1
|
Sarmiento ME, Chin KL, Lau NS, Ismail N, Norazmi MN, Acosta A, Yaacob NS. Transcriptomic Signature of Horseshoe Crab Carcinoscorpius rotundicauda Hemocytes' Response to Lipopolysaccharides. Curr Issues Mol Biol 2022; 44:5866-5878. [PMID: 36547060 PMCID: PMC9777084 DOI: 10.3390/cimb44120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Carcinoscorpius rotundicauda (C. rotundicauda) is one of the four species of horseshoe crabs (HSCs). The HSC hemocytes store defense molecules that are released upon encountering invading pathogens. The HSCs rely on this innate immunity to continue its existence as a living fossil for more than 480 million years. To gain insight into the innate mechanisms involved, transcriptomic analysis was performed on isolated C. rotundicauda hemocytes challenged with lipopolysaccharides (LPS), the main components of the outer cell membrane of gram-negative bacteria. RNA-sequencing with Illumina HiSeq platform resulted in 232,628,086 and 245,448,176 raw reads corresponding to 190,326,253 and 201,180,020 high-quality mappable reads from control and LPS-stimulated hemocytes, respectively. Following LPS-stimulation, 79 genes were significantly upregulated and 265 genes were downregulated. The differentially expressed genes (DEGs) were related to multiple immune functional categories and pathways such as those of the cytoskeleton, Toll and Imd, apoptosis, MAP kinase (MAPK), inositol phosphate metabolism, phagosome, leucocyte endothelial migration, and gram-negative bacterial infection, among others. This study provides important information about the mechanisms of response to LPS, which is relevant for the understanding the HSCs' immune response.
Collapse
Affiliation(s)
- Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| |
Collapse
|
2
|
Davies CE, Thomas JE, Malkin SH, Batista FM, Rowley AF, Coates CJ. Hematodinium sp. infection does not drive collateral disease contraction in a crustacean host. eLife 2022; 11:70356. [PMID: 35179494 PMCID: PMC8856654 DOI: 10.7554/elife.70356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally - considered to suppress the innate defences of hosts, making them more susceptible to co-infections. Evidence supporting immune suppression is largely anecdotal and sourced from diffuse accounts of compromised decapods. We used a population of shore crabs (Carcinus maenas), where Hematodinium sp. is endemic, to determine the extent of collateral infections across two distinct environments (open-water, semi-closed dock). Using a multi-resource approach (PCR, histology, haematology, population genetics, eDNA), we identified 162 Hematodinium-positive crabs and size/sex-matched these to 162 Hematodinium-free crabs out of 1191 analysed. Crabs were interrogated for known additional disease-causing agents; haplosporidians, microsporidians, mikrocytids, Vibrio spp., fungi, Sacculina, trematodes, and haemolymph bacterial loads. We found no significant differences in occurrence, severity, or composition of collateral infections between Hematodinium-positive and Hematodinium-free crabs at either site, but crucially, we recorded site-restricted blends of pathogens. We found no gross signs of host cell immune reactivity towards Hematodinium in the presence or absence of other pathogens. We contend Hematodinium sp. is not the proximal driver of co-infections in shore crabs, which suggests an evolutionary drive towards latency in this environmentally plastic host.
Collapse
Affiliation(s)
- Charlotte E Davies
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Jessica E Thomas
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Sophie H Malkin
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Frederico M Batista
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom.,Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| | - Andrew F Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
3
|
Sarmiento ME, Chin KL, Lau NS, Aziah I, Ismail N, Norazmi MN, Acosta A, Yaacob NS. Comparative transcriptome profiling of horseshoe crab Tachypleus gigas hemocytes in response to lipopolysaccharides. FISH & SHELLFISH IMMUNOLOGY 2021; 117:148-156. [PMID: 34358702 DOI: 10.1016/j.fsi.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or < -0.3, 1338 genes were significantly upregulated and 215 genes were significantly downregulated following LPS stimulation. The differentially expressed genes (DEGs) were further identified to be associated with multiple pathways such as those related to immune defence, stress response, cytoskeleton function and signal transduction. This study provides insights into the underlying molecular and regulatory mechanisms in hemocytes exposed to LPS, which has relevance for the study of the immune response of HSCs to infection.
