1
|
Dantan L, Carcassonne P, Degrémont L, Morga B, Travers MA, Petton B, Mege M, Maurouard E, Allienne JF, Courtay G, Romatif O, Pouzadoux J, Lami R, Intertaglia L, Gueguen Y, Vidal-Dupiol J, Toulza E, Cosseau C. Microbial education plays a crucial role in harnessing the beneficial properties of microbiota for infectious disease protection in Crassostrea gigas. Sci Rep 2024; 14:26914. [PMID: 39505929 PMCID: PMC11541537 DOI: 10.1038/s41598-024-76096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
The increase in marine diseases, particularly in economically important mollusks, is a growing concern. Among them, the Pacific oyster (Crassostrea gigas) production faces challenges from several diseases, such as the Pacific Oyster Mortality Syndrome (POMS) or vibriosis. The microbial education, which consists of exposing the host immune system to beneficial microorganisms during early life stages is a promising approach against diseases. This study explores the concept of microbial education using controlled and pathogen-free bacterial communities and assesses its protective effects against POMS and Vibrio aestuarianus infections, highlighting potential applications in oyster production. We demonstrate that it is possible to educate the oyster immune system by adding microorganisms during the larval stage. Adding culture based bacterial mixes to larvae protects only against the POMS disease while adding whole microbial communities from oyster donors protects against both POMS and vibriosis. The efficiency of immune protection depends both on oyster origin and on the composition of the bacterial mixes used for exposure. No preferential protection was observed when the oysters were stimulated with their sympatric strains. Furthermore, the added bacteria were not maintained into the oyster microbiota, but this bacterial addition induced long term changes in the microbiota composition and oyster immune gene expression. Our study reveals successful immune system education of oysters by introducing beneficial microorganisms during the larval stage. We improved the long-term resistance of oysters against critical diseases (POMS disease and Vibrio aestuarianus infections) highlighting the potential of microbial education in aquaculture.
Collapse
Grants
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- n°PFEA470020FA1000007 Fond Européen pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV )
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-19-CE20-0004 ANR DECICOMP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-41 Laboratoires d'Excellences (LABEX): TULIP
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- ANR-10-LABX-04-01 Laboratoires d'Excellences (LABEX): CEMEB
- Ifremer project GT-huitre
- project “Microval” of the Bonus Qualité Recherche program of the University of Perpignan
- project “gigantimic 1” from the federation de recherche of the University of Perpignan
- project “gigantimic 2” from the Kim Food and health foundation of MUSE
- Laboratoires d’Excellences (LABEX): TULIP
- Laboratoires d’Excellences (LABEX): CEMEB
- PhD grant from the Region Occitanie (Probiomic project)
- University of Perpignan Via Domitia Graduate School ED305
Collapse
Affiliation(s)
- Luc Dantan
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France.
| | - Prunelle Carcassonne
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | | | | | - Marie-Agnès Travers
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Bruno Petton
- Univ Brest, CNRS, IRD, LEMAR, Ifremer, Plouzané, F-29280, France
| | | | | | | | - Gaëlle Courtay
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Océane Romatif
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Juliette Pouzadoux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Raphaël Lami
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls-sur-Mer, Avenue Pierre Fabre, Banyuls-sur- Mer, 66650, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, 66650, France
| | | | - Jeremie Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Eve Toulza
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - Céline Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France.
