1
|
Mao B, Wang YY, Li SY, Fu Y, Xiao YL, Wang YF. A potential role for the interaction of Wolbachia surface proteins with the Drosophila microtubulin in maintenance of endosymbiosis and affecting spermiogenesis. JOURNAL OF INSECT PHYSIOLOGY 2024:104743. [PMID: 39709001 DOI: 10.1016/j.jinsphys.2024.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated. We report here that Wolbachia infection induced a significant upregulation of betaTub85D in the testis of Drosophila melanogaster. Knockdown of betaTub85D in fly testes resulted in significant decrease in the copy number of Wolbachia surface protein gene (wsp), indicating a notable reduction of Wolbachia density. Pull-down analyses revealed that WSP interacted with the betaTub85D of D. melanogaster. Wolbachia infection altered the interactome between betaTub85D and other proteins in the testes, and may thus change the protein synthesis and metabolic pathways. Wolbachia infection induced not only an interaction of betaTub85D with Mst77F but also increase in phosphorylated Mst77F. These results suggest that Wolbachia WSP protein might play important roles in anchoring the endosymbiont to the host's cytoskeleton and consequently interfere the interactions among key proteins involved in spermatogenesis in the insect host testes, resulting in modified sperm.
Collapse
Affiliation(s)
- Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China; College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Ying-Ying Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Si-Ying Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Yue Fu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Yun-Li Xiao
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Horn CJ, Yuli S, Berry JA, Luong LT. A male-killing Spiroplasma endosymbiont has age-mediated impacts on Drosophila endurance and sleep. JOURNAL OF INSECT PHYSIOLOGY 2024; 161:104723. [PMID: 39551154 DOI: 10.1016/j.jinsphys.2024.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Endosymbiotic bacteria have a wide range of impacts on host physiology, behavior, metabolism, endurance, and mobility. Recent work found some endosymbionts also impact host sleep duration and quality. These effects may increase as flies age and endosymbiont titers increase. We tested the hypothesis that Spiroplasma poulsonni MSRO negatively impacts sleep in Drosophila melanogaster, and this in turn impairs fly endurance. In geotaxis climbing assays (a proxy for endurance), we found that MSRO impacted climbing endurance but in an age-dependent manner. Among younger flies, MSRO+ flies slept significantly less during dark periods (measured by a Drosophila Activity Monitoring System) compared to uninfected flies, but older MSRO+ flies did not show significant differences in amount of sleep compared to uninfected flies in the same cohort. While MSRO status impacted both sleep and endurance of hosts, endosymbiont-mediated sleep deprivation did not directly explain decreases in fly endurance. We discuss these results in the context of endosymbiont comparative biology.
Collapse
Affiliation(s)
- Collin J Horn
- Dalhousie University, Department of Psychology and Neuroscience, Canada; University of Alberta, Department of Biological Sciences, Canada.
| | - Sissi Yuli
- University of Alberta, Department of Biological Sciences, Canada
| | - Jacob A Berry
- University of Alberta, Department of Biological Sciences, Canada
| | - Lien T Luong
- University of Alberta, Department of Biological Sciences, Canada
| |
Collapse
|
3
|
Adams GJ, O'Brien PA. The unified theory of sleep: Eukaryotes endosymbiotic relationship with mitochondria and REM the push-back response for awakening. Neurobiol Sleep Circadian Rhythms 2023; 15:100100. [PMID: 37484687 PMCID: PMC10362302 DOI: 10.1016/j.nbscr.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The Unified Theory suggests that sleep is a process that developed in eukaryotic animals from a relationship with an endosymbiotic bacterium. Over evolutionary time the bacterium evolved into the modern mitochondrion that continues to exert an effect on sleep patterns, e.g. the bacterium Wolbachia establishes an endosymbiotic relationship with Drosophila and many other species of insects and is able to change the host's behaviour by making it sleep. The hypothesis is supported by other host-parasite relationships, e.g., Trypanosoma brucei which causes day-time sleepiness and night-time insomnia in humans and cattle. For eukaryotes such as Monocercomonoids that don't contain mitochondria we find no evidence of them sleeping. Mitochondria produce the neurotransmitter gamma aminobutyric acid (GABA), and ornithine a precursor of the neurotransmitter GABA, together with substances such as 3,4dihydroxy phenylalanine (DOPA) a precursor for the neurotransmitter dopamine: These substances have been shown to affect the sleep/wake cycles in animals such as Drosophilia and Hydra. Eukaryote animals have traded the very positive side of having mitochondria providing aerobic respiration for them with the negative side of having to sleep. NREM (Quiet sleep) is the process endosymbionts have imposed upon their host eukaryotes and REM (Active sleep) is the push-back adaptation of eukaryotes with brains, returning to wakefulness.
