1
|
Meena A, Maggu K, De Nardo AN, Sbilordo SH, Eggs B, Al Toma Sho R, Lüpold S. Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. J Therm Biol 2024; 125:104001. [PMID: 39486108 DOI: 10.1016/j.jtherbio.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Biodiversity is increasingly threatened by unpredictable, frequent, and intense climatic events like heatwaves that pose harmful impacts on ectotherms. Beyond the health and survival of organisms, reduced reproductive performance has emerged as a critical fitness consequence of thermal stress induced by high temperatures. Many studies on these effects expose organisms to heat stress during the adult stage or throughout development, often focusing on cumulative effects across life stages, and they tend to examine one or the other sex. This approach may not reflect the short-term nature of many extreme heat events and limits our understanding of stage- and sex-specific fitness consequences in short-lived organisms. To address this gap, we used Drosophila melanogaster to investigate the sex-specific reproductive performance following short heat stress of varying intensity at different developmental stages. We found the thermal sensitivity to be higher in males than females, and to increase toward adult emergence, leading to nearly complete reproductive failure and substantially slowed recovery. These results highlight how even brief bouts of heat stress during a sensitive phase could affect population dynamics and persistence. Our findings also underscore that incorporating both sex and life stage could improve predictions of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benjamin Eggs
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rawaa Al Toma Sho
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Li H, Li S, Chen J, Tan Y, Ye J, Hao D. Heat stress-induced oviposition behavioral change correlates with sperm damage in the pine sawyer beetle, Monochamus alternatus. PEST MANAGEMENT SCIENCE 2024; 80:4553-4563. [PMID: 38738515 DOI: 10.1002/ps.8161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Global climate change is causing an increase in extreme high temperatures (EHTs), which subject insects to unprecedented stress. Behavior plasticity in response to EHTs, particularly oviposition behavior, is important for the persistence and outbreak of insect populations. Investigating the plasticity of oviposition behavior and its underlying mechanisms has theoretical importance to pest management, but knowledge gaps still remain. RESULTS Herein, we characterized the reproductive traits of Monochamus alternatus, a dominant insect vector of the destructive pine wilt disease, including oviposition behavioral patterns, fecundity, offspring fitness and sperm viability, under simulated heatwave conditions in the laboratory. The results showed that (i) EHTs induced a novel oviposition behavior, whereby females deposited multiple eggs into a single groove rather than laying one egg per groove under normal condition; (ii) EHTs exerted stage- and sex-specific effects on fecundity, offspring fitness and sperm viability; and (iii) there was a significant correlation between frequency of the novel oviposition strategy and sperm viability. CONCLUSION We hypothesized that this beetle pest has the ability to flexibly shift towards a low-cost oviposition strategy to counteract the fitness costs caused by heat stress. Taken together, these findings provide a theoretical foundation for personalized pest management strategies in the context of climate change. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shouyin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jin Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yushan Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jianren Ye
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Wu Y, Wang H, Hu Z, Pan M, Wu Y, Guo X, Ge J, Wang Z, Yang M. The pyrexia channel remodels egg-laying of Liriomyza huidobrensis in response to temperature change. PEST MANAGEMENT SCIENCE 2024; 80:4306-4313. [PMID: 38629874 DOI: 10.1002/ps.8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND The pea leafminer, Liriomyza huidobrensis, is one of the most important insect pests on vegetables and ornamentals. The survival and egg-laying behavior of leafminers are markedly affected by the environment temperature. However, the mechanisms underlying the relationship between egg-laying and temperature are still largely unknown. RESULTS Here, we find that leafminers have evolved an adaptive strategy to overcome the stress from high or low temperature by regulating oviposition-punching plasticity. We further show that this oviposition-punching plasticity is mediated by the expression of pyx in the ovipositor when subjected to disadvantageous temperature. Specifically, down-regulation of pyx expression in leafminers under low temperature stress led to a significant decrease in the swing numbers of ovipositor and puncture area of the egg spot, and consequently the lower amount of egg-laying compared to leafminers at ambient temperature. Conversely, activation of pyx expression under high temperature stress increased the swing numbers and puncture area, still resulting in a reduction of egg-laying amount. CONCLUSION Thereby, leafminers are able to coordinate pyx channel expression level and accordingly depress the oviposition. Our study uncovers a molecular mechanism underlying the adaptive strategy in insects that can avoid disadvantageous temperature for reproducing offspring. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxi Wu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huimin Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhihao Hu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Mengchen Pan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yanan Wu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhengjun Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Meiling Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Daly E, Defourneaux M, Legrand C, Renault D. The consequences of heatwaves for the reproductive success and physiology of the wingless sub-Antarctic fly Anatalanta aptera. J Therm Biol 2024; 123:103910. [PMID: 38981304 DOI: 10.1016/j.jtherbio.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Sub-lethal effects of warming temperatures are an important, yet sometimes overlooked impact of climate change that may threaten the long-term survival of numerous species. This, like many other effects of climate change, is especially concerning for cold-adapted ectotherms living in rapidly warming polar regions. This study examines the effects of warmer temperatures on cold-adapted Diptera, using the long-lived sub-Antarctic sphaerocerid fly, Anatalanta aptera, as a focal species. We conducted two experiments to assess heat stress in adult flies, one varying the intensity of the heat stress (daily heating from 4 °C to 8 °C, 20 °C, or 24 °C) and one varying the frequency of heat stress exposure (heating from 4 °C to 12 °C every one, two, or three days) and examined consequences for reproductive success and metabolic responses. We found that more heat stress reduced reproductive output, but not timing of reproduction. Surprisingly, individuals sampled at different times during heat stress exposure were undifferentiable when all metabolite concentrations were analysed with redundancy analysis, however some individual metabolites did exhibit significant differences. Overall, our findings suggest that warmer temperatures in the sub-Antarctic may put this species at greater risk, especially when combined with other concurrent threats from biological invasions.
