1
|
Liu Z, Liu J, Liu Z, Song X, Liu S, Liu F, Song L, Gao Y. Identification and Characterization of a Novel Insulin-like Receptor ( LvRTK2) Involved in Regulating Growth and Glucose Metabolism of the Pacific White Shrimp Litopenaeus vannamei. Biomolecules 2024; 14:1300. [PMID: 39456233 PMCID: PMC11506343 DOI: 10.3390/biom14101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The insulin receptor (IR) plays a crucial role in the growth and metabolism of animals. However, there are still many questions regarding the IR in crustaceans, particularly their role in shrimp growth and glucose metabolism. In this study, we identified a novel insulin-like receptor gene in Litopenaeus vannamei and cloned its full length of 6439 bp. This gene exhibited a highly conserved sequence and structural characteristics. Phylogenetic analysis confirmed it as an unreported RTK2-type IR, namely, LvRTK2. Expression pattern analysis showed that LvRTK2 is primarily expressed in female reproductive and digestive organs. Through a series of in vivo and in vitro experiments, including glucose treatment, exogenous insulin treatment, and starvation treatment, LvRTK2 was confirmed to be involved in the endogenous glucose metabolic pathway of shrimp under different glucose variations. Moreover, long-term and short-term interference experiments with LvRTK2 revealed that the interference significantly reduced the shrimp growth rate and serum glucose clearance rate. Further studies indicated that LvRTK2 may regulate shrimp growth by modulating the downstream PI3K/AKT signaling pathway and a series of glucose metabolism events, such as glycolysis, gluconeogenesis, glycogen synthesis, and glycogenolysis. This report on the characteristics and functions of LvRTK2 confirms the important role of RTK2-type IRs in regulating shrimp growth and glucose metabolism.
Collapse
Affiliation(s)
- Zijian Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jiawei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Zijie Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Xiaowei Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Su Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Fei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Yi Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| |
Collapse
|
2
|
Weger AA, Rittschof CC. The diverse roles of insulin signaling in insect behavior. FRONTIERS IN INSECT SCIENCE 2024; 4:1360320. [PMID: 38638680 PMCID: PMC11024295 DOI: 10.3389/finsc.2024.1360320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
Collapse
Affiliation(s)
| | - Clare C. Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Gu SH, Lin PL, Chang CH. Expressions of sugar transporter genes during Bombyx mori embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:788-798. [PMID: 37407486 DOI: 10.1002/jez.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Sugar transporters (Sts) play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells. Few studies have been conducted on expressions of Sts during insect embryonic development. In the present study, we investigated temporal expressions of St genes during the embryonic diapause process in Bombyx mori. We found that in HCl-treated developing eggs, high gene expressions of trehalose transporter 1 (Tret1) were detected during middle and later embryonic development. St4 and St3 gene expressions gradually increased during the early stages, reached a small peak on Day 3, and large peaks were again detected on Day 7. However, in diapause eggs, expression levels of the Tret1, St4, and St3 genes all remained at low levels. Differential temporal changes in expressions of the Tret1, St4, and St3 genes found between diapause and HCl-treated eggs were further confirmed using nondiapause eggs. Our results showed that nondiapause eggs exhibited similar changing patterns as those of HCl-treated eggs, thus clearly indicating potential correlations between expressions of these genes and embryonic development. In addition, high gene expressions of Tret1 were also detected when dechorionated eggs were incubated in the medium. The addition of LY294002 (a specific phosphatidylinositol 3-kinase [PI3K] inhibitor) and U0126 (a mitogen-activated protein kinase/extracellular signal-regulated kinase [ERK] kinase [MEK] inhibitor) partially inhibited Tret1 gene expression in dechorionated eggs, but did not affect either ecdysteroid-phosphate phosphatase gene expression or ecdysteroid biosynthesis, clearly indicating that both PI3K and ERK are involved in increased gene expression of Tret1 that was independent of ecdysteroid levels. To our knowledge, this is the first comprehensive report to demonstrate the transcriptional regulation of St genes during embryonic development, thus providing useful information for a clearer understanding of insect egg diapause mechanisms.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| |
Collapse
|
4
|
Fan B, Chen Y, Yasen A, Wu S, Wang M, Zhu J, Huang J, Tang S, Shen X. BmINR and BmAC6 genes involve in diapause regulation via the insulin/IGF signaling pathway in the silkworm (Bombyx mori). Gene 2023:147626. [PMID: 37423399 DOI: 10.1016/j.gene.2023.147626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Diapause of the silkworm (Bombyx mori) is an important ecological adaptation strategy regulated by multiple signaling pathways. As an evolutionarily conserved signaling pathway, the insulin/IGF signaling (IIS) pathway is essential in regulating lifespan, energy accumulation, and stress resistance in diapause insects. However, the regulatory mechanism of IIS on diapause in B. mori is still not fully understood. To investigate the role of the IIS pathway in regulating diapause, we first analyzed the transcription levels of the insulin receptor (BmINR) and its downstream gene adenylate cyclase 6 (BmAC6). The diapause-terminated eggs of a bivoltine strain QiuFeng (V2-QF) were incubated at 25℃ in natural room light for preparing diapause egg producers (DEPs) and at 17℃ in total darkness for preparing non-diapause egg producers (NDEPs), respectively. Then we investigated the effects of BmINR and BmAC6 on diapause phenotype and expression of diapause-related genes by RNA interference (RNAi) and overexpression techniques. The results showed that the mRNA expression levels of BmINR and BmAC6 in the head and ovary of NDEPs were higher than those in DEPs during the early and middle pupal stages. Furthermore, when BmINR was knocked down in the NDEPs, approximately 14.43% of eggs were in light red color and subsequently changed into gray-purple color after 48 hours post-oviposition, then stayed in a diapause state. On the other hand, overexpression of BmINR or BmAC6 via recombinant baculoviruses did not cause any obvious phenotypic alterations in NDEPs, but it upregulated the expression of genes related to carbohydrate metabolism, which provides energy for embryonic growth and development. Therefore, it can be concluded that BmINR and BmAC6 genes regulate embryonic diapause in bivoltine B. mori.
