1
|
Powers SD, Grayson KL, Martinez E, Agosta SJ. Ontogenetic variation in metabolic rate-temperature relationships during larval development. J Exp Biol 2024; 227:jeb247912. [PMID: 38940758 DOI: 10.1242/jeb.247912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Predictive models of ectotherm responses to environmental change often rely on thermal performance data from the literature. For insects, the majority of these data focus on two traits, development rate and thermal tolerance limits. Data are also often limited to the adult stage. Consequently, predictions based on these data generally ignore other measures of thermal performance and do not account for the role of ontogenetic variation in thermal physiology across the complex insect life cycle. Theoretical syntheses for predicting metabolic rate also make similar assumptions despite the strong influence of body size as well as temperature on metabolic rate. The aim of this study was to understand the influence of ontogenetic variation on ectotherm physiology and its potential impact on predictive modeling. To do this, we examined metabolic rate-temperature (MR-T) relationships across the larval stage in a laboratory strain of the spongy moth (Lymantria dispar dispar). Routine metabolic rates (RMRs) of larvae were assayed at eight temperatures across the first five instars of the larval stage. After accounting for differences in body mass, larval instars showed significant variation in MR-T. Both the temperature sensitivity and allometry of RMR increased and peaked during the third instar, then declined in the fourth and fifth instar. Generally, these results show that insect thermal physiology does not remain static during larval ontogeny and suggest that ontogenetic variation should be an important consideration when modeling thermal performance.
Collapse
Affiliation(s)
- Sean D Powers
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA 2328, USA
| | | | - Eloy Martinez
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Salvatore J Agosta
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
Ge X, Newman JA, Griswold CK. Geographic variation in evolutionary rescue under climate change in a crop pest-predator system. Evol Appl 2024; 17:e13750. [PMID: 39040812 PMCID: PMC11261214 DOI: 10.1111/eva.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Species distribution models (SDMs) are often built upon the "niche conservatism" assumption, such that they ignore the possibility of "evolutionary rescue" and may underestimate species' future range limits under climate change. We select aphids and ladybirds as model species and develop an eco-evolutionary model to explore evolutionary rescue in a predator-prey system under climate change. We model the adaptive change of species' thermal performances, accounting for biotic interactions. Our study suggests that, without considering evolutionary adaptation, the warming climate will result in a reduction in aphid populations and the extinction of ladybirds in large parts of the United States. However, when incorporating evolutionary adaptation into the model, aphids can adapt to climate change, whereas ladybirds demonstrate geographic variation in their evolutionary rescue potential. Specifically, ladybirds in southern regions are more likely to be rescued than those in the north. In certain northern regions, ladybirds do not avoid extinction due to severe warming trends and seasonality of the climate. While higher warming trends do prompt stronger evolutionary changes in phenotype, they also lead to reduced aphid population abundance such that ecology constrains ladybird population growth. Higher seasonality induces an ecological effect by limiting the length of reproductive season, thereby reducing the capacity for evolutionary rescue. Together, these findings reveal the complex interplay between ecological and evolutionary dynamics in the context of evolutionary adaptation to climate change.
Collapse
Affiliation(s)
- Xuezhen Ge
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | | | | |
Collapse
|
3
|
Serediuk H, Jackson J, Evers SM, Paniw M. Comparative life-history responses of lacewings to changes in temperature. Ecol Evol 2024; 14:e70000. [PMID: 39026964 PMCID: PMC11257770 DOI: 10.1002/ece3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Insects play a crucial role in all ecosystems, and are increasingly exposed to higher in temperature extremes under climate change, which can have substantial effects on their abundances. However, the effects of temperature on changes in abundances or population fitness are filtered through differential responses of life-history components, such as survival, reproduction, and development, to their environment. Such differential responses, or trade-offs, have been widely studied in birds and mammals, but comparative studies on insects are largely lacking, limiting our understanding of key mechanisms that may buffer or exacerbate climate-change effects across insect species. Here, we performed a systematic literature review of the ecological studies of lacewings (Neuroptera), predatory insects that play a crucial role in ecosystem pest regulation, to investigate the impact of temperature on life cycle dynamics across species. We found quantitative information, linking stage-specific survival, development, and reproduction to temperature variation, for 62 species from 39 locations. We then performed a metanalysis calculating sensitives to temperature across life-history processes for all publications. We found that developmental times consistently decreased with temperature for all species. Survival and reproduction however showed a weaker response to temperature, and temperature sensitivities varied substantially among species. After controlling for the effect of temperature on life-history processes, the latter covaried consistently across two main axes of variation related to instar and pupae development, suggesting the presence of life-history trade-offs. Our work provides new information that can help generalize life-history responses of insects to temperature, which can then expand comparative demographic and climate-change research. We also discuss important remaining knowledge gaps, such as a better assessment of adult survival and diapause.
Collapse
Affiliation(s)
- Hanna Serediuk
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
- State Museum of Natural History NASULvivUkraine
| | - John Jackson
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Sanne Maria Evers
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Maria Paniw
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| |
Collapse
|
4
|
Lv W, Shu Y, Wang F. Effects of short-term high temperature at different life stages on reproductive fitness in Mythimna separata (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae128. [PMID: 38836579 DOI: 10.1093/jee/toae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Extreme heat events commonly occur under climate warming. All life stages of insects may experience the occurrence of extremely high temperatures. However, the effects of short-term extreme heat events on life-history traits remain unclear in most migratory pests. Here, we investigated the biological effects of short-term heat exposure (35 °C for 4 h) at different life stages on Mythimna separata Walker (Lepidoptera: Noctuidae), a typical migratory pest. We found that the reproductive sensitivity of pupae and adults was higher than that of 3rd-instar larvae. Increasing the frequency of heat exposure decreased the reproductive performance of M. separata at all life stages. Parental short-term heat exposures could cause transgenerational damage to offspring survival and reproductive fitness when the exposure frequency reached 3 times. Our results suggest that short-term exposure to extreme temperatures could impact reproductive fitness across different life stages in M. separata. This should be taken into consideration in the population prediction of migratory pests under climate change.
Collapse
Affiliation(s)
- Weixiang Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Ya Shu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Fang Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| |
Collapse
|
5
|
De Fabrizio V, Trotta V, Pariti L, Radice RP, Martelli G. Preliminary characterization of biomolecular processes related to plasticity in Acyrthosiphonpisum. Heliyon 2024; 10:e23650. [PMID: 38187294 PMCID: PMC10770479 DOI: 10.1016/j.heliyon.2023.e23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Global warming strongly impacts many organisms' development, distribution and population structure. This problem has attracted the attention of many scientists to understand and study its actual effects, especially on insects influenced by environmental temperatures. Aphids are a model for studies of the genetics and physiology of stress. Aphids are characterized by parthenogenetic reproduction, which limits the effects of recombination on evolutionary processes, and have shown resistance to various biotic and abiotic stresses. This study was based on the hypothesis that aphids have optimized, over time, genetic mechanisms capable to give them plasticity through genome modifications mediated by transposition. To understand and evaluate the effects of heat stress, the expression levels of transposases and methylases were analyzed in mothers and daughters. Our results show that after four days from the thermal shock, methylation decreases in both mothers and daughters, while transposition significantly increases in daughters, thus generating gene variability, essential for adaptation.
