1
|
Singh M, Singh H, Kaur K, Shubhankar S, Singh S, Kaur A, Singh P. Characterization and regulation of salt upregulated cyclophilin from a halotolerant strain of Penicillium oxalicum. Sci Rep 2023; 13:17433. [PMID: 37833355 PMCID: PMC10575979 DOI: 10.1038/s41598-023-44606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Penicillium species are an industrially important group of fungi. Cyclophilins are ubiquitous proteins and several members of this family exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity. We had earlier demonstrated that the salt-induced PPIase activity in a halotolerant strain of P. oxalicum was associated with enhanced expression of a cyclophilin gene, PoxCYP18. Cloning and characterization of PoxCYP18 revealed that its cDNA consists of 522 bp encoding a protein of 173 amino acid residues, with predicted molecular mass and pI values of 18.91 kDa and 8.87, respectively. The recombinant PoxCYP18 can catalyze cis-trans isomerization of peptidyl-prolyl bond with a catalytic efficiency of 1.46 × 107 M-1 s-1 and is inhibited specifically only by cyclosporin A, with an inhibition constant of 5.04 ± 1.13 nM. PoxCYP18 consists of two cysteine residues at positions - 45 and - 170, and loses its activity under oxidizing conditions. Substitution of these residues alone or together by site-directed mutagenesis revealed that the PPIase activity of PoxCYP18 is regulated through a redox mechanism involving the formation of disulfide linkages. Heterologous expression of PoxCYP18 conferred enhanced tolerance to salt stress in transgenic E. coli cells, implying that this protein imparts protection to cellular processes against salt-induced damage.
Collapse
Affiliation(s)
- Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, 144008, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shubhankar Shubhankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Supreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Jin D, Sun B, Zhao W, Ma J, Zhou Q, Han X, Mei Y, Fan Y, Pei Y. Thiamine-biosynthesis genes Bbpyr and Bbthi are required for conidial production and cell wall integrity of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2021; 184:107639. [PMID: 34139258 DOI: 10.1016/j.jip.2021.107639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/29/2023]
Abstract
Beauveria bassiana is an important entomopathogenic fungus used to control a variety of insect pests. Conidia are the infective propagules of the fungus. However, some important factors that influence conidiation are still to be investigated. In this study, a mutant with decreased conidial production and hyphal growth was identified from a random T-DNA insertional library of B. bassiana. The corresponding gene (Bbthi) for this mutation encodes a putative thiazole synthase. Thiazole and pyrimidine are structural components of thiamine (vitamin B1), which is an essential nutrient for all forms of life. Disruption of Bbthi, Bbpyr, a putative pyrimidine synthetic gene, or both in B. bassiana results in a significant decrease of thiamine content. Loss of Bbthi and Bbpyr function significantly decreased the conidial production and hyphal growth, as well as disrupted the integrity of conidial cell wall. However, the defect of Bbpyr and Bbthi does not decrease the virulence of B. bassiana. Our results indicate the importance of thiamine biosynthesis in conidiation of B. bassiana, and provide useful information to produce conidia of entomopathogenic fungi for biocontrol of insect pests.
Collapse
Affiliation(s)
- Dan Jin
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Binda Sun
- Biotechnology Research Center, Southwest University, Chongqing, China; Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), China
| | - Wenqi Zhao
- Biotechnology Research Center, Southwest University, Chongqing, China; Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), China
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qiuyue Zhou
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Xuemeng Han
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Yalin Mei
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Song Z, Pan J, Xie L, Gong G, Han S, Zhang W, Hu Y. Expression, Purification, and Activity of ActhiS, a Thiazole Biosynthesis Enzyme from Acremonium chrysogenum. BIOCHEMISTRY (MOSCOW) 2017; 82:852-860. [PMID: 28918750 DOI: 10.1134/s0006297917070112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiamine pyrophosphate is an essential coenzyme in all organisms. Its biosynthesis involves independent syntheses of the precursors, pyrimidine and thiazole, which are then coupled. In our previous study with overexpressed and silent mutants of ActhiS (thiazole biosynthesis enzyme from Acremonium chrysogenum), we found that the enzyme level correlated with intracellular thiamine content in A. chrysogenum. However, the exact structure and function of ActhiS remain unclear. In this study, the enzyme-bound ligand was characterized as the ADP adduct of 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid (ADT) using HPLC and 1H NMR. The ligand-free ActhiS expressed in M9 minimal medium catalyzed conversion of NAD+ and glycine to ADT in the presence of iron. Furthermore, the C217 residue was identified as the sulfur donor for the thiazole moiety. These observations confirm that ActhiS is a thiazole biosynthesis enzyme in A. chrysogenum, and it serves as a sulfur source for the thiazole moiety.