Collapse
Affiliation(s)
- Bingyan Fan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Yanhua Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Ayinuer Yasen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Sai Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Meixian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China.
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Shunming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, Jiangsu, China.
| |
Collapse
|
5
|
Maruoka N, Makino T, Urabe J. RNA-seq analysis to identify genes related to resting egg production of panarctic Daphnia pulex. BMC Genomics 2023; 24:262. [PMID: 37198540 PMCID: PMC10190107 DOI: 10.1186/s12864-023-09369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The genus Daphnia switches its reproductive mode from subitaneous egg production to resting egg production in response to environmental stimuli. Although this life history trait is essential for surviving unsuitable environments, the molecular mechanism of resting egg production is little understood. In this study, we examined genes related to induction of resting egg production using two genotypes of panarctic Daphnia pulex, the JPN1 and JPN2 lineages, which differ genetically in the frequency of resting egg production. We reared these genotypes under high and low food levels. At the high food level, individuals of both genotypes continually produced subitaneous eggs, whereas at the low food level, only the JPN2 genotype produced resting eggs. Then, we performed RNA-seq analysis on specimens of three instars, including before and after egg production. RESULTS These results showed that expressed genes differed significantly between individuals grown under high and low food levels and among individuals of different instars and genotypes. Among these differentially expressed genes (DEGs), we found 16 that changed expression level before resting egg production. Some of these genes showed high-level expression only before resting egg production and one gene was an ortholog of bubblegum (bgm), which is reportedly up-regulated before diapause in bumblebees. According to gene ontology (GO) enrichment analysis, one GO term annotated as long-chain fatty acid biosynthetic process was enriched among these 16 genes. In addition, GO terms related to glycometabolism were enriched among down-regulated genes of individuals holding resting eggs, compared to those before resting egg production. CONCLUSIONS We found candidate genes highly expressed only before resting egg production. Although functions of candidate genes found in this study have not been reported previously in Daphnia, catabolism of long-chain fatty acids and metabolism of glycerates are related to diapause in other organisms. Thus, it is highly probable that candidate genes identified in this study are related to the molecular mechanism regulating resting egg production in Daphnia.
Collapse
Affiliation(s)
- Natsumi Maruoka
- Graduate School of Life sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, 022-795-6686, Miyagi, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, 028-649-5129, Tochigi, Japan.
| | - Takashi Makino
- Graduate School of Life sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, 022-795-6686, Miyagi, Japan
| | - Jotaro Urabe
- Graduate School of Life sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, 022-795-6686, Miyagi, Japan
| |
Collapse
|
6
|
Liu Y, Wang R, Su L, Zhao S, Dai X, Chen H, Wu G, Zhou H, Zheng L, Zhai Y. Integrative Proteomic and Phosphoproteomic Analyses Revealed Complex Mechanisms Underlying Reproductive Diapause in Bombus terrestris Queens. INSECTS 2022; 13:862. [PMID: 36292811 PMCID: PMC9604461 DOI: 10.3390/insects13100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Reproductive diapause is an overwintering strategy for Bombus terrestris, which is an important pollinator for agricultural production. However, the precise mechanisms underlying reproductive diapause in bumblebees remain largely unclear. Here, a combination analysis of proteomics and phosphoproteomics was used to reveal the mechanisms that occur during and after diapause in three different phases: diapause (D), postdiapause (PD), and founder postdiapause (FPD). In total, 4655 proteins and 10,600 phosphorylation sites of 3339 proteins were identified. Diapause termination and reactivation from D to the PD stage were characterized by the upregulation of proteins associated with ribosome assembly and biogenesis, transcription, and translation regulation in combination with the upregulation of phosphoproteins related to neural signal transmission, hormone biosynthesis and secretion, and energy-related metabolism. Moreover, the reproductive program was fully activated from PD to the FPD stage, as indicated by the upregulation of proteins related to fat digestion and absorption, the biosynthesis of unsaturated fatty acids, fatty acid elongation, protein processing in the endoplasmic reticulum, and the upregulation of energy-related metabolism at the phosphoproteome level. We also predicted a kinase-substrate interaction network and constructed protein-protein networks of proteomic and phosphoproteomic data. These results will help to elucidate the mechanisms underlying the regulation of diapause in B. terrestris for year-round mass breeding.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Guang’an Wu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Zhou
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| |
Collapse
|
7
|