Collapse
Affiliation(s)
- Vincenzo De Fabrizio
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Vincenzo Trotta
- School of Agricultural Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Luigi Pariti
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Rosa Paola Radice
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
- Bioinnova srls, Via ponte nove luci, 22, 85100, Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
6
|
Chirgwin E, Yang Q, Umina PA, Thia JA, Gill A, Song W, Gu X, Ross PA, Wei SJ, Hoffmann AA. Barley Yellow Dwarf Virus Influences Its Vector's Endosymbionts but Not Its Thermotolerance. Microorganisms 2023; 12:10. [PMID: 38276179 PMCID: PMC10819152 DOI: 10.3390/microorganisms12010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The barley yellow dwarf virus (BYDV) of cereals is thought to substantially increase the high-temperature tolerance of its aphid vector, Rhopalosiphum padi, which may enhance its transmission efficiency. This is based on experiments with North American strains of BYDV and R. padi. Here, we independently test these by measuring the temperature tolerance, via Critical Thermal Maximum (CTmax) and knockdown time, of Australian R. padi infected with a local BYDV isolate. We further consider the interaction between BYDV transmission, the primary endosymbiont of R. padi (Buchnera aphidicola), and a transinfected secondary endosymbiont (Rickettsiella viridis) which reduces the thermotolerance of other aphid species. We failed to find an increase in tolerance to high temperatures in BYDV-infected aphids or an impact of Rickettsiella on thermotolerance. However, BYDV interacted with R. padi endosymbionts in unexpected ways, suppressing the density of Buchnera and Rickettsiella. BYDV density was also fourfold higher in Rickettsiella-infected aphids. Our findings indicate that BYDV does not necessarily increase the temperature tolerance of the aphid transmission vector to increase its transmission potential, at least for the genotype combinations tested here. The interactions between BYDV and Rickettsiella suggest new ways in which aphid endosymbionts may influence how BYDV spreads, which needs further testing in a field context.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Cesar Australia, 95 Albert Street, Brunswick, VIC 3056, Australia;
| | - Qiong Yang
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Paul A. Umina
- Cesar Australia, 95 Albert Street, Brunswick, VIC 3056, Australia;
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Joshua A. Thia
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Alex Gill
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.S.); (S.-J.W.)
| | - Xinyue Gu
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Perran A. Ross
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.S.); (S.-J.W.)
| | - Ary A. Hoffmann
- PEARG Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 2052, Australia; (J.A.T.); (A.G.); (X.G.); (P.A.R.); (A.A.H.)
| |
Collapse
|
7
|
Zhang A, Dou N, Qu Z, Guo Y, Zhou W, Wu D, Lin Z, Feng M, Cui H, Han L. Effects of the termination of LC 30 imidacloprid stress on the multigeneration adaptive strategies of Aphis glycines population. Front Physiol 2023; 14:1153249. [PMID: 37584015 PMCID: PMC10424448 DOI: 10.3389/fphys.2023.1153249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/26/2023] [Indexed: 08/17/2023] Open
Abstract
Aphis glycines Matsumura (Hemiptera: Aphididae) is a major soybean pest that often poses a serious threat to soybean production. Imidacloprid is one of the commonly used insecticides to control the soybean aphid. To investigate the effect of termination of imidacloprid stress on the adaptive strategies of soybean aphid populations, we studied the growth, development, and related metabolism changes when the stress was terminated after 24 generations of imidacloprid stress on A. glycines. The results show that the A. glycines population accelerated its recovery and expanded its population size across generations. The longevity of the adults of the recovering population in the F12, F18, and F24 generations, respectively, was 1.11, 1.15, and 1.11 times longer than the control, while the fecundity was 10.38%, 11.74%, and 11.61% higher than that of the control. The net reproductive rate (R 0) of the recovering population was always significantly higher than that of the control in the F1 to F24 generations. In addition, metabolisms related to the regulation of cell proliferation and oocyte meiosis were significantly upregulated in the recovering population. Even when the imidacloprid pressure disappeared, intergenerational stimuli still affected the adaptive strategies of soybean aphid populations. This effect was manifested as inhibiting the growth and development of the soybean aphid in the early generations and improving the fecundity of the soybean aphid in the later generations. Adaptive soybean aphid populations would surge in the absence of imidacloprid pressure. This study provides an important reference for exploring the adaptability of the A. glycines population under termination of stress from low lethal concentrations of imidacloprid across generations. It also provides important data for monitoring the population dynamics of A. glycines in the field and analyzing the degree of pharmacodynamic stress.
Collapse
Affiliation(s)
- Aonan Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Dou
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhongcheng Qu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar City, Heilongjiang, China
| | - Yongxia Guo
- National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs China and Heilongjiang Provincial Key Laboratory of Crop Pest Interaction Biology and Ecological Control, Daqing, China
| | - WenJing Zhou
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Dongxue Wu
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiying Lin
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Min Feng
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hengjia Cui
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lanlan Han
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Li MJ, Zhang B, Chen GH, Zhou SW, Liu JH, Lu M, Zhang JL, Yang SW, Zhang XM. Effects of short-term extreme temperature treatment on the development and reproductive capacity of Encarsia formosa. Front Physiol 2023; 14:1187743. [PMID: 37389122 PMCID: PMC10304823 DOI: 10.3389/fphys.2023.1187743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Encarsia formosa is a natural enemy of the invasive pest Bemisia tabaci and is known to be a dominant parasitic. The frequency and magnitude of climate extremes, particularly temperature extremes, have increased, which has put insect populations at risk. However, the effects of temperature extremes on E. formosa are not well understood. To examine the impact of short-term extreme temperature exposure on the development and reproduction of E. formosa, eggs, larvae, pupae, and adults were exposed to high/low temperature treatments (HLT25, HLT50, LLT25, and LLT50). Our findings indicate that the pupal stage of E. formosa exhibited the strongest tolerance to both heat and cold, while adults exhibited a weaker tolerance. The shortest egg-to-adult development period of 12.65 days was observed in E. formosa exposed to HLT50 treatment during the egg-larval stage. The parasitism peak of the adult stage was delayed by 1-6 days after exposure to extreme temperatures during the egg-larval stage. Conversely, the parasitism peak was advanced by 1-3 days after exposure to extreme temperatures during the pupal and adult stages. The eclosion rate, total parasitism, eclosion rate of the F1 generation, and adult longevity of the F1 generation were lower in the treatment groups than in the control groups. The F1 generation's development period was prolonged to 15.49 and 15.19 days after exposure to HLT25 and HLT50 treatments, respectively, during the egg-larval stage. The F1 generation's development period was shortened to 13.33 days after exposure to LLT50 treatment during the pupal stage. Male individuals appeared in the F1 generation after exposure to HLT50 treatment during the pupal stage, with females accounting for only 56.38%. Our results demonstrate that short-term exposure to extreme temperatures has detrimental effects on the growth and reproduction of E. formosa. In field biocontrol against E. formosa, the release of E. formosa should be avoided as much as possible when the ambient temperature is higher than 35°C or lower than 0°C. During extreme temperature conditions, timely supplementation and release of E. formosa population, along with ventilation and cooling in greenhouse facilities during summer, are necessary for better pest control efficacy.
