1
|
Gerdol M, Pallavicini A. Exploring the immune resilience of Mediterranean mussels: Recent advances and future directions. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110147. [PMID: 39837400 DOI: 10.1016/j.fsi.2025.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The Mediterranean mussel (Mytilus galloprovincialis) is a key species in European aquaculture, known for its economic and societal importance, particularly as a primary source of income for local fisheries in European coastal areas. While historically resilient to the mass mortality events that have affected other bivalve species, M. galloprovincialis may face increasing threats from emerging pathogens, including bacteria, viruses, and eukaryotic parasites. These microorganisms, often opportunistic, pose heightened risks in the current climate change scenario, where heatwaves are becoming increasingly frequent and the persistent presence of pollutants is suspected to impair the functional response of hemocytes. Over the past decade, significant advancements in immunological research have provided deeper insights into the cellular and molecular mechanisms underlying the robust defense system of M. galloprovincialis, which allows this species to efficiently cope with a broad range of infections. By analyzing the scientific literature published on mussel immunology over the past ten years, this review consolidates current knowledge on the immune system of the Mediterranean mussel. We place a particular focus on the cellular and molecular components involved in the recognition and elimination of microbial pathogens and discuss how the most recent discoveries may inform improved management and disease mitigation strategies for Mediterranean mussel farming in the in the years to come.
Collapse
Affiliation(s)
- Marco Gerdol
- University of Trieste, Department of Life Sciences, Italy.
| | | |
Collapse
|
2
|
Min JG, Kim YC, Kim KI. Role of Filter-Feeding Bivalves in the Bioaccumulation and Transmission of White Spot Syndrome Virus (WSSV) in Shrimp Aquaculture Systems. Pathogens 2024; 13:1103. [PMID: 39770362 PMCID: PMC11728602 DOI: 10.3390/pathogens13121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (Crassostrea gigas), blue mussels (Mytilus edulis), and manila clams (Venerupis philippinarum) cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.87 cm, 6.97 cm, and 5.7 cm, respectively) cohabitated with WSSV-infected shrimp (Penaeus vannamei, average body weight: 16.4 g) for 48 h. In the experiments, bivalves accumulated WSSV particles in both the gill and digestive gland tissues, with the digestive glands exhibiting higher viral load (average viral load, 3.91 × 104 copies/mg), showing that the viral concentrations in bivalve tissues are directly influenced by seawater WSSV concentrations, reaching levels sufficient to induce infection and 100% mortality in healthy shrimp using tissue homogenates. After a 168 h release period in clean water, the WSSV levels in bivalve tissues decreased below the detection thresholds, indicating reduced transmission risk. These results highlight the role of bivalves as temporary reservoirs of WSSV in aquaculture settings, with the transmission risk dependent on the viral concentration and retention period. Our findings suggest that the management of bivalve exposure in WSSV-endemic environments could improve the biosecurity of shrimp farms.
Collapse
Affiliation(s)
- Joon-Gyu Min
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea;
| | - Young-Chul Kim
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Kwang-Il Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea;
| |
Collapse
|
3
|
Žurga P, Dubrović I, Kapetanović D, Orlić K, Bolotin J, Kožul V, Nerlović V, Bobanović-Ćolić S, Burić P, Pohl K, Marinac-Pupavac S, Linšak Ž, Antunović S, Barišić J, Perić L. Performance of mussel Mytilus galloprovincialis under variable environmental conditions and anthropogenic pressure: A survey of two distinct farming sites in the Adriatic Sea. CHEMOSPHERE 2024; 364:143156. [PMID: 39178968 DOI: 10.1016/j.chemosphere.2024.143156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Changes in natural conditions and anthropogenic pollutants, alone or in combination, pose a significant challenge to coastal bivalve populations. The susceptibility of economically important bivalves to potential stressors in their farming environment has not been sufficiently investigated, despite the increase in anthropogenic pressure along the coast and the remarkable warming of seawater in recent years. Thus, the aim of this study was to evaluate the performance of mussel (Mytilus galloprovincialis) from two important farming sites in the eastern Adriatic, namely Mali Ston Bay (MSB) and Lim Bay (LB), in relation to variations of seawater parameters, reproductive cycle dynamics and tissue content of potentially harmful pollutants. The complex seasonal and site-specific patterns of chemical pollutants were determined, with tissue levels of metals, As, PAHs and PCBs largely comparable to those previously reported for the Mediterranean region. Concentrations of organochlorinated pesticides were below the level of detection. Significantly higher Cd, As and Hg concentrations were detected in the tissues of the MSB mussels. The reproductive cycle was clearly associated with the bioaccumulation of pollutants. All biochemical response parameters varied to some extent across seasons and/or between farming sites. A very pronounced seasonality was recorded for acetylcholinesterase and glutathione S-transferase activity at both sites. Metallothionein concentration and superoxide dismutase activity were generally steady throughout the study period. The most striking difference between the two sites was recorded for lipid peroxides concentrations which were predominantly significantly higher in the MSB mussels, indicating expressed pro-oxidant conditions at this site. In particular, significant correlations were found between lipid peroxides and the potentially toxic metals (Cd, As, Hg) accumulated in the mussel tissue. Data reported here are valuable as baseline information for further studies related to stress in farmed bivalves caused by oscillations of environmental factors and increasing anthropogenic pressure along the coastline.