Cambron-Kopco LD, Yocum GD, Yeater KM, Greenlee KJ. Timing of Diapause Initiation and Overwintering Conditions Alter Gene Expression Profiles in Megachile rotundata. Front Physiol 2022; 13:844820. [PMID: 35350686 PMCID: PMC8957994 DOI: 10.3389/fphys.2022.844820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Within the United States and Canada, the primary pollinator of alfalfa is the alfalfa leafcutting bee (ALCB), Megachile rotundata. Our previous findings showed that overwintering conditions impacted gene expression profile in ALCB prepupae that entered diapause early in the season. However, ALCB are a bivoltine species, which begs the question of whether bees entering diapause later in the season also show this trend. To better understand the effects of the timing of diapause initiation, we analyzed mRNA copy number of genes known to be involved in diapause regulation in early and late season diapausing ALCB that were overwintered in field conditions or using current agricultural management conditions. We hypothesized that overwintering conditions for late diapausing bees also affects gene expression profiles. Our results showed that expression profiles were altered by both overwintering condition and timing of diapause initiation, with bees that entered diapause earlier in the season showing different expression patterns than those that entered diapause later in the season. This trend was seen in expression of members of the cyclin family and several targets of the insulin signaling pathway, including forkhead box protein O (FOXO), which is known to be important for diapause regulation and stress responses. But, of the genes screened, the proto-oncogene, Myc, was the most impacted by the timing of diapause initiation. Under field conditions, there were significant differences in Myc expression between the early and late season samples in all months except for November and February. This same general trend in Myc expression was also seen in the laboratory-maintained bees with significant difference in expression in all months except for November, February, and May. These results support previous conclusions from our research showing that the molecular regulation of diapause development in ALCB is not a simple singular cascade of gene expression but a highly plastic response that varies between bees depending upon their environmental history.
Collapse
Affiliation(s)
- Lizzette D. Cambron-Kopco
- Greenlee Laboratory, Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
- *Correspondence: Lizzette D. Cambron-Kopco,
| | - George D. Yocum
- Insect Genetics and Biochemistry Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, ND, United States
| | - Kathleen M. Yeater
- Plains Area Office of The Area Director, USDA-ARS, Fort Collins, CO, United States
| | - Kendra J. Greenlee
- Greenlee Laboratory, Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
8
|
Gu SH, Chen CH, Lin PL. Changes in expressions of ecdysteroidogenic enzyme and ecdysteroid signaling genes in relation to Bombyx embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:477-488. [PMID: 33929096 DOI: 10.1002/jez.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
Although the role of ecdysteroids in regulating egg diapause process in Bombyx mori is well documented, temporal changes in expression levels of genes involved in ecdysteroid biosynthesis and its downstream signaling are less well understood. In the present study, we studied changes in expression levels of genes involved in ecdysteroid biosynthesis and its downstream signaling during embryonic development of B. mori. Results showed that in diapause eggs, the expression of ecdysteroid-phosphate phosphatase (EPPase) gene and Halloween genes (Spook [Spo] and Shade [Shd]) remained at very low levels. However, in eggs whose diapause initiation was prevented by HCl, significant increases in the messenger RNA (mRNA) levels of EPPase, Spo, and Shd were detected during embryonic development. Other Halloween genes (Neverland [Nvd] and Phantom [Phm]) also showed different changes between diapause and HCl-treated eggs. However, genes of Disembodied (Dib) and Shadow (Sad) showed similar changes in both diapause and HCl-treated eggs. We further investigated changes in expression levels of ecdysone receptor genes (EcRA, EcRB1, and USP) and downstream signaling genes (E75A, E75B, E74A, E74B, Br-C, HR3, HR4, KR-H1, and FTZ-F1). Results showed that genes of EcRA and the other nuclear receptors (E75A, E75B, E74A, HR3, HR4, KR-H1, and FTZ-F1) exhibited significant differential patterns between diapause and HCl-treated eggs, with increased levels being detected during later stages of embryonic development in HCl-treated eggs. Differential temporal changes in expressions of genes involved ecdysteroid biosynthesis and its downstream signaling found between diapause and HCl-treated eggs were further confirmed using nondiapause eggs. Our results showed that nondiapause eggs exhibited the same changing patterns as those in HCl-treated eggs, thus clearly indicating potential correlations between expressions of these genes and embryonic development in B. mori. To our knowledge, this is the first comprehensive report to study the transcriptional regulation of ecdysteroidogenic and ecdysteroid signaling genes, thus providing useful information for a clearer understanding of insect egg diapause mechanisms.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, ROC
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, ROC
| |
Collapse
|
9
|
Gu SH, Chen CH, Lin PL. Expression of protein tyrosine phosphatases and Bombyx embryonic development. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104198. [PMID: 33549567 DOI: 10.1016/j.jinsphys.2021.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation is an integral component of signal transduction pathways within eukaryotic cells, and it is regulated by coordinated interactions between protein kinases and protein phosphatases. Our previous study demonstrated differential expressions of serine/threonine protein phosphatases (PP2A and calcineurin) between diapause and developing eggs in Bombyx mori. In the present study, we further investigated expression of protein tyrosine phosphatases (PTPs) in relation to the Bombyx embryonic development. An immunoblot analysis showed that eggs contained the proteins of the 51-kDa PTP 1B (PTP1B), the 55-kDa phosphatase and tensin homologue (PTEN), and the 70-kDa Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2), which undergo differential changes between diapause and developing eggs. Protein level of PTP1B and PTEN in eggs whose diapause initiation was prevented by HCl gradually increased toward embryonic development. The protein level of SHP2 also showed a dramatic increase on days 7 and 8 after HCl treatment. However, protein levels