1
|
Huang Q, Hu W, Meng X, Chen J, Pan G. Nosema bombycis: A remarkable unicellular parasite infecting insects. J Eukaryot Microbiol 2024:e13045. [PMID: 39095558 DOI: 10.1111/jeu.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Microsporidia are opportunistic fungal-like pathogens that cause microsporidiosis, which results in significant economic losses and threatens public health. Infection of domesticated silkworms by the microsporidium Nosema bombycis causes pébrine disease, for which this species of microsporidia has received much attention. Research has been conducted extensively on this microsporidium over the past few decades to better understand its infection, transmission, host-parasite interaction, and detection. Several tools exist to study this species including the complete genome sequence of N. bombycis. In addition to the understanding of N. bombycis being important for the silkworm industry, this species has become a model organism for studying microsporidia. Research on biology of N. bombycis will contribute to the development of knowledge regarding microsporidia and potential antimicrosporidia drugs. Furthermore, this will provide insight into the molecular evolution and functioning of other fungal pathogens.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wanying Hu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Su Y, Qu Q, Li J, Han Z, Fang Y, Flavorta BL, Jia Z, Yu Q, Zhang Y, Qian P, Tang X. Perilipin1 inhibits Nosema bombycis proliferation by promoting Domeless- and Hop-mediated JAK-STAT pathway activation in Bombyx mori. Microbiol Spectr 2024; 12:e0367123. [PMID: 38690912 PMCID: PMC11237581 DOI: 10.1128/spectrum.03671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.
Collapse
Affiliation(s)
- Yaping Su
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qingsheng Qu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Junling Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhenghao Han
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yujia Fang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Billong Laura Flavorta
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhenwei Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qiong Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yiling Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
3
|
Shen Z, Ke Z, Yang Q, Ghebremichael ST, Li T, Li T, Chen J, Meng X, Xiang H, Li C, Zhou Z, Pan G, Chen P. Transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae. BMC Genomics 2024; 25:321. [PMID: 38556880 PMCID: PMC10983672 DOI: 10.1186/s12864-024-10236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.
Collapse
Affiliation(s)
- Zigang Shen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Street, Chongqing, 400716, China
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Zhuojun Ke
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Qiong Yang
- Sericulture and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Samson Teweldeberhan Ghebremichael
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Tangxin Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Tiansheng Street, Chongqing, 400716, China.
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Street, Chongqing, 400716, China.
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400716, China.
| |
Collapse
|
4
|
Su Y, Liu M, Li M, Han Z, Lü D, Zhang Y, Zhu F, Shen Z, Qian P, Tang X. Metabolomic analysis of lipid changes in Bombyx mori infected with Nosema bombycis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104750. [PMID: 37329996 DOI: 10.1016/j.dci.2023.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The silkworm (Bombyx mori) is a model species of lepidopteran insect. Microsporidium spp. are obligate intracellular eukaryotic parasites. Infection by the microsporidian Nosema bombycis (Nb) results in an outbreak of Pébrine disease in silkworms and causes substantial losses to the sericulture industry. It has been suggested that Nb depends on nutrients from host cells for spore growth. However, little is known about changes in lipid levels after Nb infection. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was performed to analyze the effect of Nb infection on lipid metabolism in the midgut of silkworms. A total of 1601 individual lipid molecules were detected in the midgut of silkworms, of which 15 were significantly decreased after Nb challenge. Classification, chain length, and chain saturation analysis revealed that these 15 differential lipids can be classified into different lipid subclasses, of which 13 belong to glycerol phospholipid lipids and two belong to glyceride esters. The results indicated that Nb uses the host lipids to complete its own replication, and the acquisition of host lipid subclasses is selective; not all lipid subclasses are required for microsporidium growth or proliferation. Based on lipid metabolism data, phosphatidylcholine (PC) was found to be an important nutrient for Nb replication. Diet supplementation with lecithin substantially promoted the replication of Nb. Knockdown and overexpression of the key enzyme phosphatidate phosphatase (PAP) and phosphatidylcholine (Bbc) for PC synthesis also confirmed that PC is necessary for Nb replication. Our results showed that most lipids in the host midgut decreased when silkworms were infected with Nb. Reduction of or supplementation with PC may be a strategy to suppress or promote microsporidial replication.