Collapse
Affiliation(s)
- Ella Daly
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Mathilde Defourneaux
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Camille Legrand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|
5
|
Abdelhafiz I, Gerth S, Claussen J, Weule M, Hufnagel E, Vilcinskas A, Lee KZ. Radioactivity and GMO-Free Sterile Insect Technology for the Sustainable Control of the Invasive Pest Drosophila suzukii. Adv Biol (Weinh) 2024; 8:e2400100. [PMID: 38797923 DOI: 10.1002/adbi.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Drosophila suzukii (D. suzukii), commonly known as the spotted wing drosophila, is a highly invasive crop pest that is difficult to control using chemical insecticides. To address the urgent need for alternative and more sustainable control strategies, the sterile insect technique (SIT) is improved, which involves the release of sterilized male insects to mate with fertile conspecifics, thereby reducing the size of the pest population in the subsequent generation. The three critical aspects that influence the success of SIT programs in D. suzukii are addressed. First, an accurate and nondestructive method is established to determine the sex of individual insects based on the differential weight of male and female pupae. Second, conditions for X-ray sterilization are systematically tested and an optimal dose (90 kV/40 Gy) is identified that ensures the efficient production of sterile D. suzukii for release. Finally, the inherent thermosensitivity of D. suzukii males is exploited to develop a temperature-based sterilization technique, offering an alternative or additional SIT method for this pest. These advances will contribute to the development of a comprehensive and effective strategy for the management of D. suzukii populations, reducing their impact on agriculture and helping to safeguard crop yields.
Collapse
Affiliation(s)
- Ibrahim Abdelhafiz
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
| | - Stefan Gerth
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Joelle Claussen
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Mareike Weule
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Eva Hufnagel
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
| |
Collapse
|
6
|
Sales K, Thomas P, Gage MJG, Vasudeva R. Experimental heatwaves reduce the effectiveness of ejaculates at occupying female reproductive tracts in a model insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231949. [PMID: 38721134 PMCID: PMC11076118 DOI: 10.1098/rsos.231949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 07/31/2024]
Abstract
Globally, heatwaves have become more common with hazardous consequences on biological processes. Research using a model insect (Tribolium castaneum) found that 5-day experimental heatwave conditions damaged several aspects of male reproductive biology, while females remained unaffected. However, females' reproductive fitness may still be impacted, as insects typically store sperm from multiple males in specialized organs for prolonged periods. Consequently, using males which produce sperm with green fluorescent protein (GFP)-tagged sperm nuclei, we visualized in vivo whether thermal stress affects the ejaculate occupancy across female storage sites under two scenarios; (i) increasing time since insemination and (ii) in the presence of defending competitor sperm. We reconfirmed that sperm from heatwave-exposed males sired fewer offspring with previously mated females and provided new scenarios for in vivo distributions of heat-stress-exposed males' sperm. Sperm from heatwave-exposed males occupied a smaller area and were at lower densities across the females' storage sites. Generally, sperm occupancy decreased with time since insemination, and sperm from the first male to mate dominated the long-term storage site. Reassuringly, although heated males' ejaculate was less successful in occupying female tracts, they were not lost from female storage at a faster rate and were no worse than control males in their offensive ability to enter storage sites occupied by competitor sperm. Future work should consider the potential site-specificity of factors influencing sperm storage where amenable.
Collapse
Affiliation(s)
- Kris Sales
- Forest Research, Inventory, Forecasting and Operational Support (IFOS), FarnhamGU10 4LH, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
7
|
Ferguson LF, Ross PA, van Heerwaarden B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner. Environ Microbiol 2024; 26:e16609. [PMID: 38558489 DOI: 10.1111/1462-2920.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.
Collapse
Affiliation(s)
- Liam F Ferguson
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Belinda van Heerwaarden
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Sampaio F, Batista MM, Marchioro CA. Temperature-dependent reproduction of Spodoptera eridania: developing an oviposition model for a novel invasive species. PEST MANAGEMENT SCIENCE 2024; 80:1118-1125. [PMID: 37856447 DOI: 10.1002/ps.7842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Temperature plays a critical role in the development and reproductive process of insects, therefore understanding how insects respond to temperature is vital for comprehending and predicting their population dynamics, particularly when it comes to agricultural pests. Spodoptera eridania Stoll is a polyphagous pest that has recently expanded its distribution beyond its native range. In this study, we assessed the impact of temperature on the reproduction of S. eridania and used the obtained data to develop an oviposition model that could be used to predict egg-laying behavior under field conditions. The reproductive parameters were evaluated at temperatures of 15, 20, 25, 28, and 32 °C. RESULTS Temperature had a significant impact on the reproductive parameters examined. Overall, as temperature increased, the pre-oviposition period, oviposition period, and longevity decreased. Total fecundity exhibited a bell-shaped response to temperature, with peak egg-laying observed at 20 and 25 °C. In line with the experimental data, our model predicted higher rates of oviposition between 20 and 26 °C, thus reinforcing that this temperature range may represent the optimal conditions for the reproduction of S. eridania. CONCLUSION The findings from our study provide a significant contribution to the understanding of the ecology of an important agricultural pest. The information generated can have practical applications in developing control strategies by enabling the aligning of the timing of control measures with peaks of reproductive activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fábio Sampaio
- Graduate Program in Vegetal Production, Department of Zoology, Federal University of Paraná, Paraná, Brazil
| | - Marcelo Maciel Batista
- Graduate Program in Vegetal Production, Department of Zoology, Federal University of Paraná, Paraná, Brazil
| | - Cesar Augusto Marchioro
- Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity, and Forests, Federal University of Santa Catarina, Curitibanos, Santa Catarina, Brazil
| |
Collapse
|
9
|
Ørsted M, Willot Q, Olsen AK, Kongsgaard V, Overgaard J. Thermal limits of survival and reproduction depend on stress duration: A case study of Drosophila suzukii. Ecol Lett 2024; 27:e14421. [PMID: 38549250 DOI: 10.1111/ele.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Studies of ectotherm responses to heat extremes often rely on assessing absolute critical limits for heat coma or death (CTmax), however, such single parameter metrics ignore the importance of stress exposure duration. Furthermore, population persistence may be affected at temperatures considerably below CTmax through decreased reproductive output. Here we investigate the relationship between tolerance duration and severity of heat stress across three ecologically relevant life-history traits (productivity, coma and mortality) using the global agricultural pest Drosophila suzukii. For the first time, we show that for sublethal reproductive traits, tolerance duration decreases exponentially with increasing temperature (R2 > 0.97), thereby extending the Thermal Death Time framework recently developed for mortality and coma. Using field micro-environmental temperatures, we show how thermal stress can lead to considerable reproductive loss at temperatures with limited heat mortality highlighting the importance of including limits to reproductive performance in ecological studies of heat stress vulnerability.