Collapse
Affiliation(s)
- Paula Žurga
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Igor Dubrović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | | | - Karla Orlić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Jakša Bolotin
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Valter Kožul
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Vedrana Nerlović
- University Department of Marine Studies, University of Split, 21000, Split, Croatia
| | | | - Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | - Kalista Pohl
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | | | - Željko Linšak
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Sanda Antunović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia
| | - Josip Barišić
- University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Lorena Perić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Yee-Duarte JA, Arellano-Martínez M, Roldán-Wong NT, Kidd KA, Ceballos-Vázquez BP. Reduction in reproductive activity from degeneration of testicular follicles in Megapitaria squalida (Mollusca: Bivalvia) exposed to metal pollution in the Gulf of California. MARINE POLLUTION BULLETIN 2024; 205:116648. [PMID: 38917499 DOI: 10.1016/j.marpolbul.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Over a reproductive cycle, the prevalence and intensity of degeneration of testicular follicles in Megapitaria squalida collected from the mining port of Santa Rosalia (a highly metal-polluted area), and San Lucas (a less polluted site), Gulf of California, Mexico, were evaluated. At San Lucas, most individuals had a typical testicular structure, and degeneration of testicular follicles was present in 9.5 % of spawning organisms. In contrast, at Santa Rosalia, 68 % of males, mainly in the ripe stage, had testicular degeneration (72 % severe intensity, mostly in medium and large-sized). Degeneration was characterized by intense hemocyte infiltration, identified as dense masses with numerous melanized cells in the follicle lumen. In both sites, males with testicular follicles degeneration had a lower condition index compared to males without degeneration. Degeneration of testicular follicles before spawning compromises and decreases the reproductive activity of M. squalida males at Santa Rosalia, which may ultimately affect the population sustainability.
Collapse
Affiliation(s)
- Josué Alonso Yee-Duarte
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico; Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur KM 5.5, C.P. 23080, La Paz, Baja California Sur, Mexico
| | - Marcial Arellano-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico
| | | | - Karen Ann Kidd
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Bertha Patricia Ceballos-Vázquez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av. Instituto Politécnico Nacional, s/n Col. Playa Palo de Santa Rita. C.P. 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
5
|
Gürkan M, Ertürk Gürkan S, Künili İE, Acar S, Özel OT, Düzgüneş ZD, Türe M. Evaluation of the health of Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) distributed in the Çanakkale strait, Turkey. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106492. [PMID: 38598959 DOI: 10.1016/j.marenvres.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The observation of mortality in Mediterranean mussels (Mytilus galloprovincialis) distributed in the Çanakkale Strait in recent years was influential in developing the research question for this study. In this study, the presence of bacteria (Vibrio spp.) and parasites (Marteilia spp. and Haplosporidium spp.) in mussels collected from Kumkale, Kepez, and Umurbey stations in the Çanakkale Strait was investigated seasonally. Microbiological findings, histopathology, oxidative stress enzymes and their gene expressions, lipid peroxidation, lysosomal membrane stability, and changes in haemolymph were examined. In summer samples, both the defence system and the extent of damage were higher in gill tissue. In winter samples, enzyme activities and lipid peroxidation were found to be predominantly higher in digestive gland tissues. Histological examinations and Hemacolor staining revealed the presence of protozoan cysts, and for bacterial examination, molecular analysis performed after culturing revealed the presence of 7 Vibrio species. While the total numbers of heterotrophic bacteria detected in all samples were at acceptable levels, the predominance of Vibrio spp. numbers among the total heterotrophic bacteria detected in almost all samples were noteworthy. The total hemocyte count was calculated as 5.810(4)±0.58 (cells/mm3) in winter and 7.210(4)±1.03 (cells/mm3) in summer. These factors are considered to be possible causes of mussel mortality.
