1
|
Liu B, He J, Liu Q, Wang B, Xiong M, Sun W, Pan B. Male mites are the promising targets for control of Dermanyssus gallinae (Acari: Dermanyssidae) based on the reproductive biology research. Vet Parasitol 2025; 334:110411. [PMID: 39892183 DOI: 10.1016/j.vetpar.2025.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Dermanyssus gallinae is a significant hematophagous ectoparasite affecting laying hens. However, due to the limitations of research methods, especially feeding methods, the reproductive biology of D. gallinae has not been fully studied. In this study, two recently developed in vivo feeding methods were employed to investigate the reproductive biology of D. gallinae, including the impacts of mating on feeding status and egg laying, the reproductive capacity of female mites, the mating capacity of male mites and the sex ratio of offspring. The results demonstrated that only mated adult female mites were able to reach an engorged state and were capable of oviposition. The maximum egg-laying times for an adult female mite was 13, with an average of 44.39 eggs per mite. Moreover, for the first time, this study described the mating ability of adult male mites. On average, a male mite can mate with 16 female mites during its lifetime and the average mating period is 8.47 d. All offspring from the first batch of eggs produced by novel adult female mites were males. Afterward, the proportion of male offspring mites gradually decreases with the generation. The results show that the males play a crucial role in the population establishment of D. gallinae, indicating they can be considered promising targets for the mite control.
Collapse
Affiliation(s)
- Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqi He
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bohan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mingjun Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Xia MH, Li CZ, Li YC, Pan D, Wang ZR, Dou W, Wang JJ. Lufenuron affects the fecundity of Panonychus citri by regulating the methyl farnesoate-ponasterone A network. INSECT SCIENCE 2024. [PMID: 39545271 DOI: 10.1111/1744-7917.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 11/17/2024]
Abstract
In insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E) pathways jointly regulate fecundity, but only methyl farnesoate (MF) and ponasterone A exist in mites. Comparative transcriptomic analysis in Panonychus citri showed that E75B was significantly downregulated when exposed to lufenuron. Knockdown of E75B significantly affects the expression of vitellogenin (Vg), Fushi tarazu factor 1 (Ftz-f1) and juvenile hormone acid O-methyltransferase (JHAMT), reducing fecundity in mites. The knockdown of Ftz-f1 produced a more significant effect than the knockdown of E75B, indicating that the ponasterone A pathway positively regulates fecundity in P. citri. After the knockdown of JHAMT, the expression levels of both Vg and Ftz-f1 and fecundity were significantly increased, along with the inhibition of Kr-h1, suggesting that JHAMT was negatively correlated with fecundity in the regulatory network. Knockdown of Kr-h1 inhibited the expression of Vg and Ftz-f1 and fecundity, and whether the drop in fecundity is caused by Kr-h1 or Ftz-f1 is unclear. Subsequent feeding with MF induced Kr-h1 and Vg expression, whereas no significant effects were observed for JHAMT and Ftz-f1. Therefore, the MF pathway stimulates fecundity independently. RNA interference (RNAi) showed that JHAMT and Ftz-f1 inhibited each other, resulting in opposite effects of MF and ponasterone A pathways on steady-state fecundity when either factor changed. Meanwhile, JHAMT knockdown led to increased fecundity, indicating that the stimulating effect of the ponasterone A pathway was greater than the inhibiting effect of the MF pathway, and demonstrating the dominant role of the ponasterone A pathway. Therefore, the interaction between JHAMT and Ftz-f1 may be closely associated with the maintenance of MF-ponasterone A regulatory network homeostasis and is involved in the reduction of fecundity in P. citri induced by exposure to lufenuron.