Collapse
Affiliation(s)
- Michael Ørsted
- Section of Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Quentin Willot
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Kirk Olsen
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Viktor Kongsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Fleming JM, Marshall KE, Coverley AJ, Sheldon KS. Diurnal temperature variation impacts energetics but not reproductive effort across seasons in a temperate dung beetle. Ecology 2024; 105:e4232. [PMID: 38290131 DOI: 10.1002/ecy.4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/11/2023] [Accepted: 10/23/2023] [Indexed: 02/01/2024]
Abstract
Temperature varies on multiple timescales and ectotherms must adjust to these changes to survive. These adjustments may lead to energetic trade-offs between self-maintenance and reproductive investment. However, we know little about how diurnal and seasonal temperature changes impact energy allocation. Here we used a combination of empirical data and modeling of both thermoregulatory behaviors and body temperature to examine potential energetic trade-offs in the dung beetle Onthophagus taurus. Beginning in March 2020, universities and laboratories were officially closed due to the COVID-19 pandemic. We thus performed experiments at a private residence near Knoxville, Tennessee, USA, leveraging the heating, ventilation and air conditioning of the home to manipulate temperature and compare beetle responses to stable indoor temperatures versus variable outdoor temperatures. We collected O. taurus beetles in the early-, mid-, and late-breeding seasons to examine energetics and reproductive output in relation to diurnal and seasonal temperature fluctuations. We recorded the mass of field fresh beetles before and after a 24-h fast and used the resulting change in mass as a proxy for energetic costs of self-maintenance across seasons. To understand the impacts of diurnal fluctuations on energy allocation, we held beetles either indoors or outdoors for 14-day acclimation trials, fed them cow dung, and recorded mass change and reproductive output. Utilizing biophysical models, we integrated individual-level biophysical characteristics, microhabitat-specific performance, respirometry data, and thermoregulatory behaviors to predict temperature-induced changes to the allocation of energy toward survival and reproduction. During 24 h of outdoor fasting, we found that beetles experiencing reduced temperature variation lost more mass than those experiencing greater temperature variation, and this was not affected by season. By contrast, during the 14-day acclimation trials, we found that beetles experiencing reduced temperature variation (i.e., indoors) gained more mass than those experiencing greater temperature variation (i.e., outdoors). This effect may have been driven by shifts in the metabolism of the beetles during acclimation to increased temperature variation. Despite the negative relationship between temperature variation and energetic reserves, the only significant predictor of reproductive output was mean temperature. Taken together, we find that diurnal temperature fluctuations are important for driving energetics, but not reproductive output.
Collapse
Affiliation(s)
- J Morgan Fleming
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander J Coverley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
11
|
Faria FS, Areal M, Bitner-Mathé BC. Thermal Stress and Adult Fitness in a Drosophila suzukii Neotropical Propagule. NEOTROPICAL ENTOMOLOGY 2023; 52:993-1004. [PMID: 37702970 DOI: 10.1007/s13744-023-01075-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023]
Abstract
Drosophila suzukii (Matsumura 1931) is a cosmopolitan horticultural pest originally from temperate East Asia; yet, its recent introduction in southeast and central Brazil raises the possibility it might expand into warmer climatic zones. In theoretical terms, the adaptive potential of invasive species can be impaired by the lack of genetic variation, but, on the other hand, phenotypic plasticity might play an important role in the adaptation to the new environment. In this context, we investigated the effects of temperature variation (18°C, 22°C, and 28°C) on fitness traits and size of male reproductive organs (accessory glands and testis) in a natural D. suzukii population recently introduced in the neotropical region. Development time decreased significantly with increasing temperature, but egg-to-adult survival was not affected, attaining rates around 50% for the three temperatures. Development at 28°C affected differentially adult male and female biological performance: males displayed higher mortality and severe and permanent reduction in offspring production, whereas females showed the same mortality as controls and a temporary decrease in offspring production, followed of a clear recovery. Finally, reproductive organs size in immature and mature males was affected by developmental temperature variation in the following ways. Testis length decreased with body size (i.e., at higher temperatures) and increased with maturation time after adult hatching, whereas for accessory glands there was no significant difference between different temperatures, resulting in proportionally larger glands for smaller body sizes. These results show differences in developmental dynamics of reproductive tract structures due to temperature variation.
Collapse
Affiliation(s)
- Flavio Silva Faria
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Areal
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
R S, K N. Teratogenic impacts of Antiepileptic drugs on development, behavior and reproduction in Drosophila melanogaster. Neurotoxicol Teratol 2023; 100:107305. [PMID: 37805079 DOI: 10.1016/j.ntt.2023.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Clobazam (CLB) and Vigabatrin (VGB) are the two widely used Antiepileptic drugs, which may have teratogenic potentiality and it has been evaluated in the fruit fly Drosophila melanogaster. These different concentrations of CLB (0.156, 0.25, and 0.312 μg/ml) and VGB (17.6, 22, and 44 μg/ml) were used to evaluate the life-history parameters, developmental, and behavioral abnormalities. The results revealed that life-history parameters (fecundity, fertility, larval and pupal mortality) were significantly affected along with varied developmental duration, and pupal and adult deformities in flies on exposure of CLB and VGB in concentration dependent manner. The present study demonstrated that the prenatal treatment of CLB and VGB has displayed clear teratogenic potentiality with various deformities in the fruit fly. The findings could be correlated with the various abnormalities in human caused by the use of AEDs.
Collapse
Affiliation(s)
- Shamapari R
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| | - Nagaraj K
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India.
| |
Collapse
|
13
|
Sepulveda NB, Chen D, Petrella LN. Moderate heat stress-induced sterility is due to motility defects and reduced mating drive in Caenorhabditis elegans males. J Exp Biol 2023; 226:jeb245546. [PMID: 37724024 DOI: 10.1242/jeb.245546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Moderate heat stress negatively impacts fertility in sexually reproducing organisms at sublethal temperatures. These moderate heat stress effects are typically more pronounced in males. In some species, sperm production, quality and motility are the primary cause of male infertility during moderate heat stress. However, this is not the case in the model nematode Caenorhabditis elegans, where changes in mating behavior are the primary cause of fertility loss. We report that heat-stressed C. elegans males are more motivated to locate and remain on food and less motivated to leave food to find and mate with hermaphrodites than their unstressed counterparts. Heat-stressed males also demonstrate a reduction in motility that likely limits their ability to mate. Collectively these changes result in a dramatic reduction in reproductive success. The reduction in mate-searching behavior may be partially due to increased expression of the chemoreceptor odr-10 in the AWA sensory neurons, which is a marker for starvation in males. These results demonstrate that moderate heat stress may have profound and previously underappreciated effects on reproductive behaviors. As climate change continues to raise global temperatures, it will be imperative to understand how moderate heat stress affects behavioral and motility elements critical to reproduction.