Collapse
Affiliation(s)
- Zhihui Song
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
6
|
Liu Y, Zhang W, Xie L, Liu H, Gong G, Zhu B, Hu Y. Acthi, a thiazole biosynthesis enzyme, is essential for thiamine biosynthesis and CPC production in Acremonium chrysogenum. Microb Cell Fact 2015; 14:50. [PMID: 25886533 PMCID: PMC4416257 DOI: 10.1186/s12934-015-0235-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 11/13/2022] Open
Abstract
Background The filamentous fungus Acremonium chrysogenum is an important industrial fungus and is used in the production of the β-lactam antibiotic cephalosporin C. Little is known regarding the molecular and biological mechanisms of how this industrial strain was improved by mutagenesis and molecular breeding. Comparative proteomics is one of the most powerful methods to evaluate the influence of gene expression on metabolite production. Results In this study, we used comparative proteomics to investigate the molecular mechanisms involved in the biosynthesis of cephalosporin C between a high-producer (HY) strain and a wide-type (WT) strain. We found that the expression levels of thiamine biosynthesis-related enzymes, including the thiazole biosynthesis enzyme (Acthi), pyruvate oxidase, flavin adenine dinucleotide (FAD)-dependent oxidoreductase and sulfur carrier protein-thiS, were up-regulated in the HY strain. An Acthi-silencing mutant of the WT strain grew poorly on chemically defined medium (MMC) in the absence of thiamine, and its growth was recovered on MMC medium supplemented with thiamine. The intracellular thiamine content was changed in the Acthi silencing or over-expression mutants. In addition, we demonstrated that the manipulation of the Acthi gene can affect the hyphal growth of Acremonium chrysogenum, the transcription levels of cephalosporin C biosynthetic genes, the quantification levels of precursor amino acids for cephalosporin C synthesis and the expression levels of thiamine diphosphate-dependent enzymes. Over-expression of Acthi can significantly increase the cephalosporin C yield in both the WT strain and the HY mutant strain. Conclusions Using comparative proteomics, four differently expressed proteins were exploited, whose functions may be involved in thiamine diphosphate metabolism. Among these proteins, the thiazole biosynthesis enzyme (ActhiS) may play an important role in cephalosporin C biosynthesis. Our studies suggested that Acthi might be involved in the transcriptional regulation of cephalosporin C biosynthesis. Therefore, the thiamine metabolic pathway could be a potential target for the molecular breeding of this cephalosporin C producer for industrial applications.
Collapse
Affiliation(s)
- Yan Liu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China. .,Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China.
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| | - Hong Liu
- Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China. .,Present address: Luye Pharma Group Ltd., Yantai, Shandong, 264003, China.
| | - Guihua Gong
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| | - Baoquan Zhu
- Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China.
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
7
|
Abstract
The filamentous fungus Neurospora crassa responds to light in complex ways. To thoroughly study the transcriptional response of this organism to light, RNA-seq was used to analyze capped and polyadenylated mRNA prepared from mycelium grown for 24 hr in the dark and then exposed to light for 0 (control) 15, 60, 120, and 240 min. More than three-quarters of all defined protein coding genes (79%) were expressed in these cells. The increased sensitivity of RNA-seq compared with previous microarray studies revealed that the RNA levels for 31% of expressed genes were affected two-fold or more by exposure to light. Additionally, a large class of mRNAs, enriched for transcripts specifying products involved in rRNA metabolism, showed decreased expression in response to light, indicating a heretofore undocumented effect of light on this pathway. Based on measured changes in mRNA levels, light generally increases cellular metabolism and at the same time causes significant oxidative stress to the organism. To deal with this stress, protective photopigments are made, antioxidants are produced, and genes involved in ribosome biogenesis are transiently repressed.