Collapse
Affiliation(s)
- Meng-Hao Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu-Chuang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zi-Ran Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan Province, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Della Vechia JF, Zanardi OZ, Kapp ABP, Bassanezi RB, de Andrade DJ. Lethal and sublethal effects of insecticides on the survival and reproduction of Brevipalpus yothersi (Acari: Tenuipalpidae). EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:191-204. [PMID: 34739615 DOI: 10.1007/s10493-021-00672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The overuse of insecticides to control vector insects such as Diaphorina citri Kuwayama in citrus groves has altered the population dynamics of pest mites. Among phytophagous mites, population outbreaks of citrus leprosis mite, Brevipalpus yothersi Baker, have been increasingly intense and frequent in Brazilian citrus groves. Despite the great importance of the B. yothersi mite for citrus production, the lethal and sublethal effects of insecticides on this mite have not yet been studied. Therefore, in this study, the effects of insecticides commonly used for D. citri control on B. yothersi mortality, reproduction, and instantaneous growth rate were assessed. For this, two experiments were carried out, one under controlled conditions and another in a greenhouse. The insecticides tested were beta-cyfluthrin, bifenthrin, buprofezin, chlorpyrifos, dimethoate, pyriproxyfen, and thiamethoxam at 0 (control), 0.0625, 0.125, 0.25, 0.5, 1, and twofold the recommended insecticide concentration for D. citri control. The pyriproxyfen insecticide provided high mortality of B. yothersi even at low concentrations. Furthermore, this insecticide negatively interfered with the reproduction of this mite. Beta-cyfluthrin, bifenthrin, buprofezin, chlorpyrifos, dimethoate, and thiamethoxam, in the tested concentrations, showed low impact on citrus leprosis mite. Regarding the reproduction of the mite, no significant increase in fecundity was observed on B. yothersi females exposed to insecticide residues, regardless of the concentration tested. Therefore, the application of these insecticides in the management of pest insects is unlikely to promote an increase in the citrus leprosis mite population.
Collapse
Affiliation(s)
- Jaqueline Franciosi Della Vechia
- Department of Agricultural Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Via de Acesso Prof. Paulo Donato Castellane, S/N, Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Odimar Zanuzo Zanardi
- Department of Education, Research and Extension, Federal Institute of Santa Catarina (IFSC), São Miguel do Oeste, Santa Catarina, 89900-000, Brazil
| | - Ana Beatriz Piai Kapp
- Department of Agricultural Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Via de Acesso Prof. Paulo Donato Castellane, S/N, Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil
| | | | - Daniel Júnior de Andrade
- Department of Agricultural Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Via de Acesso Prof. Paulo Donato Castellane, S/N, Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil
| |
Collapse
|
4
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
5
|
Aurori CM, Giurgiu A, Conlon BH, Kastally C, Dezmirean DS, Routtu J, Aurori A. Juvenile hormone pathway in honey bee larvae: A source of possible signal molecules for the reproductive behavior of Varroa destructor. Ecol Evol 2021; 11:1057-1068. [PMID: 33520186 PMCID: PMC7820148 DOI: 10.1002/ece3.7125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022] Open
Abstract
The parasitic mite Varroa destructor devastates honey bee (Apis mellifera) colonies around the world. Entering a brood cell shortly before capping, the Varroa mother feeds on the honey bee larvae. The hormones 20-hydroxyecdysone (20E) and juvenile hormone (JH), acquired from the host, have been considered to play a key role in initiating Varroa's reproductive cycle. This study focuses on differential expression of the genes involved in the biosynthesis of JH and ecdysone at six time points during the first 30 hr after cell capping in both drone and worker larvae of A. mellifera. This time frame, covering the conclusion of the honey bee brood cell invasion and the start of Varroa's ovogenesis, is critical to the successful initiation of a reproductive cycle. Our findings support a later activation of the ecdysteroid cascade in honey bee drones compared to worker larvae, which could account for the increased egg production of Varroa in A. mellifera drone cells. The JH pathway was generally downregulated confirming its activity is antagonistic to the ecdysteroid pathway during the larva development. Nevertheless, the genes involved in JH synthesis revealed an increased expression in drones. The upregulation of jhamt gene involved in methyl farnesoate (MF) synthesis came into attention since the MF is not only a precursor of JH but it is also an insect pheromone in its own right as well as JH-like hormone in Acari. This could indicate a possible kairomone effect of MF for attracting the mites into the drone brood cells, along with its potential involvement in ovogenesis after the cell capping, stimulating Varroa's initiation of egg laying.