Collapse
Affiliation(s)
| | - Philip A. O'Brien
- College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
| |
Collapse
|
4
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
5
|
Wang Z, Chang Z, Liu Z, Zhang S. Influences of Microbial Symbionts on Chemoreception of Their Insect Hosts. INSECTS 2023; 14:638. [PMID: 37504644 PMCID: PMC10380252 DOI: 10.3390/insects14070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Chemical communication is widespread among insects and exploited to adjust their behavior, such as food and habitat seeking and preferences, recruitment, defense, and mate attraction. Recently, many studies have revealed that microbial symbionts could regulate host chemical communication by affecting the synthesis and perception of insect semiochemicals. In this paper, we review recent studies of the influence of microbial symbionts on insect chemoreception. Microbial symbionts may influence insect sensitivity to semiochemicals by regulating the synthesis of odorant-binding proteins or chemosensory proteins and olfactory or gustatory receptors and regulating host neurotransmission, thereby adjusting insect behavior. The manipulation of insect chemosensory behavior by microbial symbionts is conducive to their proliferation and dispersal and provides the impetus for insects to change their feeding habits and aggregation and dispersal behavior, which contributes to population differentiation in insects. Future research is necessary to reveal the material and information exchange between both partners to improve our comprehension of the evolution of chemoreception in insects. Manipulating insect chemoreception physiology by inoculating them with microbes could be utilized as a potential approach to managing insect populations.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenzhen Chang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
6
|
Kyritsis GA, Koskinioti P, Bourtzis K, Papadopoulos NT. Effect of Wolbachia Infection and Adult Food on the Sexual Signaling of Males of the Mediterranean Fruit Fly Ceratitis capitata. INSECTS 2022; 13:737. [PMID: 36005362 PMCID: PMC9409120 DOI: 10.3390/insects13080737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sexual signaling is a fundamental component of sexual behavior of Ceratitis capitata that highly determines males' mating success. Nutritional status and age are dominant factors known to affect males' signaling performance and define the female decision to accept a male as a sexual partner. Wolbachia pipientis, a widespread endosymbiotic bacterium of insects and other arthropods, exerts several biological effects on its hosts. However, the effects of Wolbachia infection on the sexual behavior of medfly and the interaction between Wolbachia infection and adult food remain unexplored. This study was conducted to determine the effects of Wolbachia on sexual signaling of protein-fed and protein-deprived males. Our findings demonstrate that: (a) Wolbachia infection reduced male sexual signaling rates in both food regimes; (b) the negative effect of Wolbachia infection was more pronounced on protein-fed than protein-deprived males, and it was higher at younger ages, indicating that the bacterium regulates male sexual maturity; (c) Wolbachia infection alters the daily pattern of sexual signaling; and (d) protein deprivation bears significant descent on sexual signaling frequency of the uninfected males, whereas no difference was observed for the Wolbachia-infected males. The impact of our findings on the implementation of Incompatible Insect Technique (IIT) or the combined SIT/IIT towards controlling insect pests is discussed.