Collapse
Affiliation(s)
- Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nyok Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
4
|
Shaik HA, Mishra A, Sehadová H, Kodrík D. Responses of sericotropin to toxic and pathogenic challenges: possible role in defense of the wax moth Galleria mellonella. Comp Biochem Physiol C Toxicol Pharmacol 2020; 227:108633. [PMID: 31644954 DOI: 10.1016/j.cbpc.2019.108633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Abstract
This study describes defense functions of the insect neuropeptide sericotropin, which is recognized as an agent that stimulates silk production in some lepidopteran larvae. Sericotropin, expressed in brain tissue of the wax moth Galleria mellonella in all developmental stages, is not expressed in silk glands, indicating its tissue specificity. Fluorescence microscopy confirmed the presence of sericotropin in the brain-subesophageal complex being predominantly and densely distributed under the plasmatic membrane and in axonal parts of neurons. Injection of venom from Habrobracon hebetor and topical application of the entomopathogenic nematode (EPN) Steinernema carpocapsae with symbiotic bacteria Xenorhabdus spp. into or onto G. mellonella larvae resulted in upregulation of the sericotropin gene and peptide, suggesting a role for sericotropin in defense and immunity. Accordingly, two synthetic fragments of sericotropin killed entomotoxic Xenorhabdus spp. bacteria in a disc diffusion antimicrobial test. Further, total metabolism, monitored by carbon dioxide production, significantly decreased after application of either venom or EPN, probably because of muscle impairment by the venom and serious cell damage caused by EPN, especially in the midgut. Both venom and EPN upregulated expression of genes encoding antimicrobial peptides gallerimycin and galiomicin in Galleria brain; however, they downregulated prophenoloxidase and phenoloxidase activity in hemolymph. These results suggest that sericotropin is a multifunctional peptide that plays an important role in G. mellonella defense and immunity.
Collapse
Affiliation(s)
- Haq Abdul Shaik
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Archana Mishra
- Institute of Molecular Biology of Plants, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Hana Sehadová
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Levin J. The Evolution of Mammalian Platelets. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Coates CJ, McCulloch C, Betts J, Whalley T. Echinochrome A Release by Red Spherule Cells Is an Iron-Withholding Strategy of Sea Urchin Innate Immunity. J Innate Immun 2017; 10:119-130. [PMID: 29212075 DOI: 10.1159/000484722] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/30/2017] [Indexed: 01/04/2023] Open
Abstract
Cellular immune defences in sea urchins are shared amongst the coelomocytes - a heterogeneous population of cells residing in the coelomic fluid (blood equivalent) and tissues. The most iconic coelomocyte morphotype is the red spherule cell (or amebocyte), so named due to the abundance of cytoplasmic vesicles containing the naphthoquinone pigment echinochrome A. Despite their identification over a century ago, and evidence of antiseptic properties, little progress has been made in characterising the immunocompetence of these cells. Upon exposure of red spherule cells from sea urchins, i.e., Paracentrotus lividus and Psammechinus miliaris, to microbial ligands, intact microbes, and damage signals, we observed cellular degranulation and increased detection of cell-free echinochrome in the coelomic fluid ex vivo. Treatment of the cells with ionomycin, a calcium-specific ionophore, confirmed that an increase in intracellular levels of Ca2+ is a trigger of echinochrome release. Incubating Gram-positive/negative bacteria as well as yeast with lysates of red spherule cells led to significant reductions in colony-forming units. Such antimicrobial properties were counteracted by the addition of ferric iron (Fe3+), suggesting that echinochrome acts as a primitive iron chelator in echinoid biological defences.
Collapse
|
7
|
Franchi N, Ballin F, Manni L, Schiavon F, Basso G, Ballarin L. Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:8-16. [PMID: 27106705 DOI: 10.1016/j.dci.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Colonies of the marine, filter-feeding ascidian Botryllus schlosseri undergo cyclical generation changes or takeovers. These events are characterised by the progressive resorption of adult zooids and their replacement by their buds that grow to adult size, open their siphons and start filtering. During the take-over, tissues of adult zooids undergo extensive apoptosis; circulating, spreading phagocytes enter the effete tissues, ingest dying cells acquiring a giant size and a round morphology. Then, phagocytes re-enter the circulation where they represent a considerable fraction (more than 20%) of circulating haemocytes. In this study, we evidence that most of these circulating phagocytes show morphological and biochemical signs of apoptosis. Accordingly, these phagocytes express transcripts of orthologues of the apoptosis-related genes Bax, AIF1 and PARP1. Electron microscopy shows that giant phagocytes contain apoptotic phagocytes inside their own phagocytic vacuole. The transcript of the orthologues of the anti-apoptotic gene IAP7 was detected only in spreading phagocytes, mostly abundant in phases far from the take-over. Therefore, the presented data suggest that, at take-over, phagocytes undergo phagocytosis-induced apoptosis (PIA). In mammals, PIA is assumed to be a process assuring the killing and the complete elimination of microbes, by promoting the disposal of terminally differentiated phagocytes and the resolution of infection. In B. schlosseri, PIA assumes a so far undescribed role, being required for the control of asexual development and colony homeostasis.