of PTP1B, PTEN, and SHP2 in diapause eggs remained at low levels during the first 9 days after oviposition. These differential changing patterns in protein levels were further confirmed using both non-diapause eggs and eggs in which diapause had been terminated by chilling of diapausing eggs at 5 °C for 70 days and then were transferred to 25 °C. Direct determination of PTP enzymatic activities showed higher activities in developing eggs (HCl-treated eggs, non-diapause eggs, and chilled eggs) compared to those in diapause eggs. Examination of temporal changes in mRNA expression levels of PTP1B, PTEN, and SHP2 did not show significant differences between diapause eggs and HCl-treated eggs except high expression in SHP2 variant B during the later embryonic development in HCl-treated eggs. These results demonstrate that higher protein levels of PTP1B, PTEN, and SHP2 and increased tyrosine phosphatase enzymatic activities in developing eggs are likely related to embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
10
|
Wang J, Ran LL, Li Y, Liu YH. Comparative proteomics provides insights into diapause program of Bactrocera minax (Diptera: Tephritidae). PLoS One 2021; 15:e0244493. [PMID: 33382763 PMCID: PMC7774860 DOI: 10.1371/journal.pone.0244493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
The Chinese citrus fly, Bactrocera minax, is a notorious univoltine pest that causes damage to citrus. B. minax enters obligatory pupal diapause in each generation to resist harsh environmental conditions in winter. Despite the enormous efforts that have been made in the past decade, the understanding of pupal diapause of B. minax is currently still fragmentary. In this study, the 20-hydroxyecdysone solution and ethanol solvent was injected into newly-formed pupae to obtain non-diapause- (ND) and diapause-destined (D) pupae, respectively, and a comparative proteomics analysis between ND and D pupae was performed 1 and 15 d after injection. A total of 3,255 proteins were identified, of which 190 and 463 were found to be differentially abundant proteins (DAPs) in ND1 vs D1 and ND15 vs D15 comparisons, respectively. The reliability and accuracy of LFQ method was validated by qRT-PCR. Functional analyses of DAPs, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction, were conducted. The results revealed that the diapause program of B. minax is closely associated with several physiological activities, such as phosphorylation, chitin biosynthesis, autophagy, signaling pathways, endocytosis, skeletal muscle formation, protein metabolism, and core metabolic pathways of carbohydrate, amino acid, and lipid conversion. The findings of this study provide insights into diapause program of B. minax and lay a basis for further investigation into its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jia Wang
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
- * E-mail:
| | - Li-Lin Ran
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| | - Ying Li
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| | - Ying-Hong Liu
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
The Function of LmPrx6 in Diapause Regulation in Locusta migratoria Through the Insulin Signaling Pathway. INSECTS 2020; 11:insects11110763. [PMID: 33167530 PMCID: PMC7694527 DOI: 10.3390/insects11110763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary LmPrx6 of the insulin signaling pathway is significantly associated with diapause induction in Locusta migratoria L. as per our pervious transcriptome data. In the current study, we first cloned and sequenced the gene and demonstrated its similarity to other Prxs using phylogenetic analyses. Later on, we knocked down Prx6 using RNAi and showed that phosphorylation of proteins associated with the insulin signaling pathway and responses to oxidative stress were altered. Knockdown of Prx6 also resulted in a reduced ability to enter diapause, and hence, we are of the opinion that this gene could serve as an effective target for RNAi-based control of L. migratoria L. The study has provided some helpful insights into the diversified roles of Prx6 in locusts and will be of interest to other insect pests for examining the relatively unexplored group of proteins as well. Abstract Peroxiredoxins (Prxs), which scavenge reactive oxygen species (ROS), are cysteine-dependent peroxide reductases that group into six structurally discernable classes: AhpC-Prx1, BCP-PrxQ, Prx5, Prx6, Tpx, and AhpE. A previous study showed that forkhead box protein O (FOXO) in the insulin signaling pathway (ISP) plays a vital role in regulating locust diapause by phosphorylation, which can be promoted by the high level of ROS. Furthermore, the analysis of transcriptome between diapause and non-diapause phenotypes showed that one of the Prxs, LmPrx6, which belongs to the Prx6 class, was involved. We presumed that LmPrx6 might play a critical role in diapause induction of Locusta migratoria and LmPrx6 may therefore provide a useful target of control methods based on RNA interference (RNAi). To verify our hypothesis, LmPrx6 was initially cloned from L. migratoria to make dsLmPrx6 and four important targets were tested, including protein-tyrosine phosphorylase 1B (LmPTP1B), insulin receptor (LmIR), RAC serine/threonine-protein kinase (LmAKT), and LmFOXO in ISP. When LmPrx6 was knocked down, the diapause rate was significantly reduced. The phosphorylation level of LmPTP1B significantly decreased while the phosphorylation levels of LmIR, LmAKT, and LmFOXO were significantly increased. Moreover, we identified the effect on two categories of genes downstream of LmFOXO, including stress tolerance and storage of energy reserves. Results showed that the mRNA levels of catalase and Mn superoxide dismutase (Mn-SOD), which enhanced stress tolerance, were significantly downregulated after silencing of LmPrx6. The mRNA levels of glycogen synthase and phosphoenolpyruvate carboxy kinase (PEPCK) that influence energy storage were also downregulated after knocking down of LmPrx6. The silencing of LmPrx6 indicates that this regulatory protein may probably be an ideal target for RNAi-based diapause control of L. migratoria.