Collapse
Affiliation(s)
- Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye.
| | - İbrahim Ender Künili
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Fishing and Fish Processing Technology, Çanakkale, Turkiye
| | - Seçil Acar
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Marine Sciences and Limnology, Çanakkale, Turkiye
| | - Osman Tolga Özel
- Central Fisheries Research Institute, Department of Aquaculture, Trabzon, Turkiye
| | - Zehra Duygu Düzgüneş
- Central Fisheries Research Institute, Department of Breeding and Genetics, Trabzon, Turkiye
| | - Mustafa Türe
- Central Fisheries Research Institute, Department of Fisheries Health, Trabzon, Turkiye
| |
Collapse
|
6
|
Pellicanò R, Brunetti R, Toscano T, Smeraldo S, Baldi L, Cavallo S, Capone S, Colarusso G. Risk valuation for E. coli contamination in Campania region shellfish from 2016 to 2021. Heliyon 2023; 9:e21716. [PMID: 38027549 PMCID: PMC10658277 DOI: 10.1016/j.heliyon.2023.e21716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
This study set out to assess the microbiological quality of shellfish collected over a six-year period of time in the Campania Region Sea. A total of 1459 samples were examined in order to determine whether Escherichia coli was present. To investigate potential correlations between the E. coli counts and environmental parameters (salinity, pH, dissolved oxygen, seawater temperature, turbidity, rainfall) and pollution variables (density and distance of heavy and light discharges), data were gathered. With only roughly 19% of the samples not meeting European and Italian criteria (E. coli counts more than 230 most likely number MPN per 100 g of pulp and intravalvar liquid), the results showed that the microbiological quality of the shellfish was good. A correlation between microbial contamination, season, rainfall, and dissolved oxygen was found using statistical analysis. However, the discharge density along the coast per spatial unit (a 200 × 200 MT cell), which was determined using the "quartic" Kernel function, showed found to be the primary factor determining the E. coli concentration in the shellfish. An increase in rain millimeters was found to be associated with a higher risk of heightened E. coli contamination, according to a model that was fitted to assess the probability of detecting a higher E. coli count in connection to environmental parameters. This outcome could be explained by the discharge density near the coast as well as the increased availability of coliforms, particularly E. coli, and nutrients during periods of heavier rainfall.
Collapse
Affiliation(s)
- Roberta Pellicanò
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Roberta Brunetti
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Tecla Toscano
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Sonia Smeraldo
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Loredana Baldi
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Stefania Cavallo
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Stefano Capone
- Regional Agency for the Environmental Protection ARPA Campania - U.O.C. SOA, Italy
| | - Germana Colarusso
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| |
Collapse
|
7
|
Martins Dos Reis IM, Mattos JJ, Siebert MN, Zacchi FL, Velasquez Bastolla CL, Saldaña-Serrano M, Bícego MC, Taniguchi S, Araujo de Miranda Gomes CH, Rodrigues de Melo CM, Dias Bainy AC. Gender influences molecular and histological biomarkers in mature oysters Crassostrea gasar (Adanson, 1757) after pyrene exposure. CHEMOSPHERE 2023; 311:136985. [PMID: 36306960 DOI: 10.1016/j.chemosphere.2022.136985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Oysters are frequently used as sentinel organisms for monitoring effects of contaminants due to their sessile, filtering habits and bioaccumulation capacity. These animals can show elevated body burden of contaminants, such as pyrene (PYR). PYR can be toxic at a molecular level until the whole oyster, which can show reproductive and behavioral changes. Considering that biologic parameters, such as gender or reproductive stage can interfere in the toxic effects elicited by contaminants uptake, the aim of this study was to evaluate some molecular and histological responses in females and males of oyster Crassostrea gasar exposed to PYR (0.25 and 0.5 μM) for 24 h at the pre-spawning stage. PYR concentrations were analyzed in water and in tissues of female and male oysters. Gene transcripts related to biotransformation (CYP3475C, CYP2-like, CYP2AU1, CYP356A, GSTO-like, GSTM-like, SULT-like), stress (HSP70), and reproduction (Vitellogenin, Glycoprotein) were quantified in gills. In addition, histological analysis and histo-localization of CYP2AU1 mRNA transcripts in gills, mantle and digestive diverticulum were carried out. Females and males in pre-spawning stage bioconcentrated PYR in their tissues. Males were more sensitive to PYR exposure. CYP2AU1 transcripts were higher in males (p < 0.05), as well as tubular atrophy was observed only in males exposed to PYR (p < 0.05). As expected, vitellogenin transcripts were lower in males (p < 0.05). Given these results, it is suggested that levels of CYP2AU1 be a good biomarker of exposure to PYR in oyster C. gasar and that it is important to consider the gender for the interpretation of biomarker responses.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAq, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Federal Institute of Education Science and Technology of Santa Catarina - IFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo - USP, São Paulo, SP, Brazil
| | | | - Claudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusk, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
8
|
Rodríguez-Romeu O, Soler-Membrives A, Padrós F, Dallarés S, Carreras-Colom E, Carrassón M, Constenla M. Assessment of the health status of the European anchovy (Engraulis encrasicolus) in the NW Mediterranean Sea from an interdisciplinary approach and implications for food safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156539. [PMID: 35688235 DOI: 10.1016/j.scitotenv.2022.156539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The European anchovy (Engraulis encrasicolus) is a small pelagic fish with an outstanding commercial value supporting important fisheries and is a key component of pelagic ecosystems in the Mediterranean Sea. Progressive reductions in the population size of this species has been observed in the Mediterranean Sea during recent decades, accompanied by a decline in the body condition, as well as the size/age of maturation. Nonetheless, the health status has not been yet assessed using a holistic approach. Herein, we analyse the health status of the European anchovy, integrating distinct indicators from fish condition, enzymatic biomarkers, presence of tissue alterations, and parasite descriptors. In addition, we analyse the presence of anthropogenic items (AIs) in the digestive tract of fish and their potential impact on health status. Additionally, we assess the differences between current AIs values and those recorded over 12 years ago. None of the health indicators studied provided evidence of relevant pathologic conditions affecting this fish species in the studied area. However, changes in the pattern of liver parenchyma were found. Compared with anchovy populations from other distribution areas, no zoonotic parasites were recorded in this study, demonstrating a reduced risks associated with foodborne transmission to humans. AIs, such as fibres and plastic particles, were found in the digestive tract of half of the fish analysed. A significant increase was detected in AIs prevalence between 2007 (40 %) and 2019 (70 %), alongside differences in the abundance and typology of the AIs, though this does not seem to have impacted fish health yet. Therefore, our work underscores the importance of implementing a regular program to monitor the health status of this key species to better understand population dynamics and their drivers.
Collapse
Affiliation(s)
- Oriol Rodríguez-Romeu
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Francesc Padrós
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Sara Dallarés
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ester Carreras-Colom
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Maite Carrassón
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Maria Constenla
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
9
|
Ladouali Z, Boudjema N, Loudjani F, Boubsil S, Abdennour C. The effects of environmental stressors on gonad biomarkers of a sentinel marine bivalve, Mytilus galloprovincialis. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Zeyneb Ladouali
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| | - Naouel Boudjema
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| | - Farida Loudjani
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| | - Soumaya Boubsil
- Department of Biology, Faculty of Natural and Life Sciences, University Souk Ahras, Souk Ahras, Algeria
| | - Cherif Abdennour
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, Annaba, Algeria
| |
Collapse
|
10
|
Santibáñez P, Romalde J, Fuentes D, Figueras A, Figueroa J. Health Status of Mytilus chilensis from Intensive Culture Areas in Chile Assessed by Molecular, Microbiological, and Histological Analyses. Pathogens 2022; 11:pathogens11050494. [PMID: 35631015 PMCID: PMC9145640 DOI: 10.3390/pathogens11050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Shellfish farming is a relevant economic activity in Chile, where the inner sea in Chiloé island concentrates 99% of the production of the mussel Mytilus chilensis. This area is characterized by the presence of numerous human activities, which could harm the quality of seawater. Additionally, the presence of potentially pathogenic microorganisms can influence the health status of mussels, which must be constantly monitored. To have a clear viewpoint of the health status of M. chilensis and to study its potential as a host species for exotic diseases, microbiological, molecular, and histological analyses were performed. This study was carried out in October 2018, where M. chilensis gut were studied for: presence of food-borne bacteria (Vibrio parahaemolyticus, Escherichia coli, Salmonella spp.), exotic bacteria (“Candidatus Xenohaliotis californiensis”), viruses (abalone and Ostreid herpes virus), and protozoa (Marteilia spp., Perkinsus spp. and Bonamia spp.). Additionally, 18S rDNA metabarcoding and histology analyses were included to have a complete evaluation of the health status of M. chilensis. Overall, despite the presence of risk factors, abnormal mortality rates were not reported during the monitoring period and the histological examination did not reveal significant lesions. Pathogens of mandatory notification to World Organization for Animal Health (OIE) and the Chilean National Fisheries and Aquaculture Service (SERNAPESCA) were not detected, which confirms that M. chilensis have a good health status, highlighting the importance of an integrated vision of different disciplines to ensure the sustainability of this important mussel industry in Chile.