Collapse
Affiliation(s)
- Ming-Jiang Li
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Yunnan Yuntianhua Co., Ltd., Kunming, Yunnan, China
| | - Bo Zhang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guo-Hua Chen
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shun-Wen Zhou
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ji-Huan Liu
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Mei Lu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jin-Long Zhang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shao-Wu Yang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy and Life Sciences, Kunming University, Kunming, China
| | - Xiao-Ming Zhang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Tougeron K, Iltis C, Rampnoux E, Goerlinger A, Dhondt L, Hance T. Still standing: The heat protection delivered by a facultative symbiont to its aphid host is resilient to repeated thermal stress. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100061. [PMID: 37304568 PMCID: PMC10250925 DOI: 10.1016/j.cris.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/05/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Insects have evolved diverse strategies to resist extreme high temperatures (EHT). The adaptive value of such strategies has to be evaluated when organisms experience multiple EHT events during their lifetime, as predicted in a changing climate. This is particularly the case for associations with facultative microbial partners involved in insect heat tolerance, the resilience of which to repeated heat stress has never been studied. We compared two artificial lines of the pea aphid (Acyrthosiphon pisum) differing by the absence or presence of the heat-protective facultative bacterium Serratia symbiotica. We exposed insect nymphs to a varying number of EHT events (between 0 and 3), and recorded fitness parameters. Except survival traits, fitness estimates were affected by the interaction between aphid infection status (absence/presence of S. symbiotica) and thermal treatment (number of heat shocks applied). Costs of bacterial infection were detected in the absence of thermal stress: symbiont-hosting aphids incurred longer development, decreased fecundity and body size. However, symbiotic infection turned neutral, and even beneficial for some traits (development and body size), as the number of heat shocks increased, and compared to the aposymbiotic strain. Conversely, symbiotic infection mediated aphid response to heat shock(s): fitness decreased only in the uninfected group. These findings suggest that (i) the facultative symbiont may alternatively act as a pathogen, commensal or mutualist depending on thermal environment, and (ii) the heat protection it delivered to its host persists under frequent EHT. We discuss eco-evolutionary implications and the role of potentially confounding factors (stage-specific effects, genetic polymorphism displayed by the obligate symbiont).
Collapse
Affiliation(s)
- Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
- Institut de Recherche en Biosciences, Université de Mons, Av. du Champ de Mars 6, 7000 Mons, Belgium
| | - Corentin Iltis
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Eliott Rampnoux
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Goerlinger
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Linda Dhondt
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Li YJ, Chen SY, Jørgensen LB, Overgaard J, Renault D, Colinet H, Ma CS. Interspecific differences in thermal tolerance landscape explain aphid community abundance under climate change. J Therm Biol 2023; 114:103583. [PMID: 37270894 DOI: 10.1016/j.jtherbio.2023.103583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 04/29/2023] [Indexed: 06/06/2023]
Abstract
A single critical thermal limit is often used to explain and infer the impact of climate change on geographic range and population abundance. However, it has limited application in describing the temporal dynamic and cumulative impacts of extreme temperatures. Here, we used a thermal tolerance landscape approach to address the impacts of extreme thermal events on the survival of co-existing aphid species (Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi). Specifically, we built the thermal death time (TDT) models based on detailed survival datasets of three aphid species with three ages across a broad range of stressful high (34-40 °C) and low (-3∼-11 °C) temperatures to compare the interspecific and developmental stage variations in thermal tolerance. Using these TDT parameters, we performed a thermal risk assessment by calculating the potential daily thermal injury accumulation associated with the regional temperature variations in three wheat-growing sites along a latitude gradient. Results showed that M. dirhodum was the most vulnerable to heat but more tolerant to low temperatures than R. padi and S. avenae. R. padi survived better at high temperatures than Sitobion avenae and M. dirhodum but was sensitive to cold. R. padi was estimated to accumulate higher cold injury than the other two species during winter, while M. dirhodum accrued more heat injury during summer. The warmer site had higher risks of heat injury and the cooler site had higher risks of cold injury along a latitude gradient. These results support recent field observations that the proportion of R. padi increases with the increased frequency of heat waves. We also found that young nymphs generally had a lower thermal tolerance than old nymphs or adults. Our results provide a useful dataset and method for modelling and predicting the consequence of climate change on the population dynamics and community structure of small insects.
Collapse
Affiliation(s)
- Yuan-Jie Li
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China; UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Si-Yang Chen
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Hervé Colinet
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Bai X, Wang XJ, Ma CS, Ma G. Heat-avoidance behavior associates with thermal sensitivity rather than tolerance in aphid assemblages. J Therm Biol 2023; 114:103550. [PMID: 37344023 DOI: 10.1016/j.jtherbio.2023.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/23/2023]
Abstract
How to predict animals' heat-avoidance behaviors is critical since behavior stands the first line for animals dealing with frequent heat events under ongoing climate warming. However, the discrepancy between the scarcity of research on heat-avoidance behaviors and the commonness of eco-physiological data for thermal tolerance and for thermal sensitivity such as the temperature-dependent survival time makes it difficult to link physiological thermal traits to heat-avoidance behavior. Aphids usually suck plant sap on a fixed site on the host plants at moderate temperatures, but they will leave and seek cooler feeding sites under stressful temperatures. Here we take the cereal aphid assemblages comprising different species with various development stages as a model system. We tested the hypotheses that heat tolerance (critical thermal maximum, CTmax) or heat sensitivity (temperature-dependent declining rate of survival time, similarly hereinafter) would associate with the temperature at which aphid activate heat-avoidance behavior. Specifically, we hypothesized the aphids with less heat tolerance or greater heat sensitivity would take a lower heat risk by leaving the host plant earlier. By mimicking the linear increase in ambient temperature during the daytime, we measured the CTmax and the heat-avoidance temperature (HAT, at which aphids leave the host plant to find cooler places) to understand their heat tolerance and heat-avoidance behavior. Then, we tested the survival time of aphids at different temperatures and calculated the slope of survival time declining with temperature to assess their heat sensitivity (HS). Finally, we examined the relationships between CTmax and HAT and between HS and HAT to understand if the heat-avoidance behavior associates with heat tolerance or with heat sensitivity. The results showed that HS and HAT had a strong correlation, with more heat sensitive individuals displayed lower HAT. By contrast, CTmax and HAT had a weak correlation. Our results thus provide evidence that heat sensitivity is a more reliable indicator than thermal tolerance linking with the heat-avoidance behavior in the aphid assemblages. Most existing studies use the indexes related to thermal tolerance to predict warming impacts. Our findings highlight the urgency to incorporate thermal sensitivity when predicting animal responses to climate change.