Collapse
|
12
|
Ge L, Jiang L, Zheng S, Zhou Y, Wu Q, Liu F. Frizzled 2 Functions in the Regulation of TOR-Mediated Embryonic Development and Fecundity in Cyrtorhinus lividipennis Reuter. Front Physiol 2020; 11:579233. [PMID: 33041875 PMCID: PMC7526694 DOI: 10.3389/fphys.2020.579233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022] Open
Abstract
The mirid bug, Cyrtorhinus lividipennis Reuter, is an important predator of rice planthoppers in Asia. In a previous study, C. lividipennis fed on gramineous weeds with brown planthopper (BPH) eggs had reduced development compared to those fed on rice with BPH eggs. In the current study, the concentrations of selected amino acids (AAs) were higher in rice than five gramineous species, which might explain the enhanced growth of C. lividipennis on rice. When C. lividipennis was fed on AA-deprived artificial diets, the Wnt/β-catenin pathway was inhibited. Furthermore, C. lividipennis females silenced for expression of Frizzled 2 (Fz2) showed a significant reduction in the Wnt/β-catenin and target of rapamycin (TOR) pathways. Silencing Fz2 led to decreased expression of the vitellogenin gene (Vg), lower Vg accumulation in oocytes, reduced soluble protein in ovaries and fat bodies, reduced titers of juvenile hormone, prolonged preoviposition periods, and lower predation capacity, body weight, and egg numbers as controlled to controls. Fz2 silencing resulted in undeveloped ovaries and the inhibition of oocyte growth in the ovarioles, resulting in decreased numbers of offspring and reduced hatching rates. The silencing of Fz2 also resulted in aberrant embryos with undeveloped eyespots and organs, suggesting that Fz2 is an essential gene for embryonic development, oogenesis, and egg maturation. In summary, this study established a potential link between Wnt and TOR pathways, which interact synergistically to regulate C. lividipennis reproduction in response to AA signals. These results provide valuable new information that can be applied to large-scale rearing of C. lividipennis predators, which is important for reducing planthopper damage in rice fields.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Gu SH, Chen CH, Hsieh HY, Lin PL. Expression of protein kinase C in relation to the embryonic diapause process in the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104010. [PMID: 31917243 DOI: 10.1016/j.jinsphys.2019.104010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we investigated the expression of protein kinase C (PKC) signaling during the embryonic diapause process of Bombyx mori. PKC activity, determined using an antibody to phosphorylated substrates of PKC, was found to be significantly higher in developing eggs as compared to that of diapause eggs. In eggs whose diapause initiation was prevented by HCl, non-diapause eggs, and eggs in which diapause had been terminated by chilling of diapausing eggs at 5 °C for 70 days and then were transferred to 25 °C, PKC-dependent phosphorylation levels of multiple proteins showed dramatic stage-dependent increases compared to those of diapause eggs. Higher protein levels of PKC were also detected in developing eggs as compared to those of diapause eggs. Determination of PKC enzymatic activity during the middle embryonic stage showed higher PKC activity in developing eggs compared to diapause eggs, thus further confirming differential regulation of PKC signaling during the embryonic diapause process. Examination of temporal changes in mRNA expression levels of classical PKC (cPKC) and atypical PKC (aPKC) showed no difference between diapause and HCl-treated eggs. These results demonstrated that differential expressions of PKC signaling between diapause and developing eggs are related to the embryonic diapause process of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Hsiao-Yen Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
14
|
Gu SH, Lin PL, Hsieh HY. Bombyxin/Akt signaling in relation to the embryonic diapause process of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:32-40. [PMID: 31022386 DOI: 10.1016/j.jinsphys.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Our previous study showed that phosphorylation of glycogen synthase kinase (GSK)-3β is related to the embryonic diapause process in Bombyx. However, the upstream signaling pathway was not clearly understood. In the present study, we examined bombyxin/Akt signaling in relation to the embryonic diapause process of B. mori. Results showed that GSK-3β phosphorylation stimulated by dechorionation was blocked by LY294002, a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, indicating involvement of PI3K in GSK-3β phosphorylation in dechorionated eggs. Direct determination of Akt phosphorylation showed that dechorionation stimulated Akt phosphorylation. The Akt phosphorylation was blocked by LY294002. Temporal changes in Akt phosphorylation showed that different changing patterns exist between diapause and developing eggs. Relatively higher phosphorylation levels of Akt were detected between days 3 and 5 after oviposition in non-diapause eggs compared to those at the same stages in diapause eggs. Upon treatment with HCl, which prevents diapause initiation, Akt phosphorylation levels exhibited a later and much broader peak compared to diapause eggs. Examination of expression levels of the bombyxin-Z1 gene showed that in diapause eggs, a major peak occurred 1 day after oviposition, and its level then sharply decreased on day 2. However, in both non-diapause and HCl-treated eggs, a major broad peak was detected between days 1 and 4 after oviposition. These temporal changes in bombyxin-Z1 gene expression levels during embryonic stages coincided with changes in Akt phosphorylation, indicating that bombyxin-Z1 is likely an upstream signaling component for Akt phosphorylation. Taken together, our results indicated that PI3K/Akt is an upstream signaling pathway for GSK-3β phosphorylation and is associated with the diapause process of B. mori eggs. To our knowledge, this is the first study to demonstrate the potential correlation between bombyxin/Akt signaling and the embryonic diapause process.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Hsiao-Yen Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