Collapse
Affiliation(s)
- Yaping Su
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Mengjin Liu
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Mingze Li
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Zhenghao Han
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Dingding Lü
- Zhenjiang College, Zhenjiang, 212028, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Feng Zhu
- Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Ping Qian
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China.
| |
Collapse
|
5
|
Halim Harrath A, Dahmash W, Alrezaki A, Mansour L, Alwasel S. Using autophagy, apoptosis, cytoskeleton, and epigenetics markers to investigate the origin of infertility in ex-fissiparous freshwater planarian individuals (nomen nudum species) with hyperplasic ovaries. J Invertebr Pathol 2023:107935. [PMID: 37209811 DOI: 10.1016/j.jip.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
The origin of the sterility observed in ex-fissiparous freshwater planarians with hyperplasic ovaries has yet to be explained. To improve our understanding of this enigmatic phenomenon, immunofluorescence staining and confocal microscopy examination were used the assess autophagy, apoptosis, cytoskeleton, and epigenetics markers in the hyperplasic ovaries of ex-fissiparous individuals and the normal ovaries of sexual individuals. Immunofluorescence positivity for the autophagic marker microtubule-associated protein1 light chain 3 (LC3) was significantly lower in the hyperplasic ovary than in the normal ovary. Compared with the normal ovary, the hyperplasic ovary exhibited significantly higher immunofluorescence positivity for the apoptotic marker caspase 3, suggesting that autophagy and apoptosis are closely associated in this pathogenicity. Furthermore, the level of global DNA (cytosine-5)-methyltransferase 3A (DNMT3) protein expression was significantly higher in the normal ovary than in the hyperplasic ovary, suggesting that DNA methylation is involved in the infertility phenomenon. The cytoskeleton marker actin also exhibited relatively higher immunofluorescence intensity in the normal ovary than in the hyperplasic ovary, consistent with previous findings on the role of cytoskeleton architecture in oocyte maturation. These results help improve our understanding of the causes of infertility in ex-fissiparous planarians with hyperplasic ovaries and provide new insights that will facilitate future studies on this mysterious pathogenicity.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia.
| | - Waleed Dahmash
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Abdelkarem Alrezaki
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Liu P, Ye Y, Xiang S, Li Y, Zhu C, Chen Z, Hu J, Gen Y, Lou L, Duan X, Zhang J, Gu W. iTRAQ-Based Quantitative Proteomics Analysis Reveals the Invasion Mechanism of Spiroplasma eriocheiris in 3T6 Cells. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164619666220113154423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Spiroplasma eriocheiris is a novel pathogen of freshwater crustaceans and
is closely related to S. mirum. They have no cell wall and a helical morphology. They have the ability
to infect mammals with an unclear mechanism.
Objective:
In this study, our aim was to investigate the profile of protein expression in 3T6 cells infected
with S. eriocheiris.
Methods:
The proteome of 3T6 cells infected by S. eriocheiris was systematically investigated by
iTRAQ.
Results:
We identified and quantified 4915 proteins, 67 differentially proteins were found, including
30 up-regulated proteins and 37 down-regulated proteins. GO term analysis shows that dysregulation
of adhesion protein , interferon and cytoskeletal regulation are associated with apoptosis. Adhesion
protein Vcam1 and Interferon-induced protein GBP2, Ifit1, TAPBP, CD63 ,Arhgef2 were
up-regulated. A key cytoskeletal regulatory protein, ARHGEF17 was down-regulated. KEGG pathway
analysis showed the NF-kappa B signaling pathway, the MAPK signaling pathway , the Jak-STAT
signaling pathway and NOD-like receptor signaling are closely related to apoptosis in vivo.