Collapse
Affiliation(s)
- Xue Bai
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Jing Wang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Wang F, Lv W. Low temperature triggers physiological and behavioral shifts in adult oriental armyworm, Mythimna separata. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:546-556. [PMID: 35022101 DOI: 10.1017/s0007485321001139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Migratory insects display diverse behavioral strategies in response to external environmental shifts, via energy allocation of migration-reproduction trade-offs. However, how migratory insects distribute energy between migration and reproduction as an adaptive strategy to confront temporary low temperatures remains unclear. Here, we used Mythimna separata, a migratory cereal crop pest, to explore the effects of low temperature on reproductive performance, behavior, and energy allocation. We found that the influence of low temperatures on reproduction was not absolutely negative, but instead depended on the intensity, duration, and age of exposure to low temperature. Exposure to 6°C for 24 h significantly accelerated the onset of oviposition and ovarian development, and increased the synchrony of egg-laying and lifetime fecundity in 1-day-old adults compared to the control, while female's flight capacity decreased significantly on the first and second day after moths were exposed to 6°C. Furthermore, the abdominal and total triglycerides levels of females decreased significantly from exposure to low temperature, but their thoracic triglyceride content was significantly higher than the control on the third and fourth day. These results indicated that low temperatures induced M. separata to reduce energy investment for the development of flight system. This resulted in the shifting of moths from being migrants to residents during the environmental sensitive period (first day post-emergence). This expands our understanding of the adaptive strategy employed by migratory insects to deal with low temperatures and aids in the management of this pest species in China.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Weixiang Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| |
Collapse
|
13
|
Nyamukondiwa C, Machekano H, Chidawanyika F, Mutamiswa R, Ma G, Ma CS. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100878. [PMID: 35093582 DOI: 10.1016/j.cois.2022.100878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Global pest invasions have significantly increased in recent years. These invasions together with climate warming directly impact agriculture. Tropical climates feature extreme weather events, including high temperatures and seasonal droughts. Thus, successful invasive pests in tropics have to adapt to these extreme climate features. The intrinsic factors relevant to tropical invasion of insects have been explored in many studies, but the knowledge is rather dispersed in contemporary literature. Here, we reviewed the potential biophysical characters of successful invasive pests' adaption to tropical environments including [1] inherent high basal stress tolerance and advanced life-history performances [2], phenotypic plasticity [3], rapid evolution to environmental stress, polyphagy, diverse reproductive strategies and high fecundity. We summarised how these traits and their interactive effects enhance pest invasions in the tropics. Comprehensive understanding of how these characters facilitate invasion improves models for predicting ecological consequences of climate change on invasive pest species for improved pest management.
Collapse
Affiliation(s)
- Casper Nyamukondiwa
- Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa.
| | - Honest Machekano
- Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Frank Chidawanyika
- International Centre of Insect Physiology and Ecology (ICIPE), P.O Box 30772-0 010 0, Nairobi, Kenya; Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Reyard Mutamiswa
- Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; Tugwi-Mukosi Multidisciplinary Research Institute, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China
| | - Chu-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
14
|
Ma G, Ma CS. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. CURRENT OPINION IN INSECT SCIENCE 2022; 49:15-21. [PMID: 34728406 DOI: 10.1016/j.cois.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Climate change facilitates biological invasions globally. Predicting potential distribution shifts of invasive crop pests under climate change is essential for global food security in the context of ongoing world population increase. However, existing predictions often omit the capacity of crop pests to mitigate the impacts of climate change by using microclimates, as well as through thermoregulation, life history variation and evolutionary responses. Microclimates provide refugia buffering climate extremes. Thermoregulation and life history variation can reduce the effects of diurnal and seasonal temperature variability. Evolutionary responses allow insects to adapt to long-term climate change. Neglecting these ecological processes may lead to overestimations in the negative impacts of climate change on invasive pests whereas in turn cause underestimations in their range expansions. To improve model predictions, we need to incorporate the fine-scale microclimates experienced by invasive crop pests and the mitigation responses of insects to climate change into species distribution models.
Collapse
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Cao JY, Xing K, Zhao F. Complex delayed and transgenerational effects driven by the interaction of heat and insecticide in the maternal generation of the wheat aphid, Sitobion avenae. PEST MANAGEMENT SCIENCE 2021; 77:4453-4461. [PMID: 34002463 DOI: 10.1002/ps.6480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experience of an earlier environment plays an important role in the induction of delayed and even intergenerational phenotypes of an organism. Evidence suggests that rapid adaptation to an environmental stressor can change the performance of organisms, and even enable them to deal with other stressors. The goal of this study was to determine the effects of adult imidacloprid exposure on life-history traits within and between generations of the cereal aphid, Sitobion avenae, under three developmental conditions: constant temperature, 22°C; a low-intensity thermal condition, 22 + 34°C for 2 h per day; and a high-intensity thermal condition, 22 + 38°C for 2 h per day. RESULTS Early thermal experience not only changed the tolerance of S. avenae to the insecticide, imidacloprid, but also caused adults to incur fitness costs: the higher the heat intensity, the higher the costs. Negative transgenerational impacts of combined heat and insecticide stressors were limited to the developmental stage, whereas positive stimulation of heat intensity was observed during the adult stage. Overall, nymphal thermal experience exacerbated the detrimental effects of adult insecticidal exposure on the intrinsic rate of population increase in the maternal generation, but stimulated a net reproductive rate in the succeeding offspring generation. CONCLUSION These findings underpin the importance of considering the experience of the early developmental environment, but also enhance our understanding of the transgenerational effects of combined thermal and insecticide stressors on the population fate of S. avenae. They also help to assess the efficacy of chemical control in a warming world. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Yu Cao
- Department of Life Science, Lvliang University, Lvliang, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Agroecosystem National Observation and Research Station, Taiyuan, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Agroecosystem National Observation and Research Station, Taiyuan, China
| |
Collapse
|
16
|
Xing K, Sun D, Zhao F. Within- and Trans-Generational Life History Responses to Diurnal Temperature Amplitudes of the Pupal Stage in the Diamondback Moth. ENVIRONMENTAL ENTOMOLOGY 2021; 50:888-897. [PMID: 33974683 DOI: 10.1093/ee/nvab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Diurnal temperature fluctuations in nature can have a significant effect on many ectodermic traits. However, studies on the effects of diurnal temperature fluctuations on organisms, especially the effects on specific life stages, are still limited. We examined the immediate effects of the same average temperature (25°C) and different temperature amplitudes (±4, ±6, ±8, ±10, ±12°C) on the development and survival of Plutella xylostella (Lepidoptera: Plutellidae). We also assessed carry-over effects on adult longevity, reproduction, development, and survival of offspring across generations. The effect of moderate temperature amplitudes was similar to that of constant temperature. Wide temperature amplitudes inhibited the development of pupae, reduced total reproduction, lowered intrinsic rates of population growth, and slowed the development and survival of eggs on the first day, but the proportion of females ovipositing on the first three days increased. Insects coped with the adverse effects of wide temperature amplitudes by laying eggs as soon as possible. Our results confirmed that a logistic model based on daily average temperature cannot predict development rates under wide temperature amplitudes. These findings highlight the effect of environmental temperature fluctuations at the pupal stage on the development and oviposition patterns of P. xylostella and should be fully considered when predicting field occurrence.