Collapse
Affiliation(s)
- Georgios A. Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Panagiota Koskinioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| |
Collapse
|
7
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Mollá-Albaladejo R, Sánchez-Alcañiz JA. Behavior Individuality: A Focus on Drosophila melanogaster. Front Physiol 2021; 12:719038. [PMID: 34916952 PMCID: PMC8670942 DOI: 10.3389/fphys.2021.719038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Among individuals, behavioral differences result from the well-known interplay of nature and nurture. Minute differences in the genetic code can lead to differential gene expression and function, dramatically affecting developmental processes and adult behavior. Environmental factors, epigenetic modifications, and gene expression and function are responsible for generating stochastic behaviors. In the last decade, the advent of high-throughput sequencing has facilitated studying the genetic basis of behavior and individuality. We can now study the genomes of multiple individuals and infer which genetic variations might be responsible for the observed behavior. In addition, the development of high-throughput behavioral paradigms, where multiple isogenic animals can be analyzed in various environmental conditions, has again facilitated the study of the influence of genetic and environmental variations in animal personality. Mainly, Drosophila melanogaster has been the focus of a great effort to understand how inter-individual behavioral differences emerge. The possibility of using large numbers of animals, isogenic populations, and the possibility of modifying neuronal function has made it an ideal model to search for the origins of individuality. In the present review, we will focus on the recent findings that try to shed light on the emergence of individuality with a particular interest in D. melanogaster.
Collapse
|
9
|
Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. THE ISME JOURNAL 2021; 15:3693-3703. [PMID: 34188180 PMCID: PMC8630103 DOI: 10.1038/s41396-021-01046-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
The interactions between insects and their bacterial symbionts are shaped by a variety of abiotic factors, including temperature. As global temperatures continue to break high records, a great deal of uncertainty surrounds how agriculturally important insect pests and their symbionts may be affected by elevated temperatures, and its implications for future pest management. In this study, we examine the role of bacterial symbionts in the brown planthopper Nilaparvata lugens response to insecticide (imidacloprid) under different temperature scenarios. Our results reveal that the bacterial symbionts orchestrate host detoxification metabolism via the CncC pathway to promote host insecticide resistance, whereby the symbiont-inducible CncC pathway acts as a signaling conduit between exogenous abiotic stimuli and host metabolism. However, this insect-bacterial partnership function is vulnerable to high temperature, which causes a significant decline in host-bacterial content. In particular, we have identified the temperature-sensitive Wolbachia as a candidate player in N. lugens detoxification metabolism. Wolbachia-dependent insecticide resistance was confirmed through a series of insecticide assays and experiments comparing Wolbachia-free and Wolbachia-infected N. lugens and also Drosophila melanogaster. Together, our research reveals elevated temperatures negatively impact insect-bacterial symbiosis, triggering adverse consequences on host response to insecticide (imidacloprid) and potentially other xenobiotics.
Collapse
|
10
|
Hague MTJ, Woods HA, Cooper BS. Pervasive effects of Wolbachia on host activity. Biol Lett 2021; 17:20210052. [PMID: 33947218 PMCID: PMC8097217 DOI: 10.1098/rsbl.2021.0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Heritable symbionts have diverse effects on the physiology, reproduction and fitness of their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host behaviour by assessing the effects of 14 different Wolbachia strains on the locomotor activity of nine Drosophila host species. We find that Wolbachia alter the activity of six different host genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz and wAur), which have rapidly spread among Drosophila species in about the last 14 000 years. While Wolbachia effects on host activity were common, the direction of these effects varied unpredictably and sometimes depended on host sex. We hypothesize that the prominent effects of wRi-like Wolbachia may be explained by patterns of Wolbachia titre and localization within host somatic tissues, particularly in the central nervous system. Our findings support the view that Wolbachia have wide-ranging effects on host behaviour. The fitness consequences of these behavioural modifications are important for understanding the evolution of host-symbiont interactions, including how Wolbachia spread within host populations.