Collapse
Affiliation(s)
- Pablo Santibáñez
- Programa de Doctorado en Ciencias de la Acuicultura, Facultad de Ciencias, Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt 5110566, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Bío-Bío 4030000, Chile;
- Correspondence:
| | - Jesús Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Derie Fuentes
- Bio-Computing and Applied Genetics Division, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago 8580704, Chile;
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Bío-Bío 4030000, Chile;
- Department of Biochemistry and Microbiology, Faculty of Biochemistry, University Austral of Chile, Valdivia, Los Ríos 5091000, Chile
| |
Collapse
|
11
|
Hammel M, Simon A, Arbiol C, Villalba A, Burioli EAV, Pépin JF, Lamy JB, Benabdelmouna A, Bernard I, Houssin M, Charrière G, Destoumieux-Garzon D, Welch J, Metzger MJ, Bierne N. Prevalence and polymorphism of a mussel transmissible cancer in Europe. Mol Ecol 2022; 31:736-751. [PMID: 34192383 PMCID: PMC8716645 DOI: 10.1111/mec.16052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts - Mytilus edulis, M. galloprovincialis or hybrids - and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift.
Collapse
Affiliation(s)
- Maurine Hammel
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier,
France,IHPE, Univ Montpellier, CNRS, Ifremer, Univ Perpignan,
Via Domitia, France
| | - Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier,
France
| | | | - Antonio Villalba
- Centro de Investigacións Mariñas,
Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain,Departamento de Ciencias de la Vida, Universidad de
Alcalá, Alcalá de Henares, Spain.,Research Centre for Experimental Marine Biology and
Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque
Country, Spain
| | - Erika AV Burioli
- IHPE, Univ Montpellier, CNRS, Ifremer, Univ Perpignan,
Via Domitia, France,LABÉO, Caen, France
| | - Jean-François Pépin
- Laboratoire Environnement ressources des Pertuis
Charentais, IFREMER, La Tremblade, France
| | - Jean-Baptiste Lamy
- Santé, Génétique, Microbiologie des
Mollusques, IFREMER, La Tremblade, France
| | | | | | | | | | | | - John Welch
- Department of Genetics, University of Cambridge,
Downing Street, Cambridge, UK
| | | | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier,
France
| |
Collapse
|
12
|
Battistini R, Listorti V, Squadrone S, Pederiva S, Abete MC, Mua R, Ciccotelli V, Suffredini E, Maurella C, Baioni E, Orlandi M, Ercolini C, Serracca L. Occurrence and persistence of enteric viruses, arsenic and biotoxins in Pacific oysters farmed in an Italian production site. MARINE POLLUTION BULLETIN 2021; 162:111843. [PMID: 33223135 DOI: 10.1016/j.marpolbul.2020.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of Norovirus (NoV) and Hepatitis E virus (HEV) in non-depurated and depurated oysters raised in the north-west Italian coast was investigated by quantitative real-time RT-PCR. Total and inorganic arsenic (As) and the presence of marine biotoxins (DSP, ASP, PSP) by LC-MS were also investigated. NoV was detected through all the sampling period in non depurated and depurated oysters with highest levels during wintertime (>104 genome copies per gram, gc/g) and minimum values in summer below the LOQ (<130/140 gc/g). HEV has never been found as well as biotoxins. Total As concentration was found in oysters in the range 0.45-3.0 mg/kg, while inorganic As was found in all samples in concentrations below the LOQ (<0.020 mg/kg). The study highlights how the 24 h depuration process didn't reduce significantly NoV levels and therefore the high concentration of NoV in oysters could represent a risk for consumers especially during winter and spring months.