| |
Collapse
|
2
|
Dupoué A, Koechlin H, Huber M, Merrien P, Le Grand J, Corporeau C, Fleury E, Bernay B, de Villemereuil P, Morga B, Le Luyer J. Reproductive aging weakens offspring survival and constrains the telomerase response to herpesvirus in Pacific oysters. SCIENCE ADVANCES 2024; 10:eadq2311. [PMID: 39259784 PMCID: PMC11389786 DOI: 10.1126/sciadv.adq2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Telomere length (TL) is increasingly recognized as a molecular marker that reflects how reproductive aging affects intergenerational transmissions. Here, we investigated the effects of parental age on offspring survival and the regulation of TL by examining the telomere-elongating activity of telomerase in the Pacific oyster. We assessed the classical hallmarks of aging in parents at three age classes (young, middle-aged, and old) and crossbred them using a split-brood design to examine the consequences of the nine maternal-by-paternal age combinations on their offspring. Reproductive aging leads to increased larval mortality and accelerated telomere shortening in spats, rendering them more susceptible to infection by the Ostreid herpesvirus. Viral exposure stimulates telomerase activity, a response that we identified as adaptive, but weakened by parental aging. While telomerase lengthens a spat's telomere, paradoxically, longer individual TL predicts higher mortality in adults. The telomerase-telomere complex appeared as a conservative biomarker for distinguishing survivors and losers upon exposure to polymicrobial diseases.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Hugo Koechlin
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Matthias Huber
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Pauline Merrien
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | | | | | - Elodie Fleury
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Benoît Bernay
- Plateforme Proteogen US EMerode, Université de Caen Normandie, Caen, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Jérémy Le Luyer
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| |
Collapse
|
3
|
Destoumieux-Garzón D, Montagnani C, Dantan L, Nicolas NDS, Travers MA, Duperret L, Charrière GM, Toulza E, Mitta G, Cosseau C, Escoubas JM. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster's life. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230065. [PMID: 38497271 PMCID: PMC10945412 DOI: 10.1098/rstb.2023.0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Caroline Montagnani
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Luc Dantan
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Noémie de San Nicolas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Marie-Agnès Travers
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Léo Duperret
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume M. Charrière
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume Mitta
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR EIO, Vairao 98179, French Polynesia
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| |
Collapse
|
4
|
Yao S, Li L, Guan X, He Y, Jouaux A, Xu F, Guo X, Zhang G, Zhang L. Pooled resequencing of larvae and adults reveals genomic variations associated with Ostreid herpesvirus 1 resistance in the Pacific oyster Crassostrea gigas. Front Immunol 2022; 13:928628. [PMID: 36059443 PMCID: PMC9437489 DOI: 10.3389/fimmu.2022.928628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ostreid herpesvirus 1 (OsHV-1) is a lethal pathogen of the Pacific oyster (Crassostrea gigas), an important aquaculture species. To understand the genetic architecture of the defense against the pathogen, we studied genomic variations associated with herpesvirus-caused mortalities by pooled whole-genome resequencing of before and after-mortality larval samples as well as dead and surviving adults from a viral challenge. Analysis of the resequencing data identified 5,271 SNPs and 1,883 genomic regions covering 3,111 genes in larvae, and 18,692 SNPs and 28,314 regions covering 4,863 genes in adults that were significantly associated with herpesvirus-caused mortalities. Only 1,653 of the implicated genes were shared by larvae and adults, suggesting that the antiviral response or resistance in larvae and adults involves different sets of genes or differentiated members of expanded gene families. Combined analyses with previous transcriptomic data from challenge experiments revealed that transcription of many mortality-associated genes was also significantly upregulated by herpesvirus infection confirming their importance in antiviral response. Key immune response genes especially those encoding antiviral receptors such as TLRs and RLRs displayed strong association between variation in regulatory region and herpesvirus-caused mortality, suggesting they may confer resistance through transcriptional modulation. These results point to previously undescribed genetic mechanisms for disease resistance at different developmental stages and provide candidate polymorphisms and genes that are valuable for understanding antiviral immune responses and breeding for herpesvirus resistance.
Collapse
Affiliation(s)
- Shanshan Yao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Li Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Xudong Guan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yan He
- Ministry of Education (MOE) Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Aude Jouaux
- UMR BOREA, “Biologie des Organismes et Ecosystèmes Aquatiques”, MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, Caen, France
| | - Fei Xu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| | - Guofan Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| | - Linlin Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| |
Collapse
|
5
|
Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology 2022; 148:1665-1679. [PMID: 35060462 PMCID: PMC8564771 DOI: 10.1017/s0031182021001396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite coinfections being recognized as the rule in animal populations, most studies focus on single pathogen systems. Pathogen interaction networks and the drivers of such associations are lacking in disease ecology studies. Common cockle Cerastoderma edule populations are exposed to a great diversity of pathogens, thus making them a good model system to investigate. This study examined the diversity and prevalence of pathogens from different taxonomic levels in wild and fished C. edule on the Irish coast. Potential interactions were tested focussing on abiotic (seawater temperature and salinity) and biotic (cockle size and age, and epiflora on shells) factors. No Microsporidia nor OsHV-1μVar were detected. Single infections with Haplosporidia (37.7%) or Vibrio (25.3%) were more common than two-pathogen coinfected individuals (9.5%), which may more easily succumb to infection. Fished C. edule populations with high cockle densities were more exposed to infections. Higher temperature and presence of epiflora on cockle shells promoted coinfection in warmer months. Low seawater salinity, host condition and proximity to other infected host species influenced coinfection distribution. A positive association between two Minchinia spp. was observed, most likely due to their different pathogenic effect. Findings highlight the major influence that ecological factors have on pathogen interactions and host–pathogen interplay.