Collapse
Affiliation(s)
| | | | - Lucia Manni
- Department of Biology, University of Padova, Italy.
| | | | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| | | |
Collapse
|
8
|
Wei L, Li Y, Qiu L, Zhou H, Han Q, Diao X. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia. CHEMOSPHERE 2016; 153:198-204. [PMID: 27016815 DOI: 10.1016/j.chemosphere.2016.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Litopenaeus vannamei has a high commercial value and is the primary cultured shellfish species globally. In this study, we have compared the hemolymph physiological responses between two L. vannamei strains under acute hypoxia. The results showed that hemocyanin concentration (HC) of strain A6410 was significantly higher than strain Zhengda; Total hemocyte counts (THC) decreased significantly in both strains under hypoxic stress (p < 0.05). We also investigated the temporal and spatial variations of hypoxia inducible factors 1 (HIF-1) by qRT-PCR. The results showed that hypoxia for 12 h increased the expression levels of HIF-1α in tissues of muscle and gill from the two strains (p < 0.05). In the hepatopancreas, the expression levels of HIF-1 increased significantly in strain Zhengda and decreased significantly in strain A6410 (p < 0.05). No significant changes of HIF-1 expression were detected in the same tissues between the two strains under hypoxia for 6 h (p > 0.05), but in the gills and hepatopancreas under hypoxia for 12 h (p < 0.05). Additionally, the expression level of HIF-1 was higher in the strain Zhengda than A6410 in the same tissue under hypoxia for 12 h. It was indicated that the hypoxic tolerance of Litopenaeus vannamei was closely correlated with the expression level of HIF-1, and the higher expression level of HIF-1 to hypoxia, the lower tolerance to hypoxia in the early stage of hypoxia. These results can help to better understand the molecular mechanisms of hypoxic tolerance and speed up the selective breeding process of hypoxia tolerance in L. vannamei.
Collapse
Affiliation(s)
- Lin Wei
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Liguo Qiu
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| |
Collapse
|
9
|
Wu G, Xu L, Yi Y. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Immunol Lett 2016; 174:45-52. [PMID: 27107784 DOI: 10.1016/j.imlet.2016.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/16/2016] [Accepted: 04/16/2016] [Indexed: 02/08/2023]
Abstract
Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response.
Collapse
Affiliation(s)
- Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; Guangdong Cosmetics Engineering & Technology Research Center, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
10
|
Dolashki A, Radkova M, Todorovska E, Ivanov M, Stevanovic S, Molin L, Traldi P, Voelter W, Dolashka P. Structure and Characterization of Eriphia verrucosa Hemocyanin. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:743-752. [PMID: 26256301 DOI: 10.1007/s10126-015-9653-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Arthropod hemocyanins (Hcs) are a family of large extracellular oxygen-transporting proteins with high molecular mass and hexameric or multi-hexameric molecular assembly. This study reports for the first time the isolation and characterization of the structure of an arthropod hemocyanin from crab Eriphia verrucosa (EvH) living in the Black Sea. Its oligomeric quaternary structure is based on different arrangements of a basic 6 × 75 kDa hexameric unit, and four of them (EvH1, EvH2, EvH3, and EvH4) were identified using ion-exchange chromatography. Subunit 3 (EvH3) shows high similarity scores (75.0, 87.5, 91.7, and 75.0 %, respectively) by comparison of the N-terminal sequence of subunit 1 from Cancer pagurus of the North Sea (Cp1), subunits 3 and 6 of Cancer magister (Cm3 and Cm6), and subunit 2 of Carcinus aestuarii (CaSS2), respectively. Moreover, a partial cDNA sequence (1309 bp) of E. verrucosa hemocyanin encoding a protein of 435 amino acids was isolated. The deduced amino acid sequence shows a high degree of similarity with subunits 3, 4, 5, and 6 of C. magister (81-84 %). Most of the hemocyanins are glycosylated, and three putative O-linkage sites were identified in the partial amino acid sequence of EvH at positions 444-446, 478-480, and 547-549, respectively. The higher stability of native Hc in comparison to its subunit EvH4 as determined by circular dichroism (CD) could be explained with the formation of a stabilizing quaternary structure.