Collapse
Affiliation(s)
- Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang 031700, China
| | - Dongbao Sun
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang 031700, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang 031700, China
| |
Collapse
|
17
|
Durak R, Dampc J, Kula-Maximenko M, Mołoń M, Durak T. Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase. Antioxidants (Basel) 2021; 10:1181. [PMID: 34439429 PMCID: PMC8388978 DOI: 10.3390/antiox10081181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023] Open
Abstract
Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids' development, and a negative correlation between the activity of the antioxidant enzymes and aphids' development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.
Collapse
Affiliation(s)
- Roma Durak
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Jan Dampc
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Mateusz Mołoń
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Tomasz Durak
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| |
Collapse
|
18
|
Su Y, Li X, Zhang W, Zhang B, Ma CS. Dynamics of heat shock protein responses to thermal stress changes after metamorphosis in a lepidopteran insect. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21791. [PMID: 33860954 DOI: 10.1002/arch.21791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
In the last decade, unexpected high temperatures have been frequent in spring and early summer. Numerous studies have shown that such thermal stress has substantial effects on life-history traits that influence fitness of insects, but few have examined expression dynamics of heat shock proteins (Hsps) across developmental stages, especially as regards potential carry-over effects at the transcriptional level across metamorphosis. We exposed pupae of the oriental fruit moth ("OFM," Grapholita molesta Busck) to mild heat stress (38°C, 6 h) and then quantified expression patterns of six Hsps (Hsp90, 70, 60, 40, 21, and 11) from pupal through adult stages. Almost all Hsps showed a higher expression immediately after pupae were heat-stressed, but later dropped to normal levels after metamorphosis. Although upregulation of Hsps is transient and the effects carry over longer to early adult stage, upregulation will nonetheless have positive effects on adult fitness. The fitness of some insects may benefit from higher expression of chaperon genes after mild stress, in the form of higher fecundity and longer lifespan, as a carry-over effect. These results suggest that mild thermal stress can change genetic expression that later boosts adult fitness through a cascade effect.
Collapse
Affiliation(s)
- Yaozong Su
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chun-Sen Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
19
|
Zhu L, Hoffmann AA, Li S, Ma C. Extreme climate shifts pest dominance hierarchy through thermal evolution and transgenerational plasticity. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liang Zhu
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing PR China
| | - Ary A. Hoffmann
- Pest and Disease Vector Group School of BioSiences Bio21 Institutethe University of Melbourne Melbourne Vic. Australia
| | - Shi‐Min Li
- Wucheng observation and Experiment Station of National Agricultural Science and Plant Protection Luohe Academy of Agricultural Sciences Luohe PR China
| | - Chun‐Sen Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing PR China
| |
Collapse
|
20
|
Male fertility thermal limits predict vulnerability to climate warming. Nat Commun 2021; 12:2214. [PMID: 33850157 PMCID: PMC8044094 DOI: 10.1038/s41467-021-22546-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Forecasting which species/ecosystems are most vulnerable to climate warming is essential to guide conservation strategies to minimize extinction. Tropical/mid-latitude species are predicted to be most at risk as they live close to their upper critical thermal limits (CTLs). However, these assessments assume that upper CTL estimates, such as CTmax, are accurate predictors of vulnerability and ignore the potential for evolution to ameliorate temperature increases. Here, we use experimental evolution to assess extinction risk and adaptation in tropical and widespread Drosophila species. We find tropical species succumb to extinction before widespread species. Male fertility thermal limits, which are much lower than CTmax, are better predictors of species' current distributions and extinction in the laboratory. We find little evidence of adaptive responses to warming in any species. These results suggest that species are living closer to their upper thermal limits than currently presumed and evolution/plasticity are unlikely to rescue populations from extinction.
Collapse
|
21
|
Ma G, Hoffmann AA, Ma CS. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid? J Therm Biol 2021; 98:102936. [PMID: 34016358 DOI: 10.1016/j.jtherbio.2021.102936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Although climate warming can increase both mean temperature and its variability, it is often the effects of climate warming on short periods of extreme temperatures that are expected to have particularly large physiological and ecological consequences. Understanding the vulnerability of organisms at various latitudes to climate extremes is thus critical for understanding warming effects on regional biodiversity conservation and ecosystem management. While previous studies have shown that thermal responses depend on temperature regimes that organisms have previously experienced, this issue has not been considered much when comparing the effects of temperature extremes at different latitudes. To fill this gap, here we manipulated different combinations of amplitude and duration of daily high temperature extremes to simulate conditions at different latitudes. We tested the effects of those regimes on life-history traits and fitness of a globally-distributed aphid species, Rhopalosiphum padi. We compared our results with previous studies to better understand the extent to which these regimes affect conclusions based on comparisons under different mean temperatures. As a consequence of asymmetrical thermal performance curves, we hypothesized that the temperature regimes with higher daily maximum temperatures at higher latitudes would cause strong negative effects. Our results showed that these regimes with thermal extremes caused substantial decreases in life-history traits and fitness relative to the predictions from different mean temperatures. Specifically, the regime with higher daily maximum temperature reflecting a higher mid-latitude location had larger impacts on development, reproduction and population fitness than the regime representing a lower mid-latitude location. These findings have implications for understanding the vulnerability of organisms across latitudes to increasingly frequent extreme heat events under ongoing climate warming.
Collapse
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia.