Collapse
|
6
|
Dégremont L, Morga B, Maurouard E, Travers MA. Susceptibility variation to the main pathogens of Crassostrea gigas at the larval, spat and juvenile stages using unselected and selected oysters to OsHV-1 and/or V. aestuarianus. J Invertebr Pathol 2021; 183:107601. [PMID: 33964304 DOI: 10.1016/j.jip.2021.107601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
French commercial hatcheries are massively producing Crassostrea gigas selected for their higher resistance to OsHV-1, and soon should also implement selection for increasing resistance to Vibrio aestuarianus. The first objective of this study was to optimize the breeding programs for dual resistance to OsHV-1 and V. aestuarianus to determine the earliest life stage for which oysters are able to develop disease resistance. Wild stocks and selected families were tested using experimental infections by both pathogens at the larval, spat and juvenile stages. Oyster families could be evaluated for OsHV-1 as soon as the larval stage by a bath method, but this only highlighted the most resistant families; those that showed the highest resistance to V. aestuarianus could be determined using the cohabitation method at the juvenile stage. The second objective of this study was to determine if selection to increase/decrease the resistance to OsHV-1 and V. aestuarianus could have an impact on other major pathogens currently detected in hatchery at the larval stage, and in nursery and field at the spat/juveniles stages (V. coralliilyticus, V. crassostreae, V. tasmaniensis, V. neptunius, V. europaeus, V. harveyi, V. chagasi). No relationship was found between mortality caused by V. aestuarianus/OsHV-1 and the mortality caused by the other virulent bacterial strains tested regardless the stages, except between OsHV-1 and V. tasmaniensis at the juvenile stage. Finally, miscellaneous findings were evidenced such as (1) bath for bacterial challenges was not adapted for spat, (2) the main pathogens at the larval stage were OsHV-1 and V. coralliilyticus using bath, while it was V. coralliilyticus, V. europaeus, and V. neptunius at the juvenile stage by injection, and (4) variation in mortality was observed among families/wild controls for all pathogens at larval and juvenile stages, except for V. harveyi for larvae.
Collapse
Affiliation(s)
| | | | | | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
7
|
Friedman CS, Reece KS, Wippel BJT, Agnew MV, Dégremont L, Dhar AK, Kirkland P, MacIntyre A, Morga B, Robison C, Burge CA. Unraveling concordant and varying responses of oyster species to Ostreid Herpesvirus 1 variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139752. [PMID: 32846506 DOI: 10.1016/j.scitotenv.2020.139752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The Ostreid herpesvirus 1 (OsHV-1) and variants, particularly the microvariants (μVars), are virulent and economically devastating viruses impacting oysters. Since 2008 OsHV-1 μVars have emerged rapidly having particularly damaging effects on aquaculture industries in Europe, Australia and New Zealand. We conducted field trials in Tomales Bay (TB), California where a non-μVar strain of OsHV-1 is established and demonstrated differential mortality of naturally exposed seed of three stocks of Pacific oyster, Crassostrea gigas, and one stock of Kumamoto oyster, C. sikamea. Oysters exposed in the field experienced differential mortality that ranged from 64 to 99% in Pacific oysters (Tasmania>Midori = Willapa stocks), which was much higher than that of Kumamoto oysters (25%). Injection trials were done using French (FRA) and Australian (AUS) μVars with the same oyster stocks as planted in the field and, in addition, two stocks of the Eastern oyster, C. virginica. No mortality was observed in control oysters. One C. virginica stock suffered ~10% mortality when challenged with both μVars tested. Two Pacific oyster stocks suffered 75 to 90% mortality, while one C. gigas stock had relatively low mortality when challenged with the AUS μVar (~22%) and higher mortality when challenged with the French μVar (~72%). Conversely, C. sikamea suffered lower mortality when challenged with the French μVar (~22%) and higher mortality with the AUS μVar (~44%). All dead oysters had higher viral loads (~1000×) as measured by quantitative PCR relative to those that survived. However, some survivors had high levels of virus, including those from species with lower mortality. Field mortality in TB correlated with laboratory mortality of the FRA μVar (69% correlation) but not with that of the AUS μVar, which also lacked correlation with the FRA μVar. The variation in response to OsHV-1 variant challenges by oyster species and stocks demonstrates the need for empirical assessment of multiple OsHV-1 variants.