Collapse
Affiliation(s)
- Cristian M. Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Alexandru‐Ioan Giurgiu
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Benjamin H. Conlon
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Chedly Kastally
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Department of Ecology and Genetics and Biocenter OuluUniversity of OuluOuluFinland
| | - Daniel S. Dezmirean
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Jarkko Routtu
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Adriana Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
- Advanced Horticultural Research Institute of TransylvaniaUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| |
Collapse
|
6
|
Wang M, Hu Y, Li M, Xu Q, Zhang X, Wang X, Xue X, Xiao Q, Liu J, Wang H. A proteomics analysis of the ovarian development in females of Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:289-309. [PMID: 31919614 DOI: 10.1007/s10493-020-00469-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Haemaphysalis longicornis is an ixodid tick that can spread a wide variety of pathogens, affecting humans, livestock and wildlife health. The high reproductive capability of this species is initiated by the ingestion of a large amount of blood ingested by the engorged female tick. The degree of ovarian development is proportional to the number of eggs laid. Studying the regulatory mechanism of tick ovary development is relevant for the development of novel tick control methods. In this study, we used quantitative proteomics to study the dynamic changes in protein expression and protein phosphorylation during ovarian development of engorged female H. longicornis ticks. Synergistic action of many proteins (n = 3031) is required to achieve ovarian development and oocyte formation rapidly. Through bioinformatics analysis, changes in protein expressions and phosphorylation modifications in regulating the ovarian development of female ticks are described. Many proteins play an essential role during ovarian development. Also, protein phosphorylation appeared an important reproductive strategy to enable ticks to efficiently convert large amounts of blood in the ovaries into egg-producing components and ultimately produce many eggs.
Collapse
Affiliation(s)
- Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qianqian Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- , Shijiazhuang, Hebei, China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- , Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Zhang YX, Chen X, Wang JP, Zhang ZQ, Wei H, Yu HY, Zheng HK, Chen Y, Zhang LS, Lin JZ, Sun L, Liu DY, Tang J, Lei Y, Li XM, Liu M. Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics 2019; 20:954. [PMID: 31818245 PMCID: PMC6902594 DOI: 10.1186/s12864-019-6281-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Predatory mites (Acari: Phytoseiidae) are the most important beneficial arthropods used in augmentative biological pest control of protected crops around the world. However, the genomes of mites are far less well understood than those of insects and the evolutionary relationships among mite and other chelicerate orders are contested, with the enigmatic origin of mites at one of the centres in discussion of the evolution of Arachnida. RESULTS We here report the 173 Mb nuclear genome (from 51.75 Gb pairs of Illumina reads) of the predatory mite, Neoseiulus cucumeris, a biocontrol agent against pests such as mites and thrips worldwide. We identified nearly 20.6 Mb (~ 11.93% of this genome) of repetitive sequences and annotated 18,735 protein-coding genes (a typical gene 2888 bp in size); the total length of protein-coding genes was about 50.55 Mb (29.2% of this assembly). About 37% (6981) of the genes are unique to N. cucumeris based on comparison with other arachnid genomes. Our phylogenomic analysis supported the monophyly of Acari, therefore rejecting the biphyletic origin of mites advocated by other studies based on limited gene fragments or few taxa in recent years. Our transcriptomic analyses of different life stages of N. cucumeris provide new insights into genes involved in its development. Putative genes involved in vitellogenesis, regulation of oviposition, sex determination, development of legs, signal perception, detoxification and stress-resistance, and innate immune systems are identified. CONCLUSIONS Our genomics and developmental transcriptomics analyses of N. cucumeris provide invaluable resources for further research on the development, reproduction, and fitness of this economically important mite in particular and Arachnida in general.
Collapse
Affiliation(s)
- Yan-Xuan Zhang
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Xia Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Jie-Ping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 People’s Republic of China
| | - Zhi-Qiang Zhang
- Landcare Research, Auckland and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Hui Wei
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Hai-Yan Yu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Hong-Kun Zheng
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yong Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Li-Sheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Jian-Zhen Lin
- Fujian Yanxuan Bio-preventing and Technology Biocontrol Corporation, Fuzhou, People’s Republic of China
| | - Li Sun
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Dong-Yuan Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yan Lei
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Xu-Ming Li
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| |
Collapse
|
8
|
Romero S, Laino A, Arrighetti F, García CF, Cunningham M. Vitellogenesis in spiders: first analysis of protein changes in different reproductive stages of Polybetes pythagoricus. J Comp Physiol B 2019; 189:335-350. [PMID: 30953127 DOI: 10.1007/s00360-019-01217-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Vitellogenesis represents one of the most vital processes of oviparous species during which various proteins, carbohydrates, and lipids are synthesized and stored inside the developing oocytes. Through analyzing protein changes in the midgut diverticula, hemolymph, and ovaries of females throughout the different vitellogenic stages of the spider Polybetes pythagoricus, we determined the origin of the different proteins involved in the formation of lipovitellins (LVs) along with the existence of a linkage between the hemocyanin and this vital process. An increase in the total protein content of the midgut diverticula, hemolymph, and ovary occurred throughout vitellogenesis followed by a decrease in those levels after laying. The presence of hemocyanin in egg and in LV2, as well as its accumulation in the ovary throughout the vitellogenesis process, was determined. Considering that all biologic processes depend on the correct structure and function of proteins, this study establishes, for the first time for the Order Araneae, the coexistence of three different origins of vitellogenesis-related proteins: one predominantly ovarian involving peptides of 120, 75, 46, and 30 kDa; another extraovarian one originated from the midgut diverticula and represented by a 170 kDa peptide, and a third hemolymphatic one, represented by the 67 kDa peptide.