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
22
|
Xing K, Sun D, Zhang J, Zhao F. Wide Diurnal Temperature Amplitude and High Population Density Can Positively Affect the Life History of Sitobion avenae (Hemiptera: Aphididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6166182. [PMID: 33693804 PMCID: PMC7947990 DOI: 10.1093/jisesa/ieab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 05/26/2023]
Abstract
Diurnal temperature amplitude is known to have a large influence on insect life history. Population density affects intraspecific competition and many other aspects of insect life history. However, there is limited information on the interactive effects of these factors on insects. Here, we tested the interactive effects of three diurnal temperature amplitudes (22 ± 0°C, 22 ± 6°C, and 22 ± 12°C) and three population densities on the development, survival, longevity, and fecundity of the English grain aphid Sitobion avenae (Fabricius) (Homoptera: Aphididae). At a constant temperature, increasing population density reduced the growth and survival of early-instar nymphs, increased longevity, and reduced fecundity. At a low population density, increasing temperature amplitude inhibited nymph development. However, even at a high temperature amplitude, nymph survival rate was higher than expected, and reproduction was possible because the recovery of the lower night-temperatures eliminated thermal stress. Increasing the population density reduced, and even reversed, the negative effects of the wide temperature amplitude. This may reflect synergistic interactions between population density and wide temperature amplitude as these stressors each incur energetic costs. These findings emphasize the importance of temperature amplitude and population density for improving prediction accuracy and damage assessment during pest control modeling.
Collapse
Affiliation(s)
- Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Chin
- Shanxi Shouyang Dryland Agroecosystem, National Observation and Research Station, Shanxi, China
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - Dongbao Sun
- Shanxi Shouyang Dryland Agroecosystem, National Observation and Research Station, Shanxi, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Chin
- Shanxi Shouyang Dryland Agroecosystem, National Observation and Research Station, Shanxi, China
| |
Collapse
|
23
|
Ma CS, Ma G, Pincebourde S. Survive a Warming Climate: Insect Responses to Extreme High Temperatures. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:163-184. [PMID: 32870704 DOI: 10.1146/annurev-ento-041520-074454] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Global change includes a substantial increase in the frequency and intensity of extreme high temperatures (EHTs), which influence insects at almost all levels. The number of studies showing the ecological importance of EHTs has risen in recent years, but the knowledge is rather dispersed in the contemporary literature. In this article, we review the biological and ecological effects of EHTs actually experienced in the field, i.e., when coupled to fluctuating thermal regimes. First, we characterize EHTs in the field. Then, we summarize the impacts of EHTs on insects at various levels and the processes allowing insects to buffer EHTs. Finally, we argue that the mechanisms leading to positive or negative impacts of EHTs on insects can only be resolved from integrative approaches considering natural thermal regimes. Thermal extremes, perhaps more than the gradual increase in mean temperature, drive insect responses to climate change, with crucial impacts on pest management and biodiversity conservation.
Collapse
Affiliation(s)
- Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France;
| |
Collapse
|
24
|
English S, Barreaux AMG. The evolution of sensitive periods in development: insights from insects. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Kingsolver JG, Buckley LB. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change. CURRENT OPINION IN INSECT SCIENCE 2020; 41:17-24. [PMID: 32599547 DOI: 10.1016/j.cois.2020.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Insects have distinct life stages that can differ in their responses to environmental factors. We discuss empirical evidence and theoretical models for ontogenetic variation in thermal sensitivity and performance curves (TPCs). Data on lower thermal limits for development (T0) demonstrate variation between stages within a species that is of comparable magnitude to variation among species; we illustrate the consequences of such ontogenetic variation for developmental responses to changing temperature. Ontogenetic variation in optimal temperatures and upper thermal limits has been reported in some systems, but current data are too limited to identify general patterns. The shapes of TPCs for different fitness components such as juvenile survival, adult fecundity, and generation time differ in characteristic ways, with important consequences for understanding fitness in varying thermal environments. We highlight a theoretical framework for incorporating ontogenetic variation into process-based models of population responses to seasonal variation and climate change.
Collapse
Affiliation(s)
- Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
26
|
Breitenbach AT, Carter AW, Paitz RT, Bowden RM. Using naturalistic incubation temperatures to demonstrate how variation in the timing and continuity of heat wave exposure influences phenotype. Proc Biol Sci 2020; 287:20200992. [PMID: 32752987 DOI: 10.1098/rspb.2020.0992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most organisms are exposed to bouts of warm temperatures during development, yet we know little about how variation in the timing and continuity of heat exposure influences biological processes. If heat waves increase in frequency and duration as predicted, it is necessary to understand how these bouts could affect thermally sensitive species, including reptiles with temperature-dependent sex determination (TSD). In a multi-year study using fluctuating temperatures, we exposed Trachemys scripta embryos to cooler, male-producing temperatures interspersed with warmer, female-producing temperatures (heat waves) that varied in either timing during development or continuity and then analysed resulting sex ratios. We also quantified the expression of genes involved in testis differentiation (Dmrt1) and ovary differentiation (Cyp19A1) to determine how heat wave continuity affects the expression of genes involved in sexual differentiation. Heat waves applied during the middle of development produced significantly more females compared to heat waves that occurred just 7 days before or after this window, and even short gaps in the continuity of a heat wave decreased the production of females. Continuous heat exposure resulted in increased Cyp19A1 expression while discontinuous heat exposure failed to increase expression in either gene over a similar time course. We report that even small differences in the timing and continuity of heat waves can result in drastically different phenotypic outcomes. This strong effect of temperature occurred despite the fact that embryos were exposed to the same number of warm days during a short period of time, which highlights the need to study temperature effects under more ecologically relevant conditions where temperatures may be elevated for only a few days at a time. In the face of a changing climate, the finding that subtle shifts in temperature exposure result in substantial effects on embryonic development becomes even more critical.
Collapse
Affiliation(s)
| | - Amanda W Carter
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
27
|
Xue Q, Ma CS. Aged virgin adults respond to extreme heat events with phenotypic plasticity in an invasive species, Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104016. [PMID: 31930976 DOI: 10.1016/j.jinsphys.2020.104016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Climate warming has increased the frequency of extreme heat events. Alien species usually invade new areas with a low-density population and often have limited mating opportunities due to the unsynchronized emergence of adults. Early-emerging virgin adults often have to wait to mate with later-emerging partners at the cost of aging, which reduces thermal tolerance. To understand the adaptive strategies of virgin males/females versus those of mated males/females in response to heat stress during aging, we conducted a fully factorial experiment to test the basal and plastic heat tolerance (CTmax, critical thermal maximum) of males and females with different mating statuses (virgin and mated) at different ages (5, 10, and 15 days after eclosion) after different acclimation regimes (null, rapid and developmental heat acclimation) in a well-known invasive species, Drosophila suzukii. We found that mating could change the heat tolerance of adults during aging. Mated females had higher basal heat tolerance than virgin females, while mated males had lower tolerance than virgin males. Mating could generally decrease the acclimation capacity (i.e., plasticity of heat tolerance) during aging. Aged virgin adults had a much higher acclimation capacity than aged mated adults. Our findings suggest that phenotypic plasticity of heat tolerance may be a main strategy used by virgin adults to cope with heat events. The phenotypic plasticity of thermal tolerance could increase the invasion success of alien species in new areas by allowing them to rapid respond to local temperature changes.