Collapse
Affiliation(s)
- Carolyn S Friedman
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - Kimberly S Reece
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Bryanda J T Wippel
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - M Victoria Agnew
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Lionel Dégremont
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, Animal and Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell Road, Tucson, AZ 85721, USA
| | - Peter Kirkland
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Alanna MacIntyre
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Clara Robison
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Colleen A Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
8
|
Cordier C, Stavrakakis C, Morga B, Degrémont L, Voulgaris A, Bacchi A, Sauvade P, Coelho F, Moulin P. Removal of pathogens by ultrafiltration from sea water. ENVIRONMENT INTERNATIONAL 2020; 142:105809. [PMID: 32554141 DOI: 10.1016/j.envint.2020.105809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Among water treatment processes, ultrafiltration is known to be efficient for the elimination of micro-organisms (bacteria and viruses). In this study, two pathogens were targeted, a bacterium, Vibrio aestuarianus and a virus, OsHV-1, with the objective to produce high quality water from seawater, in the case of shellfish productions. The retention of those microorganisms by ultrafiltration was evaluated at labscale. In the case of OsHV-1, the protection of oysters was validated by in vivo experiments using oysters spat and larvae, both stages being highly susceptible to the virus. The oysters raised using contaminated seawater which was then subsequently treated by ultrafiltration, had similar mortality to the negative controls. In the case of V. aestuarianus, ultrafiltration allowed a high retention of the bacteria in seawater with concentrations below the detection limits of the 3 analytical methods (flow cytometry, direct seeding and seeding after filtration to 0.22 µm). Thus, the quantity of V. aestuarianus was at least, 400 times inferior to the threshold known to induce mortalities in oysters. Industrial scale experiment on a several months period confirmed the conclusion obtained at lab scale on the Vibrio bacteria retention. Indeed, no bacteria from this genus, potentially harmful for oysters, was detected in permeate and this, whatever the quality of the seawater treated and the bacteria concentration upstream of the membrane. Moreover, the resistance of the process was confirmed with a stability of hydraulic performances over time for two water qualities and even facing an algal bloom. In terms of retention and resistance, ultrafiltration process was validated for the treatment of seawater towards the targeted pathogenic microorganisms, with the aim of biosecuring shellfish productions.
Collapse
Affiliation(s)
- Clémence Cordier
- Aix Marseille Univ., Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340, EPM), Equipe Procédés Membranaires, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340), Aix-Marseille Université, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, France
| | - Christophe Stavrakakis
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Benjamin Morga
- Laboratoire de Génétique et de Pathologie des Mollusques Marins, Station Ifremer de La Tremblade, Avenue du Mus du Loup, 17 390 La Tremblade, France
| | - Lionel Degrémont
- Laboratoire de Génétique et de Pathologie des Mollusques Marins, Station Ifremer de La Tremblade, Avenue du Mus du Loup, 17 390 La Tremblade, France
| | - Alexandra Voulgaris
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Alessia Bacchi
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Patrick Sauvade
- Suez - Aquasource, 20, Avenue Didier Daurat, 31029 Toulouse cedex 04, France
| | - Franz Coelho
- Suez - Aquasource, 20, Avenue Didier Daurat, 31029 Toulouse cedex 04, France
| | - Philippe Moulin
- Aix Marseille Univ., Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340, EPM), Equipe Procédés Membranaires, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340), Aix-Marseille Université, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, France.