15
|
Hsieh HY, Gu SH. Expression of calcineurin in relation to the embryonic diapause process in the silkworm, Bombyx mori. Comp Biochem Physiol A Mol Integr Physiol 2019; 228:35-42. [DOI: 10.1016/j.cbpa.2018.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/26/2022]
|
16
|
Gu SH, Hsieh HY, Lin PL. Regulation of protein phosphatase 2A during embryonic diapause process in the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:117-124. [PMID: 28893508 DOI: 10.1016/j.jinsphys.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Regulation of protein phosphorylation requires coordinated interactions between protein kinases and protein phosphatases. In the present study, we investigated regulation of protein phosphatase 2A (PP2A) during the embryonic diapause process of B. mori. An immunoblotting analysis showed that Bombyx eggs contained a catalytic C subunit, a major regulatory B subunit (B55/PR55 subunit), and a structural A subunit, with the A and B subunits undergoing differential changes between diapause and non-diapause eggs during embryonic process. In non-diapause eggs, eggs whose diapause initiation was prevented by HCl, and eggs in which diapause had been terminated by chilling of diapausing eggs at 5°C for 70days and then were transferred to 25°C, protein levels of the A and B subunits of PP2A gradually increased toward embryonic development. However, protein levels of the A and B subunits in diapause eggs remained at low levels during the first 8days after oviposition. The direct determination of PP2A enzymatic activity showed that the activity remained at low levels in diapause eggs during the first 8days after oviposition. However, in non-diapause eggs, eggs whose diapause initiation was prevented by HCl, and eggs in which diapause had been terminated by chilling, PP2A enzymatic activity sharply increased during the first several days, reached a peak during the middle embryonic development, and then greatly decreased 3 or 4days before hatching. Examination of temporal changes in mRNA expression levels of the catalytic β subunit and regulatory subunit of PP2A showed high levels in eggs whose diapause initiation was prevented by HCl compared to those in diapause eggs. These results demonstrate that the higher PP2A gene expression and PP2A A and B subunit protein levels and increased enzymatic activity are related to embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Hsiao-Yen Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
17
|
Gu SH, Chen CH. Injury-induced rapid activation of MAPK signaling in dechorionated eggs and larvae of the silkworm Bombyx mori. INSECT SCIENCE 2017; 24:248-258. [PMID: 26619971 DOI: 10.1111/1744-7917.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Previous study showed that diapause in Bombyx mori eggs can be terminated by dechorionation and that activation in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) in dechorionated cultured eggs is involved in diapause termination. In the present study, the possible mechanism underlying activation of ERK upon dechorionation was further investigated. Results showed that mechanical injury of diapause eggs without medium incubation also resulted in rapid increase in the phospho-ERK levels and that injury increased the phospho-ERK levels at different stages of both diapause eggs and eggs in which diapause initiation was prevented by HCl. Effects of anaerobiosis on dechorionation-stimulated phospho-ERK levels showed that the mechanical injury itself but not the dramatic increase in oxygen uptake upon injury is involved in a rapid activation of ERK. Chemical anaerobiosis on dechorionation-stimulated phospho-ERK levels and the in vivo effect of anaerobiosis showed that the supply of oxygen also plays a role in ERK signaling. In addition, injury induced the phosphorylation of c-jun N-terminal kinases (JNKs) and p38 kinase, components of two parallel MAPK pathways. A kinase assay showed a dramatic increase in JNK kinase activity in egg lysates upon injury. When newly hatched first instar larvae were injured, an increase in the phospho-ERK levels similar to that in dechorionated eggs was observed. From the results, we hypothesize that the injury-induced rapid activation of MAPK signaling, which serves as a natural signal for embryonic development, is related to diapause termination in dechorionated eggs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, China
| | | |
Collapse
|
18
|
Meyers PJ, Powell THQ, Walden KKO, Shieferecke A, Feder JL, Hahn DA, Robertson HM, Berlocher SH, Ragland GJ. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression. J Exp Biol 2016; 219:2613-22. [DOI: 10.1242/jeb.140566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022]
Abstract