Collapse
Affiliation(s)
- A Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, G. Bonchev str. 9, Sofia, 1113, Bulgaria
| | - M Radkova
- AgroBioInstitute, 8 Dragan Tsankov, Str., 1164, Sofia, Bulgaria
| | - E Todorovska
- AgroBioInstitute, 8 Dragan Tsankov, Str., 1164, Sofia, Bulgaria
| | - M Ivanov
- AgroBioInstitute, 8 Dragan Tsankov, Str., 1164, Sofia, Bulgaria
| | - S Stevanovic
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, D-72076, Tϋbingen, Germany
| | - L Molin
- CNR-ISTM, Corso Stati Uniti 4, 35129, Padova, Italy
| | - P Traldi
- CNR-ISTM, Corso Stati Uniti 4, 35129, Padova, Italy
| | - W Voelter
- Interfacultary Institute of Biochemistry, University of Tϋbingen, Hoppe-Seyler-Str. 4, D-72076, Tϋbingen, Germany
| | - P Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, G. Bonchev str. 9, Sofia, 1113, Bulgaria.
| |
Collapse
|
11
|
Dolashki A, Radkova M, Todorovska E, Ivanov M, Stevanovic S, Molin L, Traldi P, Voelter W, Dolashka P. RETRACTED ARTICLE: Structure and characterization of cancer pagurus hemocyanin. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:375. [PMID: 25503855 DOI: 10.1007/s10126-014-9609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, G. Bonchev 9, Sofia, 1113, Bulgaria
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shinn AP, Mühlhölzl AP, Coates CJ, Metochis C, Freeman MA. Zoothamnium duplicatum infestation of cultured horseshoe crabs (Limulus polyphemus). J Invertebr Pathol 2014; 125:81-6. [PMID: 25499897 DOI: 10.1016/j.jip.2014.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
An outbreak of the sessile peritrich Zoothamnium duplicatum in a pilot, commercial-scale Limulus polyphemus hatchery resulted in the loss of ∼96% (40,000) second/third instar larvae over a 61day period. peritrich growth was heavy, leading to mechanical obstruction of the gills and physical damage. The peritrichs were controlled without resultant loss of juvenile crabs by administering 10ppm chlorine in freshwater for 1h and the addition of aquarium grade sand; a medium into which the crabs could burrow and facilitate cleaning of the carapace. Peritrich identity was confirmed from a partial SSU rDNA contiguous sequence of 1343bp (99.7% similarity to Z. duplicatum).
Collapse
Affiliation(s)
- Andrew P Shinn
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK; Fish Vet Group Asia Limited, 99/386 Chaengwattana Building, Chaengwattana Road, Kwaeng Toongsonghong, Khet Laksi, Bangkok 10210, Thailand.
| | | | - Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Christoforos Metochis
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Mark A Freeman
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
13
|
Coates CJ, Nairn J. Diverse immune functions of hemocyanins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:43-55. [PMID: 24486681 DOI: 10.1016/j.dci.2014.01.021] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Substantial evidence gathered recently has revealed the multiple functionalities of hemocyanin. Contrary to previous claims that this ancient protein is involved solely in oxygen transport within the hemolymph of invertebrates, hemocyanin and hemocyanin-derived peptides have been linked to key aspects of innate immunity, in particular, antiviral and phenoloxidase-like activities. Both phenoloxidase and hemocyanin belong to the family of type-3 copper proteins and share a high degree of sequence homology. While the importance of phenoloxidase in immunity and development is well characterised, the contribution of hemocyanin to biological defence systems within invertebrates is not recognised widely. This review focusses on the conversion of hemocyanin into a phenoloxidase-like enzyme and the array of hemocyanin-derived immune responses documented to date.
Collapse
Affiliation(s)
- Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Jacqueline Nairn
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
14
|
Coates CJ, Whalley T, Wyman M, Nairn J. A putative link between phagocytosis-induced apoptosis and hemocyanin-derived phenoloxidase activation. Apoptosis 2013; 18:1319-1331. [DOI: 10.1007/s10495-013-0891-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|