Collapse
Affiliation(s)
- S Romero
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina
| | - A Laino
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina
| | - F Arrighetti
- CONICET-Museo Argentino de Ciencias Naturales, Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
| | - C F García
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina.
| | - M Cunningham
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
9
|
Meibers HE, Finch G, Gregg RT, Glenn S, Assani KD, Jennings EC, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Lee RE, Denlinger DL, Weirauch MT, Benoit JB. Sex- and developmental-specific transcriptomic analyses of the Antarctic mite, Alaskozetes antarcticus, reveal transcriptional shifts underlying oribatid mite reproduction. Polar Biol 2018. [DOI: 10.1007/s00300-018-2427-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Mondet F, Rau A, Klopp C, Rohmer M, Severac D, Le Conte Y, Alaux C. Transcriptome profiling of the honeybee parasite Varroa destructor provides new biological insights into the mite adult life cycle. BMC Genomics 2018; 19:328. [PMID: 29728057 PMCID: PMC5936029 DOI: 10.1186/s12864-018-4668-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The parasite Varroa destructor represents a significant threat to honeybee colonies. Indeed, development of Varroa infestation within colonies, if left untreated, often leads to the death of the colony. Although its impact on bees has been extensively studied, less is known about its biology and the functional processes governing its adult life cycle and adaptation to its host. We therefore developed a full life cycle transcriptomic catalogue in adult Varroa females and included pairwise comparisons with males, artificially-reared and non-reproducing females (10 life cycle stages and conditions in total). Results Extensive remodeling of the Varroa transcriptome was observed, with an upregulation of energetic and chitin metabolic processes during the initial and final phases of the life cycle (e.g. phoretic and post-oviposition stages), whereas during reproductive stages in brood cells genes showing functions related to transcriptional regulation were overexpressed. Several neurotransmitter and neuropeptide receptors involved in behavioural regulation, as well as active compounds of salivary glands, were also expressed at a higher level outside the reproductive stages. No difference was detected between artificially-reared phoretic females and their counterparts in colonies, or between females who failed to reproduce and females who successfully reproduced, indicating that phoretic individuals can be reared outside host colonies without impacting their physiology and that mechanisms underlying reproductive failure occur before oogenesis. Conclusions We discuss how these new findings reveal the remarkable adaptation of Varroa to its host biology and notably to the switch from living on adults to reproducing in sealed brood cells. By spanning the entire adult life cycle, our work captures the dynamic changes in the parasite gene expression and serves as a unique resource for deciphering Varroa biology and identifying new targets for mite control. Electronic supplementary material The online version of this article (10.1186/s12864-018-4668-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fanny Mondet
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| | - Andrea Rau
- INRA, UMR 1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Christophe Klopp
- INRA, Genotoul Bioinfo, UR 875 MIAT Mathématiques et Informatique Appliquées de Toulouse, 31326, Castanet-Tolosan, France
| | - Marine Rohmer
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Dany Severac
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France
| | - Cedric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| |
Collapse
|
11
|
Santamaria ME, Diaz I, Martinez M. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley. FRONTIERS IN PLANT SCIENCE 2018; 9:458. [PMID: 29681917 PMCID: PMC5898276 DOI: 10.3389/fpls.2018.00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/22/2018] [Indexed: 05/26/2023]
Abstract
Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.