Collapse
Affiliation(s)
- Michael T. J. Hague
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| |
Collapse
|
11
|
Mangold CA, Hughes DP. Insect Behavioral Change and the Potential Contributions of Neuroinflammation-A Call for Future Research. Genes (Basel) 2021; 12:465. [PMID: 33805190 PMCID: PMC8064348 DOI: 10.3390/genes12040465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - David P. Hughes
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
12
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
13
|
Bi J, Wang Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. INSECT SCIENCE 2020; 27:846-858. [PMID: 31631529 PMCID: PMC7496987 DOI: 10.1111/1744-7917.12731] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/25/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
As one of the most successful intracellular symbiotic bacteria, Wolbachia can infect many arthropods and nematodes. Wolbachia infection usually affects the reproduction of their hosts to promote their own proliferation and transmission. Currently, most of the studies focus on the mechanisms of Wolbachia interactions with host reproduction. However, in addition to distribution in the reproductive tissues, Wolbachia also infect various somatic tissues of their hosts, including the brain. This raises the potential that Wolbachia may influence some somatic processes, such as behaviors in their hosts. So far, information about the effects of Wolbachia infection on host behavior is still very limited. The present review presents the current literature on different aspects of the influence of Wolbachia on various behaviors, including sleep, learning and memory, mating, feeding and aggression in their insect hosts. We then highlight ongoing scientific efforts in the field that need addressing to advance this field, which can have significant implications for further developing Wolbachia as environmentally friendly biocontrol agents to control insect-borne diseases and agricultural pests.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| | - Yu‐Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| |
Collapse
|
14
|
Detcharoen M, Arthofer W, Jiggins FM, Steiner FM, Schlick‐Steiner BC. Wolbachia affect behavior and possibly reproductive compatibility but not thermoresistance, fecundity, and morphology in a novel transinfected host, Drosophila nigrosparsa. Ecol Evol 2020; 10:4457-4470. [PMID: 32489610 PMCID: PMC7246211 DOI: 10.1002/ece3.6212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 11/11/2022] Open
Abstract
Wolbachia, intracellular endosymbionts, are estimated to infect about half of all arthropod species. These bacteria manipulate their hosts in various ways for their maximum benefits. The rising global temperature may accelerate species migration, and thus, horizontal transfer of Wolbachia may occur across species previously not in contact. We transinfected and then cured the alpine fly Drosophila nigrosparsa with Wolbachia strain wMel to study its effects on this species. We found low Wolbachia titer, possibly cytoplasmic incompatibility, and an increase in locomotion of both infected larvae and adults compared with cured ones. However, no change in fecundity, no impact on heat and cold tolerance, and no change in wing morphology were observed. Although Wolbachia increased locomotor activities in this species, we conclude that D. nigrosparsa may not benefit from the infection. Still, D. nigrosparsa can serve as a host for Wolbachia because vertical transmission is possible but may not be as high as in the native host of wMel, Drosophila melanogaster.
Collapse
|
15
|
Ly S, Lee DA, Strus E, Prober DA, Naidoo N. Evolutionarily Conserved Regulation of Sleep by the Protein Translational Regulator PERK. Curr Biol 2020; 30:1639-1648.e3. [PMID: 32169212 DOI: 10.1016/j.cub.2020.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Sleep is a cross-species phenomenon whose evolutionary and biological function remain poorly understood. Clinical and animal studies suggest that sleep disturbance is significantly associated with disruptions in protein homeostasis-or proteostasis-in the brain, but the mechanism of this link has not been explored. In the cell, the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) pathway modulates proteostasis by transiently inhibiting protein synthesis in response to proteostatic stress. In this study, we examined the role of the PERK pathway in sleep regulation and provide the first evidence that PERK signaling is required to regulate normal sleep in both vertebrates and invertebrates. We show that pharmacological inhibition of PERK reduces sleep in both Drosophila and zebrafish, indicating an evolutionarily conserved requirement for PERK in sleep. Genetic knockdown of PERK activity also reduces sleep in Drosophila, whereas PERK overexpression induces sleep. Finally, we demonstrate that changes in PERK signaling directly impact wake-promoting neuropeptide expression, revealing a mechanism through which proteostatic pathways can affect sleep and wake behavior. Taken together, these results demonstrate that protein synthesis pathways like PERK could represent a general mechanism of sleep and wake regulation and provide greater insight into the relationship between sleep and proteostasis.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ewa Strus