Duration of dormancy regulates seasonal timing in many organisms and may be modulated by day length and temperature. Though photoperiodic modulation has been well studied, temperature modulation of dormancy has received less attention. Here, we leverage genetic variation in diapause in the apple maggot fly, Rhagoletis pomonella, to test whether gene expression during winter or following spring warming regulates diapause duration. We used RNAseq to compare transcript abundance during and after simulated winter between an apple-infesting population and a hawthorn-infesting population where the apple population ends pupal diapause earlier than the hawthorn-infesting population. Marked differences in transcription between the two populations during winter suggests that the ‘early’ apple population is developmentally advanced compared to the ‘late’ hawthorn population prior to spring warming, with transcripts participating in growth and developmental processes relatively up-regulated in apple pupae during the winter cold period. Thus, regulatory differences during winter ultimately drive phenological differences that manifest themselves in the following summer. Expression and polymorphism analysis identify candidate genes in the Wnt and insulin signaling pathways that contribute to population differences in seasonality. Both populations remained in diapause and displayed a pattern of up- and then down-regulation (or vice versa) of growth-related transcripts following warming, consistent with transcriptional repression. The ability to repress growth stimulated by permissive temperatures is likely critical to avoid mismatched phenology and excessive metabolic demand. Compared to diapause studies in other insects, our results suggest some overlap in candidate genes/pathways, though the timing and direction of changes in transcription are likely species-specific.
Collapse
Affiliation(s)
- Peter J. Meyers
- Department of Biological Sciences, University of Notre Dame, USA
| | | | | | | | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, USA
- Environmental Change Initiative, University of Notre Dame, USA
| | - Daniel A. Hahn
- Entomology and Nematology Department, University of Florida, USA
| | | | | | - Gregory J. Ragland
- Department of Biological Sciences, University of Notre Dame, USA
- Department of Entomology, Kansas State University, USA
- Environmental Change Initiative, University of Notre Dame, USA
- Current Address: Department of Integrative Biology, University of Colorado, Denver, USA
| |
Collapse
|
19
|
Chen W, Xu WH. Expression analysis of GSK-3β in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. INSECT SCIENCE 2015; 22:597-605. [PMID: 25772018 DOI: 10.1111/1744-7917.12215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Diapause is an adaptive response to adverse environmental conditions, but the molecular mechanisms are unclear. Some signaling molecules have been identified in the regulation of diapause. GSK-3β is an important signaling protein involved in several signaling pathways. In this study, GSK-3β from the cotton bollworm, Helicoverpa armigera, was cloned using reverse transcription polymerase chain reaction and rapid amplification of complementary DNA (cDNA) ends techniques. Sequence analysis showed that the full-length cDNA was 1447 bp containing a 292 bp 5'-untranslated region (UTR), a 162 bp 3'-UTR and a 993 bp open reading frame (ORF). The deduced Har-GSK-3β protein has high identity to other known GSK-3β, as determined by Basic Local Alignment Search Tool analysis. Developmental expression of total GSK-3β and p-GSK-3β (Ser9) in diapause and non-diapause pupal brains was investigated by Western blotting. Results indicated that the activity of GSK-3β is down-regulated in diapause pupal brains, which is further confirmed by Western blotting after diapause break. These finding suggest that the down-regulation of Har-GSK-3β activity may be important for pupal diapause.
Collapse
Affiliation(s)
- Wei Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Chen W, Xu WH. Wnt/β-catenin signaling regulates Helicoverpa armigera pupal development by up-regulating c-Myc and AP-4. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:44-53. [PMID: 25038464 DOI: 10.1016/j.ibmb.2014.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Seasonally changing environmental conditions perceived by insect brains can be converted into hormonal signals that prompt insects to make a decision to develop or enter developmental arrest (diapause). Diapause is a complex physiological response, and many signaling pathways may participate in its regulation. However, little is known about these regulatory pathways. In this study, we cloned four genes related to the Wnt/β-catenin signaling pathway from Helicoverpa armigera, a pupal diapause species. Western blotting shows that expression of Har-Wnt1, Har-β-catenin, and Har-c-Myc are higher in non-diapause pupal brains than in diapause-destined brains. Har-Wnt1 can promote the accumulation of Har-β-catenin in the nucleus, and Har-β-catenin in turn increases the expression of Har-c-Myc. The blockage of Wnt/β-catenin signaling by the inhibitor XAV939 significantly down-regulates Har-β-catenin and Har-c-Myc expression and delays pupal development, suggesting that the Wnt/β-catenin pathway functions in insect development. Furthermore, Har-c-Myc binds to the promoter of Har-AP-4 and regulates its expression. It has been reported that Har-AP-4 activates diapause hormone (DH) expression and that DH up-regulates the growth hormone ecdysteroid for pupal development. Thus, pupal development is regulated by Wnt/β-catenin signaling through the pathway Wnt-β-catenin-c-Myc-AP-4-DH-ecdysteroid. In contrast, the down-regulation of Wnt/β-catenin signaling is likely to induce insects to enter diapause.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
21
|
Zhao LC, Hou YS, Sima YH. Changes in glutathione redox cycle during diapause determination and termination in the bivoltine silkworm, Bombyx mori. INSECT SCIENCE 2014; 21:39-46. [PMID: 23956095 DOI: 10.1111/1744-7917.12015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Abstract
To explore whether glutathione regulates diapause determination and termination in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapause- and nondiapause-egg producers, as well as those in diapause eggs incubated at different temperatures. The activity of thioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapause-egg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cycle during diapause determination. Compared with the 25°C-treated diapause eggs, the 5°C-treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.