Collapse
Affiliation(s)
- M. E. Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Goto SG. Physiological and molecular mechanisms underlying photoperiodism in the spider mite: comparisons with insects. J Comp Physiol B 2016; 186:969-984. [PMID: 27424162 DOI: 10.1007/s00360-016-1018-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
Photoperiodism is an adaptive, seasonal timing system that enables organisms to coordinate their development and physiology to annual changes in the environment using day length (photoperiod) as a cue. This review summarizes our knowledge of the physiological mechanisms underlying photoperiodism in spider mites. In particular, the two-spotted spider mite Tetranychus urticae is focussed, which has long been used as a model species for studying photoperiodism. Photoperiodism is established by several physiological modules, such as the photoreceptor, photoperiodic time measurement system, counter system, and endocrine effector. It is now clear that retinal photoreception through the ocelli is indispensable for the function of photoperiodism, at least in T. urticae. Visual pigment, which comprised opsin protein and a vitamin A-based pigment, is involved in photoreception. The physiological basis of the photoperiodic time measurement system is still under debate, and we have controversial evidence for the hourglass-based time measurement and the oscillator-based time measurement. Less attention has been centred on the counter system in insects and mites. Mite reproduction is possibly regulated by the ecdysteroid, ponasterone A. Prior physiological knowledge has laid the foundation for the next steps essential for the elucidation of the molecular mechanisms driving photoperiodism.
Collapse
Affiliation(s)
- Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
13
|
Dunn JA, Prickett JC, Collins DA, Weaver RJ. Primary screen for potential sheep scab control agents. Vet Parasitol 2016; 224:68-76. [PMID: 27270393 DOI: 10.1016/j.vetpar.2016.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 11/19/2022]
Abstract
The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole).
Collapse
Affiliation(s)
- J A Dunn
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom.
| | - J C Prickett
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom
| | - D A Collins
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom
| | - R J Weaver
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom
| |
Collapse
|
14
|
Impact of the Phoretic Phase on Reproduction and Damage Caused by Varroa destructor (Anderson and Trueman) to Its Host, the European Honey Bee (Apis mellifera L.). PLoS One 2016; 11:e0153482. [PMID: 27096154 PMCID: PMC4838260 DOI: 10.1371/journal.pone.0153482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
Varroa destructor is a parasitic mite of the honeybee that causes thousands of colony losses worldwide. The parasite cycle is composed of a phoretic and a reproductive phase. During the former, mites stay on adult bees, mostly on nurses, to feed on hemolymph. During the latter, the parasites enter brood cells and reproduce. We investigated if the type of bees on which Varroa stays during the phoretic phase and if the duration of this stay influenced the reproductive success of the parasite and the damage caused to bees. For that purpose, we used an in vitro rearing method developed in our laboratory to assess egg laying rate and the presence and number of fully molted daughters. The expression level of two Varroa vitellogenin genes (VdVg1 and VdVg2), known to vary throughout reproduction, was also quantified. Results showed that the status of the bees or time spent during the phoretic phase impacts neither reproduction parameters nor the Varroa vitellogenin genes levels of expression. However, we correlated these parameters to the gene expression and demonstrated that daughters expressed the vitellogenin genes at lower levels than their mother. Regarding the damage to bees, the data indicated that a longer stay on adult bees during the phoretic phase resulted in more frequent physical deformity in newborn bees. We showed that those mites carry more viral loads of the Deformed Wing Virus and hence trigger more frequently overt infections. This study provides new perspectives towards a better understanding of the Varroa-honeybee interactions.
Collapse
|
15
|
Campbell EM, Budge GE, Watkins M, Bowman AS. Transcriptome analysis of the synganglion from the honey bee mite, Varroa destructor and RNAi knockdown of neural peptide targets. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:116-126. [PMID: 26721201 DOI: 10.1016/j.ibmb.2015.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/04/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Varroa mites (Varroa destructor) and the viruses that they transmit are one of the major contributing factors to the global honey bee crisis. Gene products within the nervous system are the targets of all the insecticides currently used to control Varroa but there is a paucity of transcriptomic data available for Varroa neural tissues. A cDNA library from the synganglia ("brains") of adult female Varroa was constructed and 600 ESTs sequenced and analysed revealing several current and potential druggable targets. Contigs coding for the deformed wing virus (DWV) variants V. destructor virus-1 (VDV-1) and the recombinant (VDV-1DVD) were present in the synganglion library. Negative-sense RNA-specific PCR indicated that VDV-1 replicates in the Varroa synganglion and all other tissues tested, but we could not detect DWV replicating in any Varroa tissue. Two neuropeptides were identified in the synganlion EST library: a B-type allatostatin and a member of the crustacean hyperglycaemic hormone (CHH) superfamily. Knockdown of the allatostatin or the CHH-like gene by double-stranded RNA-interference (dsRNAi) resulted in 85% and 55% mortality, respectively, of Varroa. Here, we present the first transcriptomic survey in Varroa and demonstrate that neural genes can be targeted by dsRNAi either for genetic validation of putative targets during drug discovery programmes or as a potential control measure in itself.