Collapse
Affiliation(s)
- Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Donald Chen
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| |
Collapse
|
14
|
Mak KW, Price TAR, Dougherty LR. The effect of short-term exposure to high temperatures on male courtship behaviour and mating success in the fruit fly Drosophila virilis. J Therm Biol 2023; 117:103701. [PMID: 37683356 DOI: 10.1016/j.jtherbio.2023.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Human-induced climate change is leading to higher average global temperatures and increasingly extreme weather events. High temperatures can have obvious effects on animal survival, particularly in ectotherms. However, the temperature at which organisms become sterile may be significantly lower than the temperature at which other biological functions are impaired. In the fruit fly Drosophila virilis, males are sterilized at temperatures above 34 °C, but are still active and able to mate normally. We investigated the male behavioural changes associated with high-temperature fertility loss. We exposed males to a warming treatment of 34.4 °C or 36.6 °C for 4 h, and then recorded their mating behaviour after being allowed to recover for 24 h. Previous work in this species suggests that males exposed to 34.4 °C lose the ability to produce new sperm, but can utilize mature sperm produced before the heat shock. We therefore predicted that these males would increases their courtship rate, and reduce their choosiness, in order to try to ensure a mating before their remaining mature sperm die. In contrast, over two-thirds of males exposed to 36.6 °C are completely sterile. In standard mating trials, earlier exposure to 34.4 °C or 36.6 °C did not affect male courtship behaviour when compared to control males kept at 23 °C. Exposure to high temperatures also did not alter the extent to which males directed courtship toward females of the same species. However, males exposed to 36.6 °C were significantly slower to mate, and had a reduced likelihood of mating, when compared to control males. Overall, exposure to high temperatures did not alter male courtship behaviour, but did lower their likelihood of mating. This suggests that females can distinguish between normal and heat-sterilized males before mating, and that female mate choice may at least partly mitigate the population-level consequences of high-temperature induced male sterility in this species.
Collapse
Affiliation(s)
- Kwan Wai Mak
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool, L69 7RB, UK
| | - Tom A R Price
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool, L69 7RB, UK
| | - Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool, L69 7RB, UK.
| |
Collapse
|
15
|
Putero FA, Mensch J, Schilman PE. Effect of brief exposures of anesthesia on thermotolerance and metabolic rate of the spotted-wing fly, Drosophila suzukii: Differences between sexes? JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104549. [PMID: 37495184 DOI: 10.1016/j.jinsphys.2023.104549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The spotted-wing fly, Drosophila suzukii, is a world-wide pest insect for which there is increasing interest in its physiological traits including metabolism and thermotolerance. Most studies focus only on survival to different time exposures to extreme temperatures, mainly in female flies. In addition, it has not been tested yet how anesthesia affects these measurements. We analyzed the effects of anesthesia by brief exposures to cold, anoxia by CO2 or N2 on three standard thermotolerance assays, as well as the aerobic metabolic rate in both sexes. For heat tolerance we measured CTmax by thermolimit respirometry, and CTmin and chill-coma recovery time for cold tolerance. Aerobic metabolism was calculated by CO2 production of individual flies in real time by open flow respirometry. Results showed that females have a significantly higher V̇CO2 for inactive (at 25 °C) and maximum metabolic rate than males. This difference is mainly explained by body mass and disappears after mass correction. Males had a more sensitive MR to temperature than females showed by a significantly higher Q10 (2.19 vs. 1.98, for males and females, respectively). We observed a significantly lower CTmin (X2 = 4.27, P = 0.03) in females (3.68 ± 0.38 °C) than males (4.56 ± 0.39 °C), although we did not find significant effects of anesthesia. In contrast, anesthesia significantly modifies CTmax for both sexes (F3,62 = 7.86, P < 0.001) with a decrease of the CTmax in cold-anesthetized flies. Finally, we found a significantly higher CTmax in females (37.87 ± 0.07 °C) than males (37.36 ± 0.09 °C). We conclude that cold anesthesia seems to have detrimental effects on heat tolerance, and females have broader thermotolerance range than males, which could help them to establish in invaded temperate regions with more variable environmental temperatures.
Collapse
Affiliation(s)
- Florencia A Putero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecofisiología de Insectos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina
| | - Julian Mensch
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina.
| | - Pablo E Schilman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecofisiología de Insectos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Bressac C, El Sabrout A, Kifouche F, Anne M, Capdevielle-Dulac C, Mougel F, Kaiser L. Hot and cold waves decrease sperm production and bias sex ratio in the parasitoid wasp Cotesia typhae (Hymenoptera, Braconidae). JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104553. [PMID: 37567362 DOI: 10.1016/j.jinsphys.2023.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Parasitoid wasps are haplodiploid, meaning that sperm stored by egg laying females are only used to produce daughters. Thus, the sex ratio of the offspring depends on the availability of sperm after mating. In these insects, males are sensitive to temperature at the pupal stage. This stress leads to subfertility due to a drastic reduction in the number of sperm produced and transferred to females. Experiments were conducted under controlled conditions on the parasitoid wasp Cotesia typhae (Hymenoptera, Braconidae), a natural enemy of the invading pest Sesamia nonagrioides (Lepidoptera, Noctuidae). At 25-27 °C, sperm production was measured for 7 days, and found to reach a plateau at the third day of adult life. It leads to a final amount around 25,000 sperm per male. A male can successfully inseminate at least 10 females, producing predominantly female offspring. Sperm production decreased significantly after 1 day of pupal exposure to heat at 34 or 36 °C and 7 days of cold at 0, 5 or 10 °C. This highlights that both cold and heat are stressful. After mating with one male treated at 10 or 34 °C, females store fewer sperm than the control, and produce fewer daughters. The sex ratio of the offspring is male biased when males experienced temperature stresses during development, like other parasitoid wasps. In the field, C. typhae populations would be affected by heat and cold, at least at the pupal stage. This lowers overwintering risk in case this biological agent was introduced in Europe. This risk is both economical, as companies seek to establish costly continuous production to sell beneficial insects, and ecological as the introduced population would not settle in the ecosystem. Lastly, the transport and storage of this insect of agronomic interest would need to consider temperature variations to ensure successful application.