Collapse
Affiliation(s)
- Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
| | - Valeria Listorti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Sabina Pederiva
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Roberto Mua
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Valentina Ciccotelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elisa Baioni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Mino Orlandi
- Liguria Local Health Unit-ASL 5, Complex Unit of Hygiene of Foods and Animal Origin, La Spezia, Italy
| | - Carlo Ercolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
13
|
Saco A, Rey-Campos M, Novoa B, Figueras A. Transcriptomic Response of Mussel Gills After a Vibrio splendidus Infection Demonstrates Their Role in the Immune Response. Front Immunol 2020; 11:615580. [PMID: 33391288 PMCID: PMC7772429 DOI: 10.3389/fimmu.2020.615580] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mussels (Mytilus galloprovincialis) are filter feeder bivalves that are constantly in contact with a wide range of microorganisms, some of which are potentially pathogenic. How mussels recognize and respond to pathogens has not been fully elucidated to date; therefore, we investigated the immune mechanisms that these animals employ in response to a bacterial bath infection from the surrounding water, mimicking the response that mussels mount under natural conditions. After the bath infection, mussels were able to remove the bacteria from their bodies and from the water tank. Accordingly, antibacterial activity was detected in gill extracts, demonstrating that this tissue plays a central role in removing and clearing potential pathogens. A transcriptomic study performed after a bath infection with Vibrio splendidus identified a total of 1,156 differentially expressed genes. The expression levels of genes contributing to a number of biological processes, such as immune response activation pathways and their regulation with cytokines, cell recognition, adhesion and apoptosis, were significantly modulated after infection, suggesting that the gills play important roles in pathogen recognition, as well as being activators and regulators of the mussel innate immune response. In addition to RNA-seq analysis, long non-coding RNAs and their neighboring genes were also analyzed and exhibited modulation after the bacterial challenge. The response of gills against bath infection was compared with the findings of a previous transcriptomic study on hemocytes responding to systemic infection, demonstrating the different and specific functions of gills. The results of this study indicate that recognition processes occur in the gill, thereby activating the effector agents of the immune response to overcome bacterial infection.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
14
|
Battistini R, Varello K, Listorti V, Zambon M, Arcangeli G, Bozzetta E, Francese DR, Ercolini C, Serracca L. Microbiological and Histological Analysis for the Evaluation of Farmed Mussels ( Mytilus galloprovincialis) Health Status, in Coastal Areas of Italy. Pathogens 2020; 9:E395. [PMID: 32455535 PMCID: PMC7281438 DOI: 10.3390/pathogens9050395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Shellfish farming is a relevant economic activity in Italy. The Gulf of La Spezia is one of the major production areas for mussels: the area is characterized by the presence of numerous human activities that could harm the quality of seawater. Additionally, the presence of potentially pathogenic microorganisms may influence the health status of animals, which must be constantly monitored. To have a clear view of the health conditions of the mussels (Mytilus galloprovincialis) farmed in this area, microbiological, parasitological, and histological analyses were performed. The study was conducted from November 2016 to October 2017. Overall, despite the presence of potentially pathogenic microorganisms for mussels, abnormal mortality rates were not reported during the monitoring period and the histological examination revealed no significant lesions. Our study confirms that studying different aspects together is a useful tool for assessing the health conditions of mussels and points out the importance of adverse environmental conditions for the expression of the pathogenicity of microorganisms.