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Bi J, Zheng Y, Wang RF, Ai H, Haynes PR, Brownlie JC, Yu XQ, Wang YF. Wolbachia infection may improve learning and memory capacity of Drosophila by altering host gene expression through microRNA. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:47-54. [PMID: 30468769 DOI: 10.1016/j.ibmb.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of invertebrates. Although their dramatic effects on host reproductive biology have been well studied, little is known about the effects of Wolbachia on the learning and memory capacity (LMC) of hosts, despite their distribution in the host nervous system, including brain. In this study, we found that Wolbachia infection significantly enhanced LMC in both Drosophila melanogaster and D. simulans. Expression of LMC-related genes was significantly increased in the head of D. melanogaster infected with the wMel strain, and among these genes, crebA was up-regulated the most. Knockdown of crebA in Wolbachia-infected flies significantly decreased LMC, while overexpression of crebA in Wolbachia-free flies significantly enhanced the LMC of flies. More importantly, a microRNA (miRNA), dme-miR-92b, was identified to be complementary to the 3'UTR of crebA. Wolbachia infection was correlated with reduced expression of dme-miR-92b in D. melanogaster, and dme-miR-92b negatively regulated crebA through binding to its 3'UTR region. Overexpression of dme-miR-92b in Wolbachia-infected flies by microinjection of agomirs caused a significant decrease in crebA expression and LMC, while inhibition of dme-miR-92b in Wolbachia-free flies by microinjection of antagomirs resulted in a significant increase in crebA expression and LMC. These results suggest that Wolbachia may improve LMC in Drosophila by altering host gene expression through a miRNA-target pathway. Our findings help better understand the host-endosymbiont interactions and, in particular, the impact of Wolbachia on cognitive processes in invertebrate hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Paula R Haynes
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy C Brownlie
- School of Natural Science, Griffith University, Nathan, QLD 4111, Australia
| | - Xiao-Qiang Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
17
|
Nighttime activities and peripheral clock oscillations depend on Wolbachia endosymbionts in flies. Sci Rep 2018; 8:15432. [PMID: 30337547 PMCID: PMC6194088 DOI: 10.1038/s41598-018-33522-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Wolbachia are ubiquitous bacterial endosymbionts of arthropods and affect host gene expression. Although Wolbachia infections were suggested to modulate sleep in flies, their influence on the circadian clock remained obscure. Here, we screened bacterial symbionts in a laboratory Drosophila melanogaster colony, and observed widespread infections of wMel strain Wolbachia. We established a Wolbachia-free strain from a clock gene reporter strain, period-luciferase (per-luc). Temperature (19-29 °C)-compensated free-running periods were detected regardless of infections which may reflect the lack of wMel infections in central circadian pacemaker neurons. However, locomotor activity levels during the night or subjective night were significantly amplified in uninfected flies. Moreover, the behavioral phenotype of F1 offspring of an uninfected female and infected male resembled that of uninfected flies. This trait is consistent with maternal transmission of Wolbachia infection. Interestingly, per-luc activities in headless bodies, as an index of peripheral circadian oscillators, were severely damped in uninfected flies. Additionally, circadian amplitudes of PER immunoreactivities in Malpighian tubules were reduced in uninfected flies. These results demonstrate that Wolbachia boost fly peripheral clock oscillations and diurnal behavioral patterns. Genetic mechanisms underlying behavioral rhythms have been widely analyzed using mutant flies whereas screening of Wolbachia will be necessary for future studies.
Collapse
|
18
|
He Z, Zhang HB, Li ST, Yu WJ, Biwot J, Yu XQ, Peng Y, Wang YF. Effects of Wolbachia infection on the postmating response in Drosophila melanogaster. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2561-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Roshina NV, Symonenko AV, Krementsova AV, Tsybul’ko ЕA, Alatortsev VE, Pasyukova EG, Mukha DV. Drosophila melanogaster inhabiting northern regions of European Russia are infected with Wolbachia which adversely affects their life span. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|