Collapse
Affiliation(s)
- Ewan M Campbell
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Giles E Budge
- National Bee Unit, Fera, Sand Hutton, York YO41 1LZ, UK
| | - Max Watkins
- Vita (Europe) Limited, Vita House, London Street, Basingstoke, Hampshire RG21 7PG, UK
| | - Alan S Bowman
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
16
|
Cheong SPS, Huang J, Bendena WG, Tobe SS, Hui JHL. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone. Integr Comp Biol 2015; 55:878-90. [DOI: 10.1093/icb/icv066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Cabrera AR, Shirk PD, Evans JD, Hung K, Sims J, Alborn H, Teal PEA. Three Halloween genes from the Varroa mite, Varroa destructor (Anderson & Trueman) and their expression during reproduction. INSECT MOLECULAR BIOLOGY 2015; 24:277-92. [PMID: 25488435 DOI: 10.1111/imb.12155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ecdysteroid biosynthetic pathway involves sequential enzymatic hydroxylations by a group of enzymes collectively known as Halloween gene proteins. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), were identified in varroa mites and sequenced. Phylogenetic analyses of predicted amino acid sequences for Halloween orthologues showed that the acarine orthologues were distantly associated with insect and crustacean clades indicating that acarine genes had more ancestral characters. The lack of orthologues or pseudogenes for remaining genes suggests these pathway elements had not evolved in ancestral arthropods. Vdspo transcript levels were highest in gut tissues, while Vddib transcript levels were highest in ovary-lyrate organs. In contrast, Vdshd transcript levels were lower overall but present in both gut and ovary-lyrate organs. All three transcripts were present in eggs removed from gravid female mites. A brood cell invasion assay was developed for acquiring synchronously staged mites. Mites within 4 h of entering a brood cell had transcript levels of all three that were not significantly different from mites on adult bees. These analyses suggest that varroa mites may be capable of modifying 7-dehydro-cholesterol precursor and hydroxylations of other steroid precursors, but whether the mites directly produce ecdysteroid precursors and products remains undetermined.
Collapse
Affiliation(s)
- A R Cabrera
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhao Y, Li D, Zhang M, Chen W, Zhang G. Food source affects the expression of vitellogenin and fecundity of a biological control agent, Neoseiulus cucumeris. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:333-347. [PMID: 24573356 DOI: 10.1007/s10493-014-9781-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) is one of the most widely used and important biological control agents for thrips and other small pests worldwide. In the present study, we cloned two cDNAs of vitellogenins (Vgs, NcVg1 and NcVg2) and analyzed the effect of food source on the expression of both Vgs and fecundity in female adults. NcVgs showed higher sequence similarity to Vgs from Parasitiformes. Both neighbor-joining and maximum likelihood methods for phylogenetic analysis of NcVgs yielded similar topologies and showed that the Parasitiformes except Haemaphysalis longicornis segregated into a single clade that was separated into two subclades including one of both Vgs from N. cucumeris. Both transcripts, NcVg1 and NcVg2 revealed similar trends during developmental periods and reached the maximum level at the pre-oviposition period. When fed with different food sources, both NcVg1 and NcVg2 of female adults demonstrated a significant difference (P < 0.05) during the pre-oviposition period. Meanwhile, a positive correlation between the expression of Vgs and fecundity was observed. Therefore, the nutrients provided by the food sources affected fecundity resulting in differential expression of Vgs. Vitellogenin expression can be used as a molecular marker of fecundity of N. cucumeris.
Collapse
Affiliation(s)
- Yunlong Zhao
- State Key Laboratory for Biocontrol/Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
19
|
Witaliński W. Gonads and gametogenesis in astigmatic mites (Acariformes: Astigmata). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:323-340. [PMID: 24791694 DOI: 10.1016/j.asd.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
Astigmatans are a large group of mites living in nearly every environment and exhibiting very diverse reproductive strategies. In spite of an uniform anatomical organization of their reproductive systems, gametogenesis in each sex is highly variable, leading to gamete formation showing many peculiar features and emphasizing the distinct position of Astigmata. This review summarizes the contemporary knowledge on the structure of ovaries and testes in astigmatic mites, the peculiarities of oogenesis and spermatogenesis, as well as provides new data on several species not studied previously. New questions are discussed and approaches for future studies are proposed.