| |
Collapse
|
9
|
Fleury E, Barbier P, Petton B, Normand J, Thomas Y, Pouvreau S, Daigle G, Pernet F. Latitudinal drivers of oyster mortality: deciphering host, pathogen and environmental risk factors. Sci Rep 2020; 10:7264. [PMID: 32350335 PMCID: PMC7190702 DOI: 10.1038/s41598-020-64086-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/04/2020] [Indexed: 11/25/2022] Open
Abstract
Diseases pose an ongoing threat to aquaculture, fisheries and conservation of marine species, and determination of risk factors of disease is crucial for management. Our objective was to decipher the effects of host, pathogen and environmental factors on disease-induced mortality of Pacific oysters (Crassostrea gigas) across a latitudinal gradient. We deployed young and adult oysters at 13 sites in France and we monitored survival, pathogens and environmental parameters. The young oysters came from either the wild collection or the hatchery while the adults were from the wild only. We then used Cox regression models to investigate the effect of latitude, site, environmental factors and origin on mortality risk and to extrapolate this mortality risk to the distribution limits of the species in Europe. We found that seawater temperature, food level, sea level atmospheric pressure, rainfall and wind speed were associated with mortality risk. Their effect on hatchery oysters was generally higher than on wild animals, probably reflecting that hatchery oysters were free of Ostreid herpesvirus 1 (OsHV-1) whereas those from the wild were asymptomatic carriers. The risk factors involved in young and adult oyster mortalities were different, reflecting distinct diseases. Mortality risk increases from 0 to 90% with decreasing latitude for young hatchery oysters, but not for young wild oysters or adults. Mortality risk was higher in wild oysters than in hatchery ones at latitude > 47.6°N while this was the opposite at lower latitude. Therefore, latitudinal gradient alters disease-induced mortality risk but interacts with the initial health status of the host and the pathogen involved. Practically, we suggest that mortality can be mitigated by using hatchery oysters in north and wild collected oysters in the south.
Collapse
Affiliation(s)
- Elodie Fleury
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France.
| | - Pierrick Barbier
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France
| | - Bruno Petton
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France
| | - Julien Normand
- Ifremer, Laboratoire Environnement Ressources de Normandie, 14520, Port en Bessin, France
| | - Yoann Thomas
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France
| | | | - Gaétan Daigle
- Département de Mathématiques et Statistique, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
| | - Fabrice Pernet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France
| |
Collapse
|
10
|
Petton B, de Lorgeril J, Mitta G, Daigle G, Pernet F, Alunno-Bruscia M. Fine-scale temporal dynamics of herpes virus and vibrios in seawater during a polymicrobial infection in the Pacific oyster Crassostrea gigas. DISEASES OF AQUATIC ORGANISMS 2019; 135:97-106. [PMID: 31342911 DOI: 10.3354/dao03384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Pacific oyster Crassostrea gigas is currently being impacted by a polymicrobial disease that involves early viral infection by ostreid herpesvirus-1 (OsHV-1) followed by a secondary bacterial infection leading to death. A widely used method of inducing infection consists of placing specific pathogen-free oysters ('recipients') in cohabitation in the laboratory with diseased oysters that were naturally infected in the field ('donors'). With this method, we evaluated the temporal dynamics of pathogen release in seawater and the cohabitation time necessary for disease transmission and expression. We showed that OsHV-1 and Vibrio spp. in the seawater peaked concomitantly during the first 48 h and decreased thereafter. We found that 1.5 h of cohabitation with donors was enough time to transmit pathogens to recipients and to induce mortality later, reflecting the highly contagious nature of the disease. Finally, mortality of recipients was associated with increasing cohabitation time with donors until reaching a plateau at 20%. This reflects the cumulative effect of exposure to pathogens. The optimal cohabitation time was 5-6 d, the mortality of recipients occurring 1-2 d earlier.
