM, respectively, and apparent k(cat) values of 200 min(-1) and 180 min(-1). These results enhance our understanding of cuticle sclerotization, and may aid in the design of insecticides targeting insect laccases.
Collapse
Affiliation(s)
- Neal T Dittmer
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506-0116, USA.
| | | | | |
Collapse
|
46
|
A newly isolated Paecilomyces sp. WSH-L07 for laccase production: isolation, identification, and production enhancement by complex inducement. J Ind Microbiol Biotechnol 2009; 36:1315-21. [PMID: 19618226 DOI: 10.1007/s10295-009-0615-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
Laccase can catalyze the oxidation of a wide range of organic and inorganic substrates. In this study, an easily detectable method was employed for screening laccase-producing microorganisms by using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as laccase-secretion indicator. A novel laccase-producing strain was isolated and identified as Paecilomyces sp. WSH-L07 according to the morphological characteristics and the comparison of internal transcribed spacer (ITS) ribosomal DNA (rDNA) gene sequences. In further investigation, the production of laccase by Paecilomyces sp. WSH-L07 was greatly enhanced by the nontoxic inducers of copper sulphate and methylene blue. Under the induction of 50 microM copper sulphate and 20 microM methylene blue, the maximum laccase production was obtained. When these inducers were added into cultivation medium at 24 h and 12 h, respectively, an increment of about 100 times of laccase activity compared with that of in inducer-free medium and about two times of that of in single copper-supplemented medium was observed. Compared with other Paecilomyces species, Paecilomyces sp. WSH-L07 exhibit the better laccase-producing characteristics with an activity of 1,650 U/l on the eighth day, suggesting its potential ability for industrial application.
Collapse
|
47
|
Gorman MJ, Dittmer NT, Marshall JL, Kanost MR. Characterization of the multicopper oxidase gene family in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:817-24. [PMID: 18675911 PMCID: PMC2573861 DOI: 10.1016/j.ibmb.2008.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 05/20/2023]
Abstract
The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including diphenols, and several oxidases with specific substrates such as iron, copper or ascorbic acid. We have identified five putative MCO genes in the genome of Anopheles gambiae and have cloned cDNAs encompassing the full coding region for each gene. MCO1 mRNA was detected in all developmental stages and in all of the larval and adult tissues tested. We observed an increase in MCO1 transcript abundance in the midguts and Malphighian tubules of adult females following a blood meal and in adult abdominal carcasses in response to an immune challenge. Two alternatively spliced isoforms of MCO2 mRNA were identified. The A isoform of MCO2 was previously detected in larval and pupal cuticle where it probably catalyzes sclerotization reactions (He, N., Botelho, J.M.C., McNall, R.J., Belozerov, V., Dunn, W.A., Mize, T., Orlando, R., Willis, J.H., 2007. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37, 135-146). The B isoform was transcriptionally upregulated in ovaries in response to a blood meal. MCO3 mRNA was detected in the adult midgut, Malpighian tubules, and male reproductive tissues; like MCO1, it was upregulated in response to an immune challenge or a blood meal. MCO4 and MCO5 were observed primarily in eggs and in the abdominal carcass of larvae. A phylogenetic analysis of insect MCO genes identified putative orthologs of MCO1 and MCO2 in all of the insect genomes tested, whereas MCO3, MCO4 and MCO5 were found only in the two mosquito species analyzed. MCO2 orthologs have especially high sequence similarity, suggesting that they are under strong purifying selection; the A isoforms are more conserved than the B isoforms. The mosquito specific group shares a common ancestor with MCO2. This initial study of mosquito MCOs suggests that MCO2 may be required for egg development or eggshell tanning in addition to cuticle tanning, while MCO1 and MCO3 may be involved in metal metabolism or immunity.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry, Kansas State University, 141 Chalmers, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
48
|
Wells KL. The effects of immune challenge on phenoloxidase activity in locust salivary glands in vitro. ACTA ACUST UNITED AC 2008. [DOI: 10.1093/biohorizons/hzn015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|