Collapse
Affiliation(s)
- Roberta Battistini
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 19100 La Spezia, Italy; (V.L.); (C.E.); (L.S.)
| | - Katia Varello
- Department of Histopathology, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (K.V.); (E.B.); (D.R.F.)
| | - Valeria Listorti
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 19100 La Spezia, Italy; (V.L.); (C.E.); (L.S.)
| | - Michela Zambon
- National Reference Centre for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro (PD), Italy; (M.Z.); (G.A.)
| | - Giuseppe Arcangeli
- National Reference Centre for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro (PD), Italy; (M.Z.); (G.A.)
| | - Elena Bozzetta
- Department of Histopathology, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (K.V.); (E.B.); (D.R.F.)
| | - Danila Raffaella Francese
- Department of Histopathology, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (K.V.); (E.B.); (D.R.F.)
| | - Carlo Ercolini
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 19100 La Spezia, Italy; (V.L.); (C.E.); (L.S.)
| | - Laura Serracca
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 19100 La Spezia, Italy; (V.L.); (C.E.); (L.S.)
| |
Collapse
|
15
|
Bozcal E, Dagdeviren M. Bacterial metagenome analysis of Mytilus galloprovincialis collected from Istanbul and Izmir coastal stations of Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:186. [PMID: 32072329 DOI: 10.1007/s10661-020-8129-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Mytilus galloprovincialis is a marine mollusk belonging to the Bivalvia class. It has been distributed largely in Turkish shores and worldwide aquatic environments. Besides being known as an environmental pollution indicator, it is highly consumed as a food and has a high economic value. Due to their nutritional mechanisms by filtering water, they are affected by pollution in seawater and mussels can host-microbial diversity of environmental origin as well as pathogenic bacteria. Therefore, in this study, bacterial species found in Mediterranean mussels collected from the coastal stations of Istanbul [Rumeli Kavagi (RK), Kucukcekmece (KC)], and Izmir [(Foca (MF), Urla (MU)] were investigated and compared with microbiological and metagenomic analyses. According to microbiological analysis results, 34 mussel-associated Enterobacteriaceae and Vibrionaceae family members were identified. As a result of the culture-independent metagenomic analysis, taxonomic groups for each station were identified and compared based on Operational Taxonomic Unit data. For all stations, the most abundant bacterial genera were the unclassified bacterial genera. The total number of mussel-related total richness identified in all groups was 4889 (RK = 1605; KC = 1930; MF = 1508; and MU = 1125). According to the metagenomic data obtained in this study, different relative amounts of Lachnospiraceae and Bacteroidetes taxa groups were reported for all stations. The pathogenic bacterial genera identified by metagenomic analyses which may be significant for the public health are Arcobacter, Clostridium, Aeromonas, Vibrio, Escherichia_Shigella, Klebsiella, Campylobacter, Helicobacter, Pseudomonas, Morganella, Serratia, Corynebacterium, Enterococcus, Staphylococcus, Yersinia, Mycoplasma, Brucellaceae_unclassified, Pantoea, and Proteus.
Collapse
Affiliation(s)
- Elif Bozcal
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Melih Dagdeviren
- Department of Biology, Faculty of Science, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
16
|
Zacchi FL, Dos Reis IMM, Siebert MN, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gasar (Adanson, 1757) elicited by pyrene and fluorene: molecular, biochemical and histological approach - Part I. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105318. [PMID: 31590133 DOI: 10.1016/j.aquatox.2019.105318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the main contaminants in aquatic environments. PAHs can affect organisms due to their carcinogenic, mutagenic and/or teratogenic characteristics. Depending on the PAHs, concentration, and period of exposure, biological damage can occur leading to histopathologic alterations. This study aimed to evaluate the molecular, biochemical and histological responses of the oyster Crassostrea gasar exposed to pyrene (0.25 and 0.5 μM) and fluorene (0.6 and 1.2 μM), after exposure for 24 and 96 h. Concentrations of both PAHs were quantified in the water and in oyster tissues. Transcript levels of phase I (CYP3475C1, CYP2-like, CYP2AU1 and CYP356A) and phase II (GSTO-like, MGST-like and SULT-like) biotransformation-related genes and the activities of ethoxyresorufin-O-deethylase (EROD), total and microsomal glutathione S-transferase (GST and MGST) were evaluated in the gills. Also, histological changes and localization of mRNA transcripts CYP2AU1 in gills, mantle, and digestive diverticula were evaluated. Both PAHs accumulated in oyster tissues. Pyrene half-life in water was significantly lower than fluorene. Transcript levels of all genes were higher in oysters exposed to of pyrene 0.5 μM (24 h). Only CYP2AU1 gene was up-regulated by fluorene exposure. EROD and MGST activities were higher in oysters exposed to pyrene. Tubular atrophy in the digestive diverticula and an increased number of mucous cells in the mantle were observed in oysters exposed to pyrene. CYP2AU1 transcripts were observed in different tissues of pyrene-exposed oysters. A significant correlation was observed between tubular atrophy and the CYP2AU1 hybridization signal in oysters exposed to pyrene, suggesting the sensibility of the species to this PAH. These results suggest an important role of biotransformation-related genes and enzymes and tissue alterations associated to pyrene metabolism but not fluorene. In addition, it reinforces the role of CYP2AU1 gene in the biotransformation process of PAHs in the gills of C. gasar.