Collapse
Affiliation(s)
- Christophe Bressac
- IRBI, UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France.
| | - Ahmed El Sabrout
- IRBI, UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France; Applied Entomology and Zoology Department, Faculty of Agriculture (El-Shatby), Alexandria University, 21526 Alexandria, Egypt
| | - Fatma Kifouche
- IRBI, UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Melissa Anne
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Claire Capdevielle-Dulac
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Florence Mougel
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Laure Kaiser
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| |
Collapse
|
17
|
Awde DN, Řeřicha M, Knapp M. Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds. Commun Biol 2023; 6:838. [PMID: 37573399 PMCID: PMC10423239 DOI: 10.1038/s42003-023-05196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
The environmental conditions an organism encounters during development vary in their lasting impact on adult phenotypes. In the context of ongoing climate change, it is particularly relevant to understand how high developmental temperatures can impact adult traits, and whether these effects persist or diminish during adulthood. Here, we assessed the effects of pupal temperature (17 °C - normal temperature, 26 °C - increased temperature, or 35 °C - heat wave) on adult Harmonia axyridis thermal stress tolerance, immune function, starvation resistance, and fecundity. The temperature during pupation significantly affected all investigated traits in fresh adults. Heat acclimation decreased adult haemocyte concentration, cold tolerance, and total egg production, and had a positive effect on heat tolerance and starvation resistance. The negative effects of heat acclimation on cold tolerance diminished after seven days. In contrast, heat acclimation had a lasting positive effect on adult heat tolerance. Our results provide a broad assessment of the effects of developmental thermal acclimation on H. axyridis adult phenotypes. The relative plasticity of several adult traits after thermal acclimation may be consequential for the future geographic distribution and local performance of various insect species.
Collapse
Affiliation(s)
- David N Awde
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
- Department of Biology, Faculty of Science, Mount Saint Vincent University, Halifax, NS, Canada
| | - Michal Řeřicha
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|
18
|
Gandara ACP, Drummond-Barbosa D. Chronic exposure to warm temperature causes low sperm abundance and quality in Drosophila melanogaster. Sci Rep 2023; 13:12331. [PMID: 37518578 PMCID: PMC10387475 DOI: 10.1038/s41598-023-39360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Temperature influences male fertility across organisms; however, how suboptimal temperatures affect adult spermatogenesis remains understudied. In a recent study on Drosophila melanogaster oogenesis, we observed a drastic reduction in the fertility of adult males exposed to warm temperature (29 °C). Here, we show that males become infertile at 29 °C because of low sperm abundance and quality. The low sperm abundance at 29 °C does not stem from reduced germline stem cell or spermatid numbers, as those numbers remain comparable between 29 °C and control 25 °C. Notably, males at cold 18 °C and 29 °C had similarly increased frequencies of spermatid elongation and individualization defects which, considering the high sperm abundance and male fertility measured at 18 °C, indicate that spermatogenesis has a high tolerance for elongation and individualization defects. Interestingly, the abundance of sperm at 29 °C decreases abruptly and with no evidence of apoptosis as they transition into the seminal vesicle near the end of spermatogenesis, pointing to sperm elimination through an unknown mechanism. Finally, sperm from males at 29 °C fertilize eggs less efficiently and do not support embryos past the first stage of embryogenesis, indicating that poor sperm quality is an additional cause of male infertility at 29 °C.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, WI, 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Canal Domenech B, Fricke C. Developmental heat stress interrupts spermatogenesis inducing early male sterility in Drosophila melanogaster. J Therm Biol 2023; 114:103589. [PMID: 37300998 DOI: 10.1016/j.jtherbio.2023.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/12/2023]
Abstract
Thermal stress leads to fertility reduction, can cause temporal sterility and thus results in fitness loss with severe ecological and evolutionary consequences, e.g., threatening species persistence already at sub-lethal temperatures. For males we here tested which developmental stage is particularly sensitive to heat stress in the model species Drosophila melanogaster. As developmental stages characterize the different steps of sperm development, we could narrow down which particular processes are heat sensitive. We studied early male reproductive ability and, by following recovery dynamics after a move to benign temperatures, we investigated general mechanisms behind a subsequent gain of fertility. We found strong support to suggest that the last steps of spermatogenesis are particularly sensitive to heat stress, as processes occurring during the pupal stage were mostly interrupted, delaying both sperm production and sperm maturation. Moreover, further measurements in the testes and for proxies of sperm availability indicating the onset of adult reproductive capacity matched the expected heat-induced delay in completing spermatogenesis. We discuss these results within the context of how heat stress affects reproductive organ function and the consequences for male reproductive potential.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany; Muenster Graduate School of Evolution, University of Muenster, Muenster, Germany.
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany; Institute for Zoology, Halle-Wittenberg University, Halle (Saale), Germany.
| |
Collapse
|
20
|
Comparative transcriptome analysis of Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae-Bruchinae) after heat and cold stress exposure. J Therm Biol 2023; 112:103479. [PMID: 36796922 DOI: 10.1016/j.jtherbio.2023.103479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Callosobruchus chinensis is regarded as one of the cosmopolitan pests of legume crops and can cause tremendous losses to a variety of beans. This study focused on comparative transcriptome analyses of C. chinensis exposed to 45 °C (heat stress), 27 °C (ambient temperature) and -3 °C (cold stress) for 3 h to investigate the gene differences and underlying molecular mechanisms. There were 402 and 111 differentially expressed genes (DEGs) identified in the heat and cold stress treatments, respectively. "cell process", "cell" and "binding" were the main enriched functions and biological processes revealed by gene ontology (GO) analysis. The clusters of orthologous genes (COG) showed that DEGs were assigned to the categories: "posttranslational modification, protein turnover, chaperones", "lipid transport and metabolism", and "general function prediction only". With respect to the Kyoto Encyclopedia of Genes and Genomes (KEGG), the "longevity regulating pathway-multiple species", "carbon metabolism", "peroxisome", "protein processing in endoplasmic", "glyoxylate and dicarboxylate metabolism" pathways were significantly enriched. The annotation and enrichment analysis revealed that genes encoding heat shock proteins (Hsps) and cuticular proteins were significantly upregulated under high and low-temperature stresses, respectively. In addition, some DEGs encoding "Protein lethal essential for life", "Reverse transcriptase", "DnaJ domain", "Cytochrome" and "Zinc finger protein" were also upregulated to varying degrees. Transcriptomic data were validated using qRT‒PCR, which confirmed that they were consistent. In this paper, the temperature tolerance of C. chinensis adults was evaluated and the results showed that female adults were more sensitive to heat and cold stress than males, and the upregulation of heat shock protein and epidermal protein was the largest in DEGs after heat and cold stress, respectively. These findings provide a reference for further understanding the biological characteristics of C. chinensis adults and the molecular mechanisms underlying the response to low and high temperatures.