Conclusion:
Analysis of the signaling pathways involved in invasion may provide new insights for
understanding the infection mechanisms of S. eriocheiris.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Shasha Xiang
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Yuxin Li
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Chengbin Zhu
- Hengyang Chinese
Medicine Hospital, Hengyang 421001, Hunan, China
| | - Zixu Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Jie Hu
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Ye Gen
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Li Lou
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Xuqi Duan
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Juan Zhang
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Wei Gu
- Jiangsu Key Laboratory
for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College
of Life Sciences, Nanjing Normal University, No.1 Wenyuan Road, 210046 Nanjing, China
- Co-Innovation Center for
Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu, China
| |
Collapse
|
7
|
Nosema bombycis microRNA-like RNA 8 (Nb-milR8) Increases Fungal Pathogenicity by Modulating BmPEX16 Gene Expression in Its Host, Bombyx mori. Microbiol Spectr 2021; 9:e0104821. [PMID: 34704799 PMCID: PMC8549759 DOI: 10.1128/spectrum.01048-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The fungus Nosema bombycis causes significant economic losses via parasitism of an economically important insect. MicroRNAs (miRNAs) play important roles in regulating host and parasite gene expression via mRNA degradation or by inhibiting protein translation. To investigate whether microRNA-like RNAs (milRNAs) regulate N. bombycis pathogenesis and to better understand the regulatory mechanisms underlying infection, we constructed small RNA libraries from N. bombycis hyphae during the schizont proliferation period. Eleven novel milRNAs were determined by RNA sequencing and stem-loop reverse transcriptase PCR (RT-PCR) assays. Moreover, a virulence-associated milRNA, Nb-milR8, was identified as critical for N. bombycis proliferation by binding and downregulating expression of its target gene, BmPEX16, in the host during infection. Silencing of Nb-milR8 or overexpression of the target BmPEX16 gene resulted in increased susceptibility of Bombyx mori to N. bombycis infection. Taken together, these results suggest that Nb-milR8 is an important virulence factor that acts as an effector to suppress host peroxidase metabolism, thereby facilitating N. bombycis proliferation. These results provide important novel insights into interactions between pathogenic fungi and their hosts. IMPORTANCE A thorough understanding of fungal pathogen adaptations is essential for treating fungal infections. Recent studies have suggested that the role of small RNAs expressed in fungal microsporidia genomes are important for elucidating the mechanisms of fungal infections. Here, we report 11 novel microRNA-like RNAs (milRNAs) from the fungal microsporidium Nosema bombycis and identified NB-milRNAs that adaptively regulate N. bombycis proliferation. In addition, we demonstrate that N. bombycis modulates small RNA (sRNA)-mediated infection by encoding an Nb-miR8 that downregulates the expression of the host peroxidase metabolism protein BmPEX16, which is essential for peroxisome membrane biogenesis and peroxisome assembly. These results significantly contribute to our understanding of the pathogenic mechanisms of fungi, and especially microsporidia, while providing important targets for genetical engineering-based treatment of microsporidia.
Collapse
|
8
|
UDP-Glucosyltransferases Induced by Nosema bombycis Provide Resistance to Microsporidia in Silkworm ( Bombyx mori). INSECTS 2021; 12:insects12090799. [PMID: 34564239 PMCID: PMC8469862 DOI: 10.3390/insects12090799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Nosema bombycis (N. bombycis), an obligate intracellular eukaryotic parasite, is a virulent pathogen of the silkworm, that causes major economic losses. Although many studies have reported on B. mori host response to this pathogen, little is known about which genes are induced by N. bombycis. Our results showed that two B. mori uridine diphosphate-glucosyltransferases (UGTs) (BmUGT10295 and BmUGT8453) could be activated by N. bombycis and provide resistance to the microsporidia in silkworms. These results will contribute to our understanding of host stress reaction to pathogens and the two pathogen-induced resistant genes will provide a target for promoting pathogen resistance. Abstract As a silkworm pathogen, the microsporidian N. bombycis can be transovarially transmitted from parent to offspring and seriously impedes sericulture industry development. Previous studies found that Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are involved in regulating diverse cellular processes, such as detoxification, pigmentation, and odorant sensing. Our results showed that BmUGT10295 and BmUGT8453 genes were specifically induced in infected silkworms, but other BmUGTs were not. Tissue distribution analysis of the two BmUGTs showed that the transcriptions of the two BmUGTs were mainly activated in the midgut and Malpighian tubule of infected silkworms. Furthermore, there were significantly fewer microsporidia in over-expressed BmUGTs compared with the control, but there were significantly more microsporidia in RNA interference BmUGTs compared with the control. These findings indicate that the two BmUGTs were induced by N. bombycis and provided resistance to the microsporidia.