Collapse
Affiliation(s)
- Bruno Petton
- Ifremer, LEMAR UMR 6539 (Université de Bretagne Occidentale, CNRS, IRD, Ifremer), 11 presqu'île du Vivier, 29840 Argenton-en-Landunvez, France
| | | | | | | | | | | |
Collapse
|
11
|
Martenot C, Faury N, Morga B, Degremont L, Lamy JB, Houssin M, Renault T. Exploring First Interactions Between Ostreid Herpesvirus 1 (OsHV-1) and Its Host, Crassostrea gigas: Effects of Specific Antiviral Antibodies and Dextran Sulfate. Front Microbiol 2019; 10:1128. [PMID: 31178841 PMCID: PMC6543491 DOI: 10.3389/fmicb.2019.01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Viral entry mechanisms of herpesviruses constitute a highly complex process which implicates several viral glycoproteins and different receptors on the host cell surfaces. This initial infection stage was currently undescribed for Ostreid herpes virus 1 (OsHV-1), a herpesvirus infecting bivalves including the Pacific oyster, Crassostrea gigas. To identify OsHV-1 glyproteins implicated in the attachment of the virus to oyster cells, three viral putative membrane proteins, encoded by ORF 25, 41, and 72, were selected and polyclonal antibodies against these targets were used to explore first interactions between the virus and host cells. In addition, effects of dextran sulfate, a negative charged sulfated polysaccharide, were investigated on OsHV-1 infection. Effects of antiviral antibodies and dextran sulfate were evaluated by combining viral DNA and RNA detection in spat (in vivo trials) and in oyster hemolymph (in vitro trials). Results showed that viral protein encoded by ORF 25 appeared to be involved in interaction between OsHV-1 and host cells even if other proteins are likely implicated, such as proteins encoded by ORF 72 and ORF 41. Dextran sulfate at 30 μg/mL significantly reduced the spat mortality rate in the experimental conditions. Taken together, these results contribute to better understanding the pathogenesis of the viral infection, especially during the first stage of OsHV-1 infection, and open the way toward new approaches to control OsHV-1 infection in confined facilities.
Collapse
Affiliation(s)
- Claire Martenot
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Nicole Faury
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Benjamin Morga
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Lionel Degremont
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Jean-Baptiste Lamy
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | | | - Tristan Renault
- Département Ressources Biologiques et Environnement, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| |
Collapse
|
12
|
Lupo C, Travers MA, Tourbiez D, Barthélémy CF, Beaunée G, Ezanno P. Modeling the Transmission of Vibrio aestuarianus in Pacific Oysters Using Experimental Infection Data. Front Vet Sci 2019; 6:142. [PMID: 31139636 PMCID: PMC6527844 DOI: 10.3389/fvets.2019.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Vibrio aestuarianus is a bacterium related to mortality outbreaks in Pacific oysters, Crassostrea gigas, in France, Ireland, and Scotland since 2011. Knowledge about its transmission dynamics is still lacking, impairing guidance to prevent and control the related disease spread. Mathematical modeling is a relevant approach to better understand the determinants of a disease and predict its dynamics in imperfectly observed pathosystems. We developed here the first marine epidemiological model to estimate the key parameters of V. aestuarianus infection at a local scale in a small and closed oyster population under controlled laboratory conditions. Using a compartmental model accounting for free-living bacteria in seawater, we predicted the infection dynamics using dedicated and model-driven collected laboratory experimental transmission data. We estimated parameters and showed that waterborne transmission of V. aestuarianus is possible under experimental conditions, with a basic reproduction number R0 of 2.88 (95% CI: 1.86; 3.35), and a generation time of 5.5 days. Our results highlighted a bacterial dose–dependent transmission of vibriosis at local scale. Global sensitivity analyses indicated that the bacteria shedding rate, the concentration of bacteria in seawater that yields a 50% chance of catching the infection, and the initial bacterial exposure dose W0 were three critical parameters explaining most of the variation in the selected model outputs related to disease spread, i.e., R0, the maximum prevalence, oyster survival curve, and bacteria concentration in seawater. Prevention and control should target the exposure of oysters to bacterial concentration in seawater. This combined laboratory–modeling approach enabled us to maximize the use of information obtained through experiments. The identified key epidemiological parameters should be better refined by further dedicated laboratory experiments. These results revealed the importance of multidisciplinary approaches to gain consistent insights into the marine epidemiology of oyster diseases.