Collapse
|
21
|
Canal Domenech B, Fricke C. Recovery from heat-induced infertility-A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster. Ecol Evol 2022; 12:e9563. [PMID: 36466140 PMCID: PMC9712812 DOI: 10.1002/ece3.9563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
The predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature-induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male Drosophila melanogaster. We heat-stressed males during development and either allowed them to recover or not in early adulthood while measuring several determinants of male reproductive success. We found significant differences in recovery rate, organ sizes, sperm production, and other key reproductive traits among males from our different temperature treatments. Sperm maturation was impaired before reaching the upper thermal sterility threshold. While some effects were reversible, this did not compensate for the fitness loss due to damage imposed during development. Surprisingly, developmental heat stress was damaging to accessory gland growth, and female post-mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub-lethal thermal sterility and the subsequent fertility reduction are caused by a combination of inefficient functionality of both the accessory gland and testes.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Muenster Graduate School of Evolution University of Muenster Muenster Germany
| | - Claudia Fricke
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Institute for Zoology Halle-Wittenberg University Halle (Saale) Germany
| |
Collapse
|
22
|
Spermidine alleviates heat shock and promotes the growth of Bombyx mori. J Therm Biol 2022; 110:103353. [DOI: 10.1016/j.jtherbio.2022.103353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022]
|
23
|
Yang Y, Qi J, Wang Z, Zhou Z, Zhao C, Dong X, Li X, Li C. Evaluating the Effects of Cu2+ on the Development and Reproduction of Spodoptera litura (Lepidoptera: Noctuidae) Based on the Age-Stage, Two-Sex Life Table. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:4. [PMID: 36426853 PMCID: PMC9693775 DOI: 10.1093/jisesa/ieac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu2+) is a micronutrient that promotes the development and reproduction of organisms. However, with the rapid expansion of modern industry and agriculture, Cu2+ concentrations are increasing, which might have negative impacts on biological and ecological safety. Spodoptera litura is not only an intermittent outbreak pest but also can be used as a model organism to assess environmental and ecological risks. Therefore, the effects of the life history and population parameters of S. litura fed on artificial diets with different Cu2+ concentrations were analyzed using the age-stage, two-sex life table. Our results showed that not only the preadult survival rate but also the intrinsic rate of increase (r) and the finite rate of increase (λ) were significantly increased under exposure to low Cu2+ concentrations (2, 4, and 8 mg/kg). In addition, the population growth of S. litura was significantly faster, indicating that S. litura can adapt well to low concentrations and is likely to undergo outbreaks of damage. Whereas, in addition to a significant reduction in preadult survival rate, population growth rate, pupal weight, pupal length, adult body weight, and oviposition were also significantly reduced under exposure to high Cu2+ concentration (32 mg/kg). And when the concentration reached 64 mg/kg, the survival rate of adults was extremely low, suggesting a decrease in the adaptation of S. litura. These results can help to understand the population dynamics of S. litura and predict potential ecological risks.
Collapse
Affiliation(s)
- Yang Yang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jingwei Qi
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhixiong Zhou
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Changwei Zhao
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaolin Dong
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xihong Li
- Tobacco Research Institute of Hubei Province, Wuhan 430030, Hubei, China
| | | |
Collapse
|
24
|
Schöneberg T, English LA, Popp J, Hamby KA. Impact of Modified Caneberry Trellis Systems on Microclimate and Habitat Suitability for Drosophila suzukii (Diptera: Drosophilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:943-954. [PMID: 34964883 DOI: 10.1093/jee/toab236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Caneberries are trellised to facilitate harvest and agrochemical applications as well as to improve crop yield and quality. Trellising can also increase airflow and light penetration within the canopy and affect its microclimate. We compared an experimental trellis that split the canopy into halves to standard I- and V-trellises, measuring Drosophila suzukii (Matsumura) fruit infestation as well as canopy temperature and relative humidity in raspberries at two commercial you-pick diversified farms. To evaluate the combined effects of trellising systems and pruning, we pruned one half of each row in blackberry plantings at two research farms and assessed D. suzukii infestation, canopy microclimate (temperature, relative humidity, and light intensity), fruit quality parameters (interior temperature, total soluble solids, and penetration force), and spray coverage/deposition. Trellis installation costs, labor inputs, and yield were used to further evaluate the trellis systems from an economic perspective. Fruit quality was not affected by trellising or pruning and lower total yield was observed in the experimental trellis treatment on one farm. Although D. suzukii infestation was only affected by trellising and pruning at one site, we observed a relationship between higher temperatures and reduced infestation on nearly all farms. Occasionally, lower relative humidity and high light intensity corresponded with lower infestation. Ultimately, the experimental trellis was less economically efficient than other trellising systems and our ability to successfully manipulate habitat favorability varied in a site-specific manner. Drosophila suzukii management approaches that rely upon unfavorable conditions are likely to be more effective in hot, dry regions.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Leah A English
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jennie Popp
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kelly A Hamby
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
25
|
Guo PL, Guo ZQ, Liu XD. Cuticular protein genes involve heat acclimation of insect larvae under global warming. INSECT MOLECULAR BIOLOGY 2022; 31:519-532. [PMID: 35403301 DOI: 10.1111/imb.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Cuticular proteins (CPs) play important roles in insect growth and development. However, it is unknown whether CPs are related to heat tolerance. Cnaphalocrocis medinalis, a serious pest of rice, occurs in summer and exhibits strong adaptability to high temperature, but the underlying mechanism is unclear. Here, the role of CP genes in heat acclimation was studied. Heat tolerance of the heat-acclimated larvae was significantly stronger than the unacclimated larvae. The cuticular protein content in the heat-acclimated larvae was higher than that of the unacclimated larvae. 191 presumed CP genes of C. medinalis (CmCPs) were identified. Expression patterns of 14 CmCPs were different between the heat acclimated (S39) and unacclimated (S27) larvae under heat stress. CmCPs were specifically expressed in epidermis and the head except CmCPR20 mainly expressed in Malpighian tubules. CmCPR20 was upregulated in S39 while downregulated in S27, but CmTweedle1 and CmCPG1 were upregulated in S27 and downregulated in S39. RNAi CmTweedle1 or CmCPG1 remarkably decreased heat tolerance and cuticular protein content of the heat-acclimated larvae but not the unacclimated larvae. RNAi CmCPR20 decreased heat tolerance and cuticular protein content of the unacclimated larvae but not the heat-acclimated larvae. CmTweedle1 and CmCPG1 genes involve heat acclimation of C. medinalis.
Collapse
Affiliation(s)
- Pan-Long Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Qian Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Moen C, Johnson JC, Hackney Price J. Ecdysteroid responses to urban heat island conditions during development of the western black widow spider (Latrodectus hesperus). PLoS One 2022; 17:e0267398. [PMID: 35482802 PMCID: PMC9049550 DOI: 10.1371/journal.pone.0267398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) controls molting in arthropods. The timing of 20E production, and subsequent developmental transitions, is influenced by a variety of environmental factors including nutrition, photoperiod, and temperature, which is particularly relevant in the face of climate change. Environmental changes, combined with rapid urbanization, and the increasing prevalence of urban heat islands (UHI) have contributed to an overall decrease in biodiversity making it critical to understand how organisms respond to elevating global temperatures. Some arthropods, such as the Western black widow spider, Latrodectus hesperus, appear to thrive under UHI conditions, but the physiological mechanism underlying their success has not been explored. Here we examine the relationship between hemolymph 20E titers and spiderling development under non-urban desert (27°C), intermediate (30°C), and urban (33°C) temperatures. We found that a presumptive molt-inducing 20E peak observed in spiders at non-urban desert temperatures was reduced and delayed at higher temperatures. Intermolt 20E titers were also significantly altered in spiders reared under UHI temperatures. Despite the apparent success of black widows in urban environments, we noted that, coincident with the effects on 20E, there were numerous negative effects of elevated temperatures on spiderling development. The differential effects of temperature on pre-molt and intermolt 20E titers suggest distinct hormonal mechanisms underlying the physiological, developmental, and behavioral response to heat, allowing spiders to better cope with urban environments.
Collapse
Affiliation(s)
- Claire Moen
- School of Math & Natural Sciences, Arizona State University—West Campus, Glendale, AZ, United States of America
| | - J. Chadwick Johnson
- School of Math & Natural Sciences, Arizona State University—West Campus, Glendale, AZ, United States of America
| | - Jennifer Hackney Price
- School of Math & Natural Sciences, Arizona State University—West Campus, Glendale, AZ, United States of America
- * E-mail:
| |
Collapse
|
27
|
Liu H, Wang X, Chen Z, Lu Y. Characterization of Cold and Heat Tolerance of Bactrocera tau (Walker). INSECTS 2022; 13:insects13040329. [PMID: 35447771 PMCID: PMC9030204 DOI: 10.3390/insects13040329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Insects are often stressed by adverse factors in their natural environment. Temperature is a crucial driver of insect activity, adaptability, and distribution, and therefore, it greatly impacts the invasive success of alien pests. Bactrocera tau (Walker) is an invasive polyphagous herbivore of vegetables and fruits, now a pest of global importance. This study provides useful information about B. tau’s cold- and heat tolerance to extremely low and high temperatures. Its different life stages (i.e., egg, larvae, pupae, and adult) had high survival rates under adverse temperatures spanning −5 to 0 °C and 39 to 42 °C. These findings suggest that B. tau possesses a wide temperature threshold range for survival, which likely contributes to its better establishment and expansion in new regions. Meanwhile, fitted curves were used to quantify B. tau’s tolerance potential as a function of both stress intensity (heat or cold) and exposure duration. The information generated in this study will contribute to our understanding of thermal tolerance in B. tau and could also provide insights for devising phytosanitary control approaches. Abstract Bactrocera tau (Walker) (Diptera: Tephritidae) is a serious, economically important invasive pest that has spread and been established in many regions worldwide. Temperature is a crucial abiotic factor governing insect activity, fitness, and geographical distribution. Yet, surprisingly, the tolerance of B. tau to extreme cold and heat stress remains unclear. Here, we measured the supercooling point (SCP) of different life stages of B. tau. Further, several life stages of B. tau (egg, 1st, 2nd, and 3rd instar larvae, 1-day-old pupae, and 3-day-old adult) were subjected to six low temperatures (−9, −7, −5, −3, −1, and 0 °C) and six high temperatures (39, 40, 41, 42, 43, and 44 °C) for various durations (0.5, 1.0, 2.0, and 4.0 h), and three-way survival–time–temperature relationships were investigated. We found that the SCPs differed significantly among different life stages of B. tau, being the lowest for SCP of eggs, at −25.82 ± 0.51 °C. There was no significant effect of sex on the mean SCPs of B. tau adults, except for 45- to 50-day-old flies. In addition, an interaction effect was uncovered between tested temperatures and exposure duration upon B. tau mortality at different life stages. Eggs exhibited the strongest cold tolerance, yet the weakest heat tolerance. The 3rd instar larvae were the most heat- and cold tolerant among larval stages, followed by the 2nd and 1st instar larvae. The upper limit of the chill injury zone (ULCIZ) for 3-day-old adult and 1-day-old pupae was −2.51 °C and −2.50 °C, respectively, while their corresponding lower limit of thermal injury zone (LLTIZ) was 39.39 °C and 38.29 °C. This paper presents valuable data to provide an integrated knowledge for understanding the cold and heat tolerance potential of B. tau and ensure the proper implementation of post-harvest phytosanitary protocols for this pest’s disinfestation.
Collapse
Affiliation(s)
- Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China;
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
- Correspondence: (H.L.); (Y.L.)
| | - Xiaoyan Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| | - Zihan Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (H.L.); (Y.L.)
| |
Collapse
|
28
|
Gandara ACP, Drummond-Barbosa D. Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis. Development 2022; 149:274368. [PMID: 35156684 PMCID: PMC8959152 DOI: 10.1242/dev.200149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
Despite their medical and economic relevance, it remains largely unknown how suboptimal temperatures affect adult insect reproduction. Here, we report an in-depth analysis of how chronic adult exposure to suboptimal temperatures affects oogenesis using the model insect Drosophila melanogaster. In adult females maintained at 18°C (cold) or 29°C (warm), relative to females at the 25°C control temperature, egg production was reduced through distinct cellular mechanisms. Chronic 18°C exposure improved germline stem cell maintenance, survival of early germline cysts and oocyte quality, but reduced follicle growth with no obvious effect on vitellogenesis. By contrast, in females at 29°C, germline stem cell numbers and follicle growth were similar to those at 25°C, while early germline cyst death and degeneration of vitellogenic follicles were markedly increased and oocyte quality plummeted over time. Finally, we also show that these effects are largely independent of diet, male factors or canonical temperature sensors. These findings are relevant not only to cold-blooded organisms, which have limited thermoregulation, but also potentially to warm-blooded organisms, which are susceptible to hypothermia, heatstroke and fever.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Rodrigues LR, Zwoinska MK, Axel W Wiberg R, Snook RR. The genetic basis and adult reproductive consequences of developmental thermal plasticity. J Anim Ecol 2022; 91:1119-1134. [PMID: 35060127 PMCID: PMC9373847 DOI: 10.1111/1365-2656.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = ‘high’‐performing lines) or substantial (‘low’‐performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex‐specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short‐ and long‐term consequences for the evolution of populations in response to a warming world.
Collapse
Affiliation(s)
| | | | | | - Rhonda R Snook
- Department of Zoology Stockholm University Stockholm Sweden
| |
Collapse
|
30
|
Baur J, Jagusch D, Michalak P, Koppik M, Berger D. The mating system affects the temperature sensitivity of male and female fertility. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Dorian Jagusch
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
- Organismal and Evolutionary Biology Research Program Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Piotr Michalak
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - David Berger
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
31
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
32
|
Cultural Control of Drosophila suzukii in Small Fruit-Current and Pending Tactics in the U.S. INSECTS 2021; 12:insects12020172. [PMID: 33671153 PMCID: PMC7923098 DOI: 10.3390/insects12020172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Integrated Pest Management (IPM) is a science-based decision-making process that uses a variety of management approaches to increase farm profitability while protecting human health and the environment, with pesticides used only as a last resort. An important alternative to pesticides, cultural controls modify production practices and/or the crop environment to reduce pest populations and damage. This review presents the current state of knowledge and implementation of cultural controls to manage the invasive vinegar fly, spotted-wing drosophila, in U.S. small fruit crops. Spotted-wing drosophila causes direct damage by laying its eggs into ripening fruit. Because it reproduces quickly, uses a variety of cultivated and wild fruits, and is highly mobile, spotted-wing drosophila is difficult to manage. Developing effective and economic cultural controls to manage spotted-wing drosophila will help improve IPM programs. Abstract Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly of Asian origin, has emerged as a devastating pest of small and stone fruits throughout the United States. Tolerance for larvae is extremely low in fresh market fruit, and management is primarily achieved through repeated applications of broad-spectrum insecticides. These applications are neither economically nor environmentally sustainable, and can limit markets due to insecticide residue restrictions, cause outbreaks of secondary pests, and select for insecticide resistance. Sustainable integrated pest management programs include cultural control tactics and various nonchemical approaches for reducing pest populations that may be useful for managing D. suzukii. This review describes the current state of knowledge and implementation for different cultural controls including preventative tactics such as crop selection and exclusion as well as strategies to reduce habitat favorability (pruning; mulching; irrigation), alter resource availability (harvest frequency; sanitation), and lower suitability of fruit postharvest (cooling; irradiation). Because climate, horticultural practices, crop, and market underlie the efficacy, feasibility, and affordability of cultural control tactics, the potential of these tactics for D. suzukii management is discussed across different production systems.
Collapse
|
33
|
Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. High developmental temperature leads to low reproduction despite adult temperature. J Therm Biol 2020; 95:102794. [PMID: 33454035 DOI: 10.1016/j.jtherbio.2020.102794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Phenotypic plasticity can help organisms cope with changing thermal conditions and it may depend on which life-stage the thermal stress is imposed: for instance, exposure to stressful temperatures during development can trigger a positive plastic response in adults. Here, we analyze the thermal plastic response of laboratory populations of Drosophila subobscura, derived from two contrasting latitudes of the European cline. We measured reproductive performance through fecundity characters, after the experimental populations were exposed to five thermal treatments, with different combinations of developmental and adult temperatures (14 °C, 18 °C, or 26 °C). Our questions were whether (1) adult performance changes with exposure to higher (or lower) temperatures during development; (2) flies raised at lower temperatures outperform those developed at higher ones, supporting the "colder is better" hypothesis; (3) there is a cumulative effect on adult performance of exposing both juveniles and adults to higher (or lower) temperatures; (4) there is evidence for biogeographical effects on adult performance. Our main findings were that (1) higher developmental temperatures led to low reproductive performance regardless of adult temperature, while at lower temperatures reduced performance only occurred when colder conditions were persistent across juvenile and adult stages; (2) flies raised at lower temperatures did not always outperform those developed at other temperatures; (3) there were no harmful cumulative effects after exposing both juveniles and adults to higher temperatures; (4) both latitudinal populations showed similar thermal plasticity patterns. The negative effect of high developmental temperature on reproductive performance, regardless of adult temperature, highlights the developmental stage as very critical and most vulnerable to climate change and associated heat waves.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
34
|
Little CM, Chapman TW, Hillier NK. Plasticity Is Key to Success of Drosophila suzukii (Diptera: Drosophilidae) Invasion. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5837529. [PMID: 32417920 PMCID: PMC7230767 DOI: 10.1093/jisesa/ieaa034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 05/03/2023]
Abstract
After its initial discovery in California in 2008, Drosophila suzukii Matsumura has become one of the most important invasive agricultural pest insects across climate zones in much of Asia, Europe, North America, and South America. Populations of D. suzukii have demonstrated notable behavioral and physiological plasticity, adapting to diverse environmental and climatic conditions, interspecific competition, novel food sources, and potential predators. This adaptability and plasticity have enabled rapid range expansion and diversified niche use by D. suzukii, making it a species particularly suited to changing habitats and conditions. This article reviews factors and evidence that influence plasticity in D. suzukii and promotes this species' invasiveness.
Collapse
Affiliation(s)
- Catherine M Little
- Department of Biology, Acadia University, Wolfville, NS, Canada
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
- Corresponding author, e-mail:
| | - Thomas W Chapman
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - N Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
35
|
Walsh BS, Parratt SR, Atkinson D, Snook RR, Bretman A, Price TAR. Integrated Approaches to Studying Male and Female Thermal Fertility Limits. Trends Ecol Evol 2019; 34:492-493. [PMID: 30979525 DOI: 10.1016/j.tree.2019.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Benjamin S Walsh
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steven R Parratt
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - David Atkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Amanda Bretman
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tom A R Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|