Collapse
|
9
|
Hu N, Dong ZQ, Long JQ, Zheng N, Hu CW, Wu Q, Chen P, Lu C, Pan MH. Transcriptome analysis reveals changes in silkworm energy metabolism during Nosema bombycis infection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104809. [PMID: 33838710 DOI: 10.1016/j.pestbp.2021.104809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Energy metabolism is important for the proliferation of microsporidia in infected host cells, but there is limited information on the host response. The energy metabolism response of silkworm (Bombyx mori) to microsporidia may help manage Nosema bombycis infections. We analyzed differentially expressed genes in the B.mori midgut transcriptome at two significant time points of microsporidia infection. A total of 1448 genes were up-regulated, while 315 genes were down-regulated. A high proportion of genes were involved in the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, and glycerolipid metabolism at 48 h post infection (h p.i.), and a large number of genes were involved in the TCA cycle and protein processing at 120 h p.i. These results showed that the early stages of microsporidia infection affected the basic metabolism and biosynthesis processes of the silkworm. Knockout of Bm_nscaf2860_46 (Bombyx mori isocitrate dehydrogenase, BmIDH) and Bm_nscaf3027_062 (Bombyx mori hexokinase, BmHXK) reduced the production of ATP and inhibited microsporidia proliferation. Host fatty acid degradation, glycerol metabolism, glycolysis pathway, and TCA cycle response to microsporidia infection were also analyzed, and their importance to microsporidia proliferation was verified. These results increase our understanding of the molecular mechanisms involved in N. bombycis infection and provide new insights for research on microsporidia control. IMPORTANCE: Nosema bombycis can be vertically transmitted in silkworm eggs. The traditional prevention and control strategies for microsporidia are difficult and time-consuming, and this is a problem in silkworm culture. Research has mainly focused on host gene functions related to microsporidia infection and host immune responses after microsporidia infection. Little is known about the metabolic changes occurring in the host after infection. Understanding the metabolic changes in the silkworm host could aid in the recognition of host genes important for microsporidia infection and growth. We analyzed host metabolic changes and the main participating pathways at two time points after microsporidia infection and screened the microsporidia-dependent host energy metabolism genes BmIDH and BmHXK. The results revealed genes that are important for the proliferation of Nosema bombycis. These results illustrate how microsporidia hijack the host genome for their growth and reproduction.
Collapse
Affiliation(s)
- Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China
| | - Jiang-Qiong Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cong-Wu Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China.
| |
Collapse
|
10
|
Lü D, Xu P, Hou C, Li R, Hu C, Guo X. iTRAQ-based quantitative proteomic analysis of silkworm infected with Beauveria bassiana. Mol Immunol 2021; 135:204-216. [PMID: 33930715 DOI: 10.1016/j.molimm.2021.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
Beauveria bassiana is a harmful pathogen to the economically important insect silkworm, always causes serious disease to the silkworm, which results in great losses to the sericulture industry. In order to explore the silkworm (Bombyx mori) response to B. bassiana infection, differential proteomes of the silkworm responsive to B. bassiana infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) at the different stage of the 3rd instar silkworm larvae. Among the 5040 proteins identified with confidence level of ≥95 %, total 937 proteins were differentially expressed, of which 488 proteins were up-regulated and 449 proteins were down-regulated. 23, 15, 250, 649 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the B. bassiana infected larvae at 18, 24, 36, 48 h post infection (hpi) respectively. Based on GO annotations, 6, 4, 128, 316 DEPs were involved in biological processes, 12, 5, 143, 376 DEPs were involved in molecular functions, and 6, 3, 108, 256 DEPs were involved in cell components at 18, 24, 36, 48 hpi respectively. KEGG pathway analysis displayed that 18, 12, 210, 548 DEPs separately participated in 63, 35, 201, 264 signal transduction pathways at different time of infection, and moreover a higher proportion of DEPs involved in metabolic pathways. The cluster analysis on the DEPs of different infection stages distinguished a co-regulated DEP, lysozyme precursor, which was up-regulated at both the mRNA level and the protein level, indicating that the lysozyme protein kept playing an important role in defending the silkworm against B. bassiana infection. This was the first report using an iTRAQ approach to analyze proteomes of the whole silkworm against B. bassiana infection, which contributes to better understanding the defense mechanisms of silkworm to B. bassiana infection and provides important experimental data for the identification of key factors involved in the interaction between the pathogenic fungus and its host.
Collapse
Affiliation(s)
| | - Ping Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Chengxiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China
| | - Ruilin Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Congwu Hu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| |
Collapse
|