Collapse
Affiliation(s)
- Coralie Lupo
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | - Marie-Agnès Travers
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | - Delphine Tourbiez
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | - Clément Félix Barthélémy
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | | | | |
Collapse
|
13
|
de Lorgeril J, Escoubas JM, Loubiere V, Pernet F, Le Gall P, Vergnes A, Aujoulat F, Jeannot JL, Jumas-Bilak E, Got P, Gueguen Y, Destoumieux-Garzón D, Bachère E. Inefficient immune response is associated with microbial permissiveness in juvenile oysters affected by mass mortalities on field. FISH & SHELLFISH IMMUNOLOGY 2018; 77:156-163. [PMID: 29567138 DOI: 10.1016/j.fsi.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Since 2008, juvenile Crassostrea gigas oysters have suffered from massive mortalities in European farming areas. This disease of complex etiology is still incompletely understood. Triggered by an elevated seawater temperature, it has been associated to infections by a herpes virus named OsHV-1 as well as pathogenic vibrios of the Splendidus clade. Ruling out the complexity of the disease, most of our current knowledge has been acquired in controlled experiments. Among the many unsolved questions, it is still ignored what role immunity plays in the capacity oysters have to survive an infectious episode. Here we show that juvenile oysters susceptible to the disease mount an inefficient immune response associated with microbial permissiveness and death. We found that, in contrast to resistant adult oysters having survived an earlier episode of mortality, susceptible juvenile oysters never exposed to infectious episodes died by more than 90% in a field experiment. Susceptible oysters were heavily colonized by OsHV-1 herpes virus as well as bacteria including vibrios potentially pathogenic for oysters, which proliferated in oyster flesh and body fluids during the mortality event. Nonetheless, susceptible oysters were found to sense microbes as indicated by an overexpression of immune receptors and immune signaling pathways. However, they did not express important immune effectors involved in antimicrobial immunity and apoptosis and showed repressed expression of genes involved in ROS and metal homeostasis. This contrasted with resistant oysters, which expressed those important effectors, controlled bacterial and viral colonization and showed 100% survival to the mortality event. Altogether, our results demonstrate that the immune response mounted by susceptible oysters lacks some important immune functions and fails in controlling microbial proliferation. This study opens the way to more holistic studies on the "mass mortality syndrome", which are now required to decipher the sequence of events leading to oyster mortalities and determine the relative weight of pathogens, oyster genetics and oyster-associated microbiota in the disease.
Collapse
Affiliation(s)
- Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France.
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Vincent Loubiere
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Fabrice Pernet
- Ifremer, LEMAR UMR6539, CNRS/UBO/IRD/Ifremer, F-29280, Plouzané, France
| | - Patrik Le Gall
- MARBEC UMR 9190 (CNRS-IRD-Ifremer-UM), F34203, Sète, France
| | - Agnès Vergnes
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Fabien Aujoulat
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Luc Jeannot
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Estelle Jumas-Bilak
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Patrice Got
- MARBEC UMR 9190 (CNRS-IRD-Ifremer-UM), F34095 Montpellier, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | | | - Evelyne Bachère
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| |
Collapse
|
14
|
Young T, Kesarcodi-Watson A, Alfaro AC, Merien F, Nguyen TV, Mae H, Le DV, Villas-Bôas S. Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:229-245. [PMID: 28373065 DOI: 10.1016/j.dci.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Early lifestages of the Pacific oyster (Crassostrea gigas) are highly susceptible to infection by OsHV-1 μVar, but little information exists regarding metabolic or pathophysiological responses of larval hosts. Using a metabolomics approach, we identified a range of metabolic and immunological responses in oyster larvae exposed to OsHV-1 μVar; some of which have not previously been reported in molluscs. Multivariate analyses of entire metabolite profiles were able to separate infected from non-infected larvae. Correlation analysis revealed the presence of major perturbations in the underlying biochemical networks and secondary pathway analysis of functionally-related metabolites identified a number of prospective pathways differentially regulated in virus-exposed larvae. These results provide new insights into the pathogenic mechanisms of OsHV-1 infection in oyster larvae, which may be applied to develop disease mitigation strategies and/or as new phenotypic information for selective breeding programmes aiming to enhance viral resistance.
Collapse
Affiliation(s)
- Tim Young
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | - Andrea C Alfaro
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao V Nguyen
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Hannah Mae
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Dung V Le
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Dubert J, Barja JL, Romalde JL. New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Front Microbiol 2017; 8:762. [PMID: 28515714 PMCID: PMC5413579 DOI: 10.3389/fmicb.2017.00762] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022] Open
Abstract
Hatcheries constitute nowadays the only viable solution to support the husbandry of bivalve molluscs due to the depletion and/or overexploitation of their natural beds. Hatchery activities include the broodstock conditioning and spawning, rearing larvae and spat, and the production of microalgae to feed all stages of the production cycle. However, outbreaks of disease continue to be the main bottleneck for successful larval and spat production, most of them caused by different representatives of the genus Vibrio. Therefore, attention must be paid on preventive and management measures that allow the control of such undesirable bacterial populations. The present review provides an updated picture of the recently characterized Vibrio species associated with disease of bivalve molluscs during early stages of development, including the controversial taxonomic affiliation of some of them and relevant advances in the knowledge of their virulence determinants. The problematic use of antibiotics, as well as its eco-friendly alternatives are also critically discussed.