Collapse
Affiliation(s)
- Qi Xue
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
28
|
Zhao Y, Li Y, He M, Yun Y, Peng Y. Antioxidant responses of the pest natural enemy Hylyphantes graminicola (Araneae: Linyphiidae) exposed to short-term heat stress. J Therm Biol 2020; 87:102477. [DOI: 10.1016/j.jtherbio.2019.102477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 11/29/2022]
|
29
|
Youngblood JP, da Silva CRB, Angilletta MJ, VandenBrooks JM. Oxygen Limitation Does Not Drive the Decreasing Heat Tolerance of Grasshoppers during Development. Physiol Biochem Zool 2019; 92:567-572. [PMID: 31567049 DOI: 10.1086/705439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Thermal physiology changes as organisms grow and develop, but we do not understand what causes these ontogenetic shifts. According to the theory of oxygen- and capacity-limited thermal tolerance, an organism's heat tolerance should change throughout ontogeny as its ability to deliver oxygen varies. As insects grow during an instar, their metabolic demand increases without a proportional increase in the size of tracheae that supply oxygen to the tissues. If oxygen delivery limits heat tolerance, the mismatch between supply and demand should make insects more susceptible to heat and hypoxia as they progress through an instar. We tested this hypothesis by measuring the heat tolerance of grasshoppers (Schistocerca americana) on the second and seventh days of the sixth instar, in either a normoxic or a hypoxic atmosphere (21% or 10% O2, respectively). As expected, heat tolerance decreased as grasshoppers grew larger. Yet contrary to expectation, hypoxia had no effect on heat tolerance across all stages and sizes. Although heat tolerance declines as grasshoppers grow, this pattern must stem from a mechanism other than oxygen limitation.
Collapse
|
30
|
Wide diurnal temperature variation inhibits larval development and adult reproduction in the diamondback moth. J Therm Biol 2019; 84:8-15. [DOI: 10.1016/j.jtherbio.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/24/2022]
|
31
|
Zhao F, Xing K, Hoffmann AA, Ma CS. The importance of timing of heat events for predicting the dynamics of aphid pest populations. PEST MANAGEMENT SCIENCE 2019; 75:1866-1874. [PMID: 30663223 DOI: 10.1002/ps.5344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Heatwaves are increasing in frequency and there is growing interest in their impact on pest organisms. Previous work indicates that effects depend on the timing of the stress event, whose impact needs to be characterized across the full set of developmental stages and exposure periods of an organism. Here, we undertake such a detailed assessment using heat stress (20-35 °C diurnal cycle) across the nymph and adult stages of the English grain aphid, Sitobion avenae (Fabricius). RESULTS Stress-related mortality increased with stress duration at all stages; effects were less severe at the late nymphal stage. Effects on longevity adults after stress showed a complex pattern with nymphal heat stress, increasing with stress duration at the late nymphal stage, but decreasing with duration at the early nymphal stage. Longevity was also reduced by adult stress although to a lesser extent, and patterns were not connected to duration. Post-stress productivity decreased following adult and nymphal stress and the decrease tended to be correlated with stress duration. The rate of offspring production was more affected by adult stress than nymphal stress. Productivity and longevity effects, when combined, showed that the largest effect of heat stress occurred at the early nymphal stage. CONCLUSION These findings highlight the complex ways in which heat stress at a particular life stage influences later fitness and they also emphasize the importance of considering multiple fitness components when assessing stress effects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Abstract
The thermal limits of terrestrial ectotherms vary more locally than globally. Local microclimatic variations can explain this pattern, but the underlying mechanisms remain unclear. We show that cryptic microclimatic variations at the scale of a single leaf determine the thermal limit in a community of arthropod herbivores living on the same host plant. Herbivores triggering an increase in transpiration, thereby cooling the leaf, had a lower thermal limit than those decreasing leaf transpiration and causing the leaf to warm up. These subtle mechanisms have major consequences for the safety margin of these herbivores during thermal extremes. Our findings suggest that temperate species may be more vulnerable to heat waves than previously thought. The thermal limit of ectotherms provides an estimate of vulnerability to climate change. It differs between contrasting microhabitats, consistent with thermal ecology predictions that a species’ temperature sensitivity matches the microclimate it experiences. However, observed thermal limits may differ between ectotherms from the same environment, challenging this theory. We resolved this apparent paradox by showing that ectotherm activity generates microclimatic deviations large enough to account for differences in thermal limits between species from the same microhabitat. We studied upper lethal temperature, effect of feeding mode on plant gas exchange, and temperature of attacked leaves in a community of six arthropod species feeding on apple leaves. Thermal limits differed by up to 8 °C among the species. Species that caused an increase in leaf transpiration (+182%), thus cooling the leaf, had a lower thermal limit than those that decreased leaf transpiration (−75%), causing the leaf to warm up. Therefore, cryptic microclimatic variations at the scale of a single leaf determine the thermal limit in this community of herbivores. We investigated the consequences of these changes in plant transpiration induced by plant–insect feedbacks for species vulnerability to thermal extremes. Warming tolerance was similar between species, at ±2 °C, providing little margin for resisting increasingly frequent and intense heat waves. The thermal safety margin (the difference between thermal limit and temperature) was greatly overestimated when air temperature or intact leaf temperature was erroneously used. We conclude that feedback processes define the vulnerability of species in the phyllosphere, and beyond, to thermal extremes.
Collapse
|
33
|
Zhu L, Wang L, Ma CS. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:48-56. [PMID: 30529236 DOI: 10.1016/j.jinsphys.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Climate warming is characterized by increase in extreme heat events (EHEs). EHEs and mild temperature periods alternate with each other and form complex climate scenarios. Among these scenarios, low-frequency and short-duration extreme heat events during long mild periods (sporadic short EHEs) and low-frequency and short-duration mild periods during long extreme heat events (sporadic short mild periods) commonly occur in nature. The biological effects of these two types of temperature events have not been thoroughly elucidated to date. To clarify the biological effects of these temperature events on organisms, we selected the English grain aphid, a globally important cereal pest, as our model system. We exposed aphids to simulated 24-h diurnal fluctuating temperatures, inserted these events during the wheat growing season and then investigated development, adult longevity, fecundity, survival, and demographic parameters. We found that sporadic short mild periods during a long EHE could improve their life history traits. Increasing the duration of mild periods from 1 day to 2 days did not significantly change their demographic performance. Sporadic short EHEs during a long mild period did not significantly affect vital rates, while increasing the duration of EHEs from 1 day to 2 days worsened the aphids' performance. We found that short mild episodes in the hot season may benefit small insects to buffer long duration heatwaves. We discussed how sporadic short mild periods during a long EHE supplied aphids a chance to recover from heat stress. Thus, we suggest that sporadic temperature events should be considered in population prediction of small insects under climate change and should be integrated into pest management.