Collapse
Affiliation(s)
- Lin-Chuan Zhao
- College of Biological and Basic Medicine Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | | | | |
Collapse
|
22
|
Gu SH, Young SC, Tsai WH, Lin JL, Lin PL. Involvement of 4E-BP phosphorylation in embryonic development of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:978-985. [PMID: 21600900 DOI: 10.1016/j.jinsphys.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
Phosphorylation of the translational repressor 4E-binding protein (4E-BP) plays a critical role in regulating the overall translation levels in cells. In the present study, we investigated 4E-BP phosphorylation of Bombyx mori eggs by an immunoblot analysis of a conserved phospho-specific antibody to 4E-BP and demonstrated its role during embryonic development. When HCl treatment was applied to diapause-destined eggs at 20 h after oviposition, a dramatic increase in the phosphorylation of 4E-BP occurred 5 min after treatment with HCl, and high phosphorylation levels were maintained throughout embryonic stage in HCl-treated eggs compared to those in diapause (control) eggs. When HCl treatment was applied to diapause eggs on day 10 after oviposition, no dramatic activation in 4E-BP phosphorylation occurred, indicating stage-specific effects of HCl treatment. In both non-diapause eggs and eggs whose diapause had been terminated by chilling of diapausing eggs at 5°C for 70 days and then were transferred to 25°C, high phosphorylation levels of 4E-BP were also detected. Moreover, 4E-BP phosphorylation dramatically increased when dechorionated eggs were incubated in medium. The addition of rapamycin, a specific inhibitor of mammalian target of rapamycin (TOR) signaling, and LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, but not the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor, U0126, dose-dependently inhibited 4E-BP phosphorylation in dechorionated eggs, indicating that PI3K/TOR signaling is an upstream signaling event involved in 4E-BP phosphorylation. Examination of 4E-BP gene expression levels showed no differences between treatments with HCl and water in the first hour after treatment, indicating that changes in phosphorylation of 4E-BP upon HCl treatment are mainly regulated at the post-transcriptional level. In addition, MAPK pathways and glycogen synthase kinase (GSK)-3β phosphorylation were not significantly affected in the first hour after HCl treatment. These results demonstrate that the rapid phosphorylation of 4E-BP is an early signaling event in embryonic development in the eggs whose diapause initiation was prevented by HCl treatment, thus being involved in the embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Zoology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
23
|
Sima YH, Yao JM, Hou YS, Wang L, Zhao LC. Variations of hydrogen peroxide and catalase expression in Bombyx eggs during diapause initiation and termination. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 77:72-80. [PMID: 21433065 DOI: 10.1002/arch.20422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/18/2011] [Indexed: 05/15/2023]
Abstract
For diapause eggs of the silkworm, Bombyx mori, diapause initiation is prevented with hydrochloric acid (HCl) at around 20 h post-oviposition while diapause status is terminated with chilling around 5°C. To investigate whether hydrogen peroxide (H(2)O(2)) and catalase expression are involved in diapause initiation and termination, the concentration of H(2)O(2), relatively higher levels of catalase mRNA and activity of catalase were compared between (1) 20-h-old diapause eggs and the HCl-treated diapause eggs, and (2) 10-day-old diapause eggs and the 5°C-chilled diapause eggs. Compared to diapause eggs, the HCl-treated eggs had significantly higher H(2)O(2) concentrations (up from approximately 1-3 µmol/g fresh mass to 5-8 µmol/g fresh mass), higher relative level of catalase mRNA (up from 0 to 35.2%) and higher catalase activity (up from 2.51 units/mg protein to 4.97 units/mg protein) at 96 h post-treatment. On the other hand, the 5°C chilling resulted in significant increases of H(2)O(2) concentration (up from 0.79 µmol/g fresh mass to 5.57 µmol/g fresh mass), relative level of catalase mRNA (up from 0 to 71.4%) and catalase activity (up from 0.88 units/mg protein to 3.42 units/mg protein) within 120 days. The results obtained in this work suggest that variations of H(2)O(2) and catalase expression in Bombyx eggs are involved in diapause initiation and termination.
Collapse
Affiliation(s)
- Yang-Hu Sima
- Department of Life Science, Soochow University, Suzhou, PR China
| | | | | | | | | |
Collapse
|