Collapse
Affiliation(s)
- Javier Dubert
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Juan L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| |
Collapse
|
16
|
Azéma P, Lamy JB, Boudry P, Renault T, Travers MA, Dégremont L. Genetic parameters of resistance to Vibrio aestuarianus, and OsHV-1 infections in the Pacific oyster, Crassostrea gigas, at three different life stages. Genet Sel Evol 2017; 49:23. [PMID: 28201985 PMCID: PMC5311879 DOI: 10.1186/s12711-017-0297-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background In France, two main diseases threaten Pacific oyster production. Since 2008, Crassostrea gigas spat have suffered massive losses due to the ostreid herpesvirus OsHV-1, and since 2012, significant mortalities in commercial-size adults have been related to infection by the bacterium Vibrio aestuarianus. The genetic basis for resistance to V. aestuarianus and OsHV-1 and the nature of the genetic correlation between these two traits were investigated by using 20 half-sib sire families, each containing two full-sib families. For each disease, controlled infectious challenges were conducted using naïve oysters that were 3 to 26 months old. In addition, siblings were tested under field, pond and raceway conditions to determine whether laboratory trials reflected mortality events that occur in the oyster industry. Results First, we estimated the genetic basis of resistance to V. aestuarianus in C. gigas. Susceptibility to the infection was low for oysters in spat stage but increased with later life stages. Second, we confirmed a strong genetic basis of resistance to OsHV-1 infection at early stages and demonstrated that it was also strong at later stages. Most families had increased resistance to OsHV-1 infection from the spat to adult stages, while others consistently showed low or high mortality rates related to OsHV-1 infection, regardless of the life stage. Our third main finding was the absence of genetic correlations between resistance to OsHV-1 infection and resistance to V. aestuarianus infection. Conclusions Selective breeding to enhance resistance to OsHV-1 infection could be achieved through selective breeding at early stages and would not affect resistance to V. aestuarianus infection. However, our results suggest that the potential to select for improved resistance to V. aestuarianus is lower. Selection for dual resistance to OsHV-1 and V. aestuarianus infection in C. gigas might reduce the impact of these two major diseases by selecting families that have the highest breeding values for resistance to both diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Azéma
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France
| | - Jean-Baptiste Lamy
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France
| | - Pierre Boudry
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer), Centre de Bretagne, Ifremer, CS 10070, 29280, Plouzané, France
| | - Tristan Renault
- Département Ressources Biologique et Environnement, Ifremer, Rue de l'Ile d'Yeu, 44300, Nantes, France
| | - Marie-Agnès Travers
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France
| | - Lionel Dégremont
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France.
| |
Collapse
|
17
|
Bai CM, Wang QC, Morga B, Shi J, Wang CM. Experimental infection of adult Scapharca broughtonii with Ostreid herpesvirus SB strain. J Invertebr Pathol 2016; 143:79-82. [PMID: 27939653 DOI: 10.1016/j.jip.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
We investigated the susceptibility of ark shell, Scapharca broughtonii, adults to Ostreid herpesvirus SB strain (OsHV-1-SB) through experimental infection by intramuscular injection assays. Results showed the onset of mortality occurred at 3days post injection, one day after the water turbidity became evident in rearing tanks. The mortality curves for the challenged group were similar to those observed at affected hatcheries. Histological lesions, herpesvirus-like particles and high OsHV-1-SB quantities were detected in challenged ark shells. This is the first study to successfully reproduce OsHV-1 disease in Arcoida species, and very few studies in adult bivalves (over 24months old).
Collapse
Affiliation(s)
- Chang-Ming Bai
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing-Chen Wang
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Benjamin Morga
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Laboratoire de Génétique et Pathologie (LGP), Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Jie Shi
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chong-Ming Wang
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|