Collapse
|
8
|
Bâ A. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams. Nutr Neurosci 2012; 16:69-77. [PMID: 22889588 DOI: 10.1179/1476830512y.0000000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The current study attempts to determine whether thiamine (B1 vitamin) deficiency and chronic alcohol-related thiamine-deficient (TD) status, disturb maternal behavior towards pups. METHODS During gestation and lactation, Wistar rat dams were exposed to the following treatments: (i) prenatal TD dams; (ii) perinatal TD dams; (iii) postnatal TD dams; (iv) 12% alcohol/water drinking mothers; (v) ad libitum control dams. Pair-feeding treatments controlled malnutrition related to thiamine deficiency; (vi) prenatal pair-fed (PF) dams; (vii) perinatal PF dams; (viii) postnatal PF dams and included also the control of alcohol consummation: (ix) PF saccharose dams. Dams were observed for gestation outcome and for apparent disorders of the maternal behavior related to the pups at parturition. RESULTS From the nine experimental groups studied, only pre- and perinatal TD dams exhibited spontaneous abortion (33.36 and 41.66%, respectively) followed by pups-killing responses where, respectively, 4 dams/7 (57.14%) and 5 dams/7 (71.43%) showed disruption of maternal behavior and appearance of cannibalism towards pups which all were killed within 48 hours after parturition. Spontaneous abortion and pup-killing responses were not observed in the dams of any other experimental group, suggesting that perinatal disturbances of hormonal factors underlay these maternal disorders. DISCUSSION Previous studies reported that thiamine deficiency-induced degeneration of dopamine neurons may be related to mouse-killing aggression in rats. The present study suggests that perinatal thiamine deficiency-induced alteration of dopaminergic neurons in maternal brain could be a trigger factor of pup-killing responses. Central dopamine and oxytocin have been strongly associated with both the onset and maintenance of maternal behavior and the regulation of maternal aggressiveness as well. Our studies suggest that estrogen control oxytocin levels in brain structures of pregnancy-terminated rats via dopamine transmission. Thiamine may modulate cAMP/Ca2+ -dependent estradiol-triggered responses which in turn control dopamine synthesis. Consequently, thiamine deficiency induced perinatally triggers pup-killing responses in pregnancy-terminated rats by the following toxic effects: (i) disturbances of estrogen production and/or release affecting dopamine synthesis; (ii) alterations of dopamine inhibition on central oxytocinergic system-related maternal aggressiveness. Likewise, our results indicate also that perinatal thiamine deficiency alone induces spontaneous abortion, reduces litter size, and lowers birth weight, which together suggest changing in the fetoplacental estrogen receptor alpha/progesterone receptor A ratio during gestation, via autocrine/paracrine regulation disturbances. Those hypotheses should be confirmed by further investigations.
Collapse
Affiliation(s)
- Abdoulaye Bâ
- Université de Cocody, UFR Biosciences, Abidjan, Côte d'Ivoire.
| |
Collapse
|
9
|
Smith MR, Willmann MR, Wu G, Berardini TZ, Möller B, Weijers D, Poethig RS. Cyclophilin 40 is required for microRNA activity in Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:5424-9. [PMID: 19289849 PMCID: PMC2664006 DOI: 10.1073/pnas.0812729106] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Indexed: 01/02/2023] Open
Abstract
Loss-of-function mutations of SQUINT (SQN)-which encodes the Arabidopsis orthologue of cyclophilin 40 (CyP40)-cause the precocious expression of adult vegetative traits, an increase in carpel number, and produce abnormal spacing of flowers in the inflorescence. Here we show that the vegetative phenotype of sqn is attributable to the elevated expression of miR156-regulated members of the SPL family of transcription factors and provide evidence that this defect is a consequence of a reduction in the activity of ARGONAUTE1 (AGO1). Support for this latter conclusion was provided by the phenotypic similarity between hypomorphic alleles of AGO1 and null alleles of SQN and by the genetic interaction between sqn and these alleles. Our results suggest that AGO1, or an AGO1-interacting protein, is a major client of CyP40 and that miR156 and its targets play a central role in the regulation of vegetative phase change in Arabidopsis.
Collapse
Affiliation(s)
- Michael R. Smith
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Matthew R. Willmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Gang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Tanya Z. Berardini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Barbara Möller
- Laboratory of Biochemistry, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
10
|
Abstract
Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.
Collapse
Affiliation(s)
- Christopher T. Jurgenson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Tadhg P. Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853; ,
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
11
|
Ruiz-Roldán C, Puerto-Galán L, Roa J, Castro A, Di Pietro A, Roncero MIG, Hera C. The Fusarium oxysporum sti35 gene functions in thiamine biosynthesis and oxidative stress response. Fungal Genet Biol 2008; 45:6-16. [DOI: 10.1016/j.fgb.2007.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/27/2007] [Accepted: 09/12/2007] [Indexed: 01/07/2023]
|
12
|
Chatterjee A, Jurgenson CT, Schroeder FC, Ealick SE, Begley TP. Thiamin biosynthesis in eukaryotes: characterization of the enzyme-bound product of thiazole synthase from Saccharomyces cerevisiae and its implications in thiazole biosynthesis. J Am Chem Soc 2007; 128:7158-9. [PMID: 16734458 PMCID: PMC2631426 DOI: 10.1021/ja061413o] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of thiamin pyrophosphate in eukaryotes is different from the prokaryotic biosynthesis and is poorly understood to date. Only one thiazole biosynthetic gene has been identified (Thi4 in Saccharomyces cerevisiae). Here we report the identification and characterization of a Thi4-bound metabolite that consists of the ADP adduct of 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid. The unexpected structure of this compound yields the first insights into the mechanism of thiamin thiazole biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
13
|
Cheah MT, Wachter A, Sudarsan N, Breaker RR. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 2007; 447:497-500. [PMID: 17468745 DOI: 10.1038/nature05769] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 03/20/2007] [Indexed: 02/03/2023]
Abstract
Bacteria make extensive use of riboswitches to sense metabolites and control gene expression, and typically do so by modulating premature transcription termination or translation initiation. The most widespread riboswitch class known in bacteria responds to the coenzyme thiamine pyrophosphate (TPP), which is a derivative of vitamin B1. Representatives of this class have also been identified in fungi and plants, where they are predicted to control messenger RNA splicing or processing. We examined three TPP riboswitches in the filamentous fungus Neurospora crassa, and found that one activates and two repress gene expression by controlling mRNA splicing. A detailed mechanism involving riboswitch-mediated base-pairing changes and alternative splicing control was elucidated for precursor NMT1 mRNAs, which code for a protein involved in TPP metabolism. These results demonstrate that eukaryotic cells employ metabolite-binding RNAs to regulate RNA splicing events that are important for the control of key biochemical processes.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Pairing
- Base Sequence
- Eukaryotic Cells/metabolism
- Gene Expression Regulation, Fungal/genetics
- Genes, Fungal/genetics
- Introns/genetics
- Neurospora crassa/genetics
- Open Reading Frames/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Ming T Cheah
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
14
|
Chatterjee A, Jurgenson CT, Schroeder FC, Ealick SE, Begley TP. Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate. J Am Chem Soc 2007; 129:2914-22. [PMID: 17309261 PMCID: PMC2536526 DOI: 10.1021/ja067606t] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thiazole synthase catalyzes the formation of the thiazole moiety of thiamin pyrophosphate. The enzyme from Saccharomyces cerevisiae (THI4) copurifies with a set of strongly bound adenylated metabolites. One of them has been characterized as the ADP adduct of 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid. Attempts toward yielding active wild-type THI4 by releasing protein-bound metabolites have failed so far. Here, we describe the identification and characterization of two partially active mutants (C204A and H200N) of THI4. Both mutants catalyzed the release of the nicotinamide moiety from NAD to produce ADP-ribose, which was further converted to ADP-ribulose. In the presence of glycine, both the mutants catalyzed the formation of an advanced intermediate. The intermediate was trapped with ortho-phenylenediamine, yielding a stable quinoxaline derivative, which was characterized by NMR spectroscopy and ESI-MS. These observations confirm NAD as the substrate for THI4 and elucidate the early steps of this unique biosynthesis of the thiazole moiety of thiamin in eukaryotes.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
15
|
Jurgenson CT, Chatterjee A, Begley TP, Ealick SE. Structural insights into the function of the thiamin biosynthetic enzyme Thi4 from Saccharomyces cerevisiae. Biochemistry 2006; 45:11061-70. [PMID: 16964967 DOI: 10.1021/bi061025z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structure of thiazole synthase (Thi4) from Saccharomyces cerevisiae was determined to 1.8 A resolution. Thi4 exists as an octamer with two monomers in the asymmetric unit. The structure reveals the presence of a tightly bound adenosine diphospho-5-(beta-ethyl)-4-methylthiazole-2-carboxylic acid at the active site. The isolation of this reaction product identifies NAD as the most likely precursor and provides the first mechanistic insights into the biosynthesis of the thiamin thiazole in eukaryotes. Additionally, the Thi4 structure reveals the first protein structure with a GR(2) domain that binds NAD instead of FAD, raising interesting questions about how this protein evolved from a flavoenzyme to a NAD binding enzyme.
Collapse
Affiliation(s)
- Christopher T Jurgenson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | |
Collapse
|
16
|
Pemberton TJ. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires. BMC Genomics 2006; 7:244. [PMID: 16995943 PMCID: PMC1618848 DOI: 10.1186/1471-2164-7-244] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/22/2006] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. RESULTS PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. CONCLUSION Given this data, we would hypothesize that: (i) the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii) evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii) whilst the cyclophilins and parvulins have evolved to perform conserved functions, the FKBPs have evolved to perform more variable roles. Also, the repertoire of Cryptococcus neoformans may represent a better model fungal system within which to study the functions of the PPIases as its genome size and genetic tractability are equal to those of Saccharomyces cerevisiae, whilst its repertoires exhibits greater orthology to that of humans. However, further experimental investigations are required to confirm this.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
17
|
Godoi PHC, Galhardo RS, Luche DD, Van Sluys MA, Menck CFM, Oliva G. Structure of the thiazole biosynthetic enzyme THI1 from Arabidopsis thaliana. J Biol Chem 2006; 281:30957-66. [PMID: 16912043 DOI: 10.1074/jbc.m604469200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiamin pyrophosphate is an essential coenzyme in all organisms that depend on fermentation, respiration or photosynthesis to produce ATP. It is synthesized through two independent biosynthetic routes: one for the synthesis of 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate (pyrimidine moiety) and another for the synthesis of 4-methyl-5-(beta-hydroxyethyl) thiazole phosphate (