Collapse
Affiliation(s)
- Wojciech Witaliński
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
20
|
Sousa LADD, Rocha TL, Sabóia-Morais SMT, Borges LMF. Ovary histology and quantification of hemolymph proteins of Rhipicephalus (Boophilus)microplus treated with Melia azedarach. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2013; 22:339-45. [DOI: 10.1590/s1984-29612013000300004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/04/2013] [Indexed: 11/22/2022]
Abstract
This study aimed to analyze ovary histology and quantify total protein in the hemolymph of Rhipicephalus (Boophilus)microplus females treated with hexane extracts from green fruits of Melia azedarach. Eight engorged females were immersed in the extract at 0.25% concentration, and eight in water containing 5% acetone (control). The females were dissected 72 hours after treatment, and the ovaries were weighed and subjected to standard histological techniques. The total protein concentration was measured in the hemolymph of 200 females, of which 100 were treated as described above and 100 served as a control. In the treated group, ovary weight reduction and predominance of immature oocytes were observed. In addition, there were decreases in the diameters of the cytoplasm and germ vesicle of the oocytes in the treated group, compared with the controls. The protein concentration in the hemolymph was higher in the treated group than in the controls. The morphological changes observed in the treated ovaries included: presence of vacuolization; alteration of oocyte morphology, which changed from rounded to elongated; deformation of the chorion; and disorganization of the yolk granules. These results demonstrate the action ofM. azedarach fruit extracts on R.(B.) microplus oogenesis.
Collapse
|
21
|
Mogie M. Premeiotic endomitosis and the costs and benefits of asexual reproduction. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael Mogie
- Department of Biology and Biochemistry; University of Bath; Bath BA2 7AY UK
| |
Collapse
|
22
|
Cabrera Cordon AR, Shirk PD, Duehl AJ, Evans JD, Teal PEA. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment. INSECT MOLECULAR BIOLOGY 2013; 22:88-103. [PMID: 23331492 DOI: 10.1111/imb.12006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman), were variably induced by interactions between the developing honeybee, Apis mellifera L, as a food source and the capped honeybee cell environment. Transcripts for two Vgs of varroa mites were sequenced and putative Vg protein products characterized. Sequence analysis of VdVg1 and VdVg2 proteins showed that each had greater similarity with Vg1 and Vg2 proteins from ticks, respectively, than between themselves and were grouped separately by phylogenetic analyses. This suggests there was a duplication of the ancestral acarine Vg gene prior to the divergence of the mites and ticks. Low levels of transcript were detected in immature mites, males and phoretic females. Following cell invasion by phoretic females, VdVg1 and VdVg2 transcript levels were up-regulated after cell capping to a maximum at the time of partial cocoon formation by the honeybee. During oviposition the two transcripts were differentially expressed with higher levels of VdVg2 being observed. A bioassay based on assessing the transcript levels was established. Increases in VdVg1 and VdVg2 transcripts were induced experimentally in phoretic females when they were placed inside a cell containing an early metamorphosing last instar bee but not when exposed to the metamorphosing bee alone. The variable response of Vg expression to the food source as well as environmental cues within the capped cell demonstrates that perturbation of host-parasite interactions may provide avenues to disrupt the reproductive cycle of the varroa mites and prevent varroasis.
Collapse
|
23
|
Tan KW, Jobichen C, Ong TC, Gao YF, Tiong YS, Wong KN, Chew FT, Sivaraman J, Mok YK. Crystal structure of Der f 7, a dust mite allergen from Dermatophagoides farinae. PLoS One 2012; 7:e44850. [PMID: 22970319 PMCID: PMC3435378 DOI: 10.1371/journal.pone.0044850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Der f 7 is the group 7 allergen from the dust mite Dermatophagoides farinae, homologous to the major allergen Der p 7 from D. pteronyssinus. Monoclonal antibody that bind to residues Leu48 and Phe50 was found to inhibit IgE binding to residue Asp159, which is important for the cross-reactivity between Der f 7 and Der p 7. METHODOLOGY/PRINCIPAL FINDINGS Here, we report the crystal structure of Der f 7 that shows an elongated and curved molecule consisting of two anti-parallel β-sheets--one 4-stranded and the other 5-stranded--that wrap around a long C-terminal helix. The overall fold of Der f 7 is similar to Der p 7 but key difference was found in the β1-β2 loop region. In Der f 7, Leu48 and Phe50 are in close proximity to Asp159, explaining why monoclonal antibody binding to Leu48 and Phe50 can inhibit IgE binding to Asp159. Both Der f 7 and Der p 7 bind weakly to polymyxin B via a similar binding site that is formed by the N-terminal helix, the 4-stranded β-sheet and the C-terminal helix. The thermal stability of Der f 7 is significantly lower than that of Der p 7, and the stabilities of both allergens are highly depend on pH. CONCLUSION/SIGNIFICANCE Der f 7 is homologous to Der p 7 in terms of the amino acid sequence and overall 3D structure but with significant differences in the region proximal to the IgE epitope and in thermal stability. The crystal structure of Der f 7 provides a basis for studying the function and allergenicity of this group of allergens.
Collapse
Affiliation(s)
- Kang Wei Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Tan Ching Ong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yun Feng Gao
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuen Sung Tiong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kang Ning Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
24
|
Khalil SMS, Donohue KV, Thompson DM, Jeffers LA, Ananthapadmanaban U, Sonenshine DE, Mitchell RD, Roe RM. Full-length sequence, regulation and developmental studies of a second vitellogenin gene from the American dog tick, Dermacentor variabilis. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:400-408. [PMID: 21192946 DOI: 10.1016/j.jinsphys.2010.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
Vitellogenin (Vg) is the precursor of vitellin (Vn) which is the major yolk protein in eggs. In a previous report, we isolated and characterized the first Vg message from the American dog tick Dermacentor variabilis. In the current study, we describe a second Vg gene from the same tick. The Vg2 cDNA is 5956 nucleotides with a 5775 nt open reading frame coding for 1925 amino acids. The conceptual amino acid translation contains a 16-residues putative signal peptide, N-terminal lipid binding domain and C-terminal von Willebrand factor type D domain present in all known Vgs. Moreover, the amino acid sequence shows a typical GLCG domain and several RXXR cleavage sites present in most isolated Vgs. Tryptic digest-mass fingerprinting of Vg and Vn recognized 11 fragments that exist in the amino acid translation of DvVg2 cDNA. Injection of virgin females with 20 hydroxyecdysone induced DvVg2 expression, vitellogenesis and oviposition. Using RT-PCR, DvVg2 expression was detected only in tick females after mating and feeding to repletion. Northern blot analysis showed that DvVg2 is expressed in fat body and gut cells of vitellogenic females but not in the ovary. DvVg2 expression was not detected in adult fed or unfed males. The characteristics that distinguish Vg from other similar tick storage proteins like the carrier protein, CP (another hemelipoglycoprotein) are discussed.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cabrera AR, Donohue KV, Khalil SMS, Scholl E, Opperman C, Sonenshine DE, Roe RM. New approach for the study of mite reproduction: The first transcriptome analysis of a mite, Phytoseiulus persimilis (Acari: Phytoseiidae). JOURNAL OF INSECT PHYSIOLOGY 2011; 57:52-61. [PMID: 20888830 DOI: 10.1016/j.jinsphys.2010.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 05/29/2023]
Abstract
Many species of mites and ticks are of agricultural and medical importance. Much can be learned from the study of transcriptomes of acarines which can generate DNA-sequence information of potential target genes for the control of acarine pests. High throughput transcriptome sequencing can also yield sequences of genes critical during physiological processes poorly understood in acarines, i.e., the regulation of female reproduction in mites. The predatory mite, Phytoseiulus persimilis, was selected to conduct a transcriptome analysis using 454 pyrosequencing. The objective of this project was to obtain DNA-sequence information of expressed genes from P. persimilis with special interest in sequences corresponding to vitellogenin (Vg) and the vitellogenin receptor (VgR). These genes are critical to the understanding of vitellogenesis, and they will facilitate the study of the regulation of mite female reproduction. A total of 12,556 contiguous sequences (contigs) were assembled with an average size of 935bp. From these sequences, the putative translated peptides of 11 contigs were similar in amino acid sequences to other arthropod Vgs, while 6 were similar to VgRs. We selected some of these sequences to conduct stage-specific expression studies to further determine their function.
Collapse
Affiliation(s)
- Ana R Cabrera
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7647, United States
| | | | | | | | | | | | | |
Collapse
|