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Ward GM, Feist SW, Noguera P, Marcos-López M, Ross S, Green M, Urrutia A, Bass D. Detection and characterisation of haplosporidian parasites of the blue mussel Mytilus edulis, including description of the novel parasite Minchinia mytili n. sp. DISEASES OF AQUATIC ORGANISMS 2019; 133:57-68. [PMID: 31089003 DOI: 10.3354/dao03326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The edible mussel Mytilus edulis is a major aquaculture commodity in Europe, with 168000 t produced in 2015. A number of abundant, well characterised parasites of the species are known, though none are considered to cause significant mortality. Haplosporida (Rhizaria, Endomyxa) is an order of protistan parasites of aquatic invertebrates, the best studied of which are the oyster pathogens Haplosporidium nelsoni and Bonamia ostreae. While these species are well characterised within their hosts, the diversity, life-cycle and modes of transmission of haplosporidians are very poorly understood. Haplosporidian parasites have previously been reported from Mytilus spp., however the majority of these remain uncharacterised, and no molecular data exist for any species. In this study, we identified 2 novel haplosporidian parasites of M. edulis present in the UK. The first of these, observed by light microscopy and in situ hybridisation infecting the gills, mantle, gonadal tubules and digestive connective tissues of mussels in the Tamar estuary, England, we describe as Minchinia mytili on the basis of 18S sequence data. The second, observed infecting a single archive specimen collected in Loch Spelve, Mull, Scotland, infects the foot muscle, gills and connective tissue of the digestive gland. Sequence data places this parasite in an uncharacterised clade of sequences amplified from tropical bivalve guts and water samples, sister to H. nelsoni. Screening of water and sediment samples collected at the sample site in the Tamar estuary revealed the presence of both sequence types in the water column, suggesting host-free or planktonic life stages.
Collapse
Affiliation(s)
- Georgia M Ward
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dallarés S, Carrasco N, Álvarez-Muñoz D, Rambla-Alegre M, Solé M. Multibiomarker biomonitoring approach using three bivalve species in the Ebro Delta (Catalonia, Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36745-36758. [PMID: 30382515 DOI: 10.1007/s11356-018-3614-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Bivalves have proved to be useful bioindicators for environmental pollution. In the present study, mussels (Mytilus galloprovincialis), cockles (Cerastoderma edule), and razor shells (Solen marginatus) were collected in the Ebro Delta, an extensive area devoted to rice farming and affected by pesticide pollution, from April to July, the heaviest rice field treatment period. Possible effects of pollution were assessed through biochemical markers (carboxylesterase (CE), antioxidant and neurotoxicity-related enzymes, and lipid peroxidation levels). Data on environmental variables, bivalve reproductive condition, and presence of organic pollutants, marine phycotoxins, pathogens, or histopathological conditions in bivalve's tissues were also evaluated. Although the bioaccumulated pesticides did not explain the patterns observed for biochemical responses, the obtained results point to an effect of environmental pesticide pollution on enzymatic markers, with a prominent contribution of CE to such changes. Mussels and razor shells provided a more sensitive biochemical response to pollution than cockles. Environmental variables, bivalve reproductive condition, and marine phycotoxins did not seem to have a relevant effect on the biomarkers assessed.
Collapse
Affiliation(s)
- Sara Dallarés
- Institut of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Noelia Carrasco
- Institute of Research and Technology Food and Agriculture (IRTA), Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Diana Álvarez-Muñoz
- Water and Soil Quality Research Group (IDAEA-CSIC), Department of Environmental Chemistry, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Maria Rambla-Alegre
- Institute of Research and Technology Food and Agriculture (IRTA), Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Montserrat Solé
- Institut of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|