Collapse
Affiliation(s)
- Liang Zhu
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, CN-100193 Beijing, PR China; Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan Middle Road, Haidian District, CN-100097 Beijing, PR China
| | - Lin Wang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, CN-100193 Beijing, PR China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, CN-100193 Beijing, PR China.
| |
Collapse
|
34
|
Cao JY, Xing K, Liu HP, Zhao F. Effects of developmental acclimation on fitness costs differ between two aphid species. J Therm Biol 2018; 78:58-64. [DOI: 10.1016/j.jtherbio.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/31/2018] [Accepted: 09/08/2018] [Indexed: 01/24/2023]
|
35
|
Effect of short-term high-temperature exposure on the life history parameters of Ophraella communa. Sci Rep 2018; 8:13969. [PMID: 30228344 PMCID: PMC6143555 DOI: 10.1038/s41598-018-32262-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
Extreme heat in summer is frequent in parts of China, and this likely affects the fitness of the beetle Ophraella communa, a biological control agent of invasive common ragweed. Here, we assessed the life history parameters of O. communa when its different developmental stages were exposed to high temperatures (40, 42 and 44 °C, with 28 °C as a control) for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage). The larval stage was the most sensitive stage, with the lowest survival rate under heat stress. Egg and pupal survival significantly decreased only at 44 °C, and these two stages showed relative heat tolerance, while the adult stage was the most tolerant stage, with the highest survival rates. High temperatures showed positive effects on the female proportion, but there was no stage-specific response. Treated adults showed the highest fecundity under heat stress and a similar adult lifespan to that in the control. High temperatures decreased the F1 egg hatching rate, but the differences among stages were not significant. Negative carry-over effects of heat stress on subsequent stages and progenies’ survival were also observed. Overall, heat effects depend on the temperature and life stage, and the adult stage was the most tolerant stage. Ophraella communa possesses a degree of heat tolerance that allows it to survive on hot days in summer.
Collapse
|
36
|
Chen H, Solangi GS, Guo J, Wan F, Zhou Z. Antioxidant Responses of Ragweed Leaf Beetle Ophraella communa (Coleoptera: Chrysomelidae) Exposed to Thermal Stress. Front Physiol 2018; 9:808. [PMID: 30034344 PMCID: PMC6043862 DOI: 10.3389/fphys.2018.00808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/08/2018] [Indexed: 01/10/2023] Open
Abstract
Ophraellacommuna LeSage is an effective biological control agent of common ragweed, Ambrosia artemisiifolia L., which competes with crops and causes allergic rhinitis and asthma. However, thermal stress negatively affects the developmental fitness and body size of this beetle. High temperatures cause a variety of physiological stress responses in insects, which can cause oxidative damage. We investigated the total protein content and activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidases (PODs) in O. communa adults when its different developmental stages were exposed to high temperatures (40, 42, and 44°C) for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage), and a whole generation to high temperatures (40, 42, and 44°C) for 3 h each day. A control group was reared at 28 ± 2°C. Under short-term daily phasic high-temperature stress, total protein contents were close to the control as a whole; overall, SOD activities increased significantly, CAT activities were closer to or even higher than the control, POD activities increased at 40°C, decreased at 42 or 44°C; stage-specific response was also observed. Under long-term daily phasic high-temperature stress, total protein content increased significantly at 44°C, SOD activities increased at higher temperatures, decreased at 44°C; CAT activities of females increased at ≤42°C, and decreased at 44°C, CAT activities of males decreased significantly; POD activities of females increased at 40°C, decreased at ≥42°C, POD activities of males decreased at 44°C; and antioxidant enzymes activities in females were significantly higher than those in males. Antioxidative enzymes protect O. communa from oxidative damage caused by thermal stress.
Collapse
Affiliation(s)
- Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | | | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. J Therm Biol 2018; 74:275-280. [DOI: 10.1016/j.jtherbio.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
38
|
Trotta V, Forlano P, Falabella P, Battaglia D, Fanti P. The aphid Acyrthosiphon pisum exhibits a greater survival after a heat shock when parasitized by the wasp Aphidius ervi. J Therm Biol 2018; 72:53-58. [DOI: 10.1016/j.jtherbio.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/17/2022]
|
39
|
Ma CS, Wang L, Zhang W, Rudolf VHW. Resolving biological impacts of multiple heat waves: interaction of hot and recovery days. OIKOS 2018. [DOI: 10.1111/oik.04699] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences; No 2 Yuanmingyuan West Road Haidian District CN-100193 Beijing PR China
| | - Lin Wang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences; No 2 Yuanmingyuan West Road Haidian District CN-100193 Beijing PR China
| | - Wei Zhang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences; No 2 Yuanmingyuan West Road Haidian District CN-100193 Beijing PR China
| | | |
Collapse
|
40
|
Zheng J, Cheng X, Hoffmann AA, Zhang B, Ma CS. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress? JOURNAL OF INSECT PHYSIOLOGY 2017; 102:36-41. [PMID: 28899752 DOI: 10.1016/j.jinsphys.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 05/28/2023]
Abstract
Thermal stress at one life stage can affect fitness at a later stage in ectotherms with complex life cycles. Most relevant studies have focused on extreme stress levels, but here we also show substantial fitness effects in a moth when pupae are exposed to a relatively mild and sublethal heat stress. We consider the impact of a 35°C heat stress of 2h in three geographically separate populations of the oriental fruit moth (OFM, Grapholita molesta) from northern, middle and southern China. Heat stress negatively affected fecundity but increased adult heat resistance and adult longevity. Fitness effects were mostly consistent across populations but there were also some population differences. In the Shenyang population from northern China, there was a hormetic effect of heat on female longevity not evident in the other populations. Adults from all populations had higher LT50s due to heat stress after pupal exposure to the sublethal stress. These results highlight that the pupal stage is a particularly sensitive window for development and they have implications for seasonal adaptation in uncertain environments as well as changes in pest dynamics under climate warming.
Collapse
Affiliation(s)
- Jincheng Zheng
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiongbin Cheng
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Bo Zhang
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chun-Sen Ma
- Group of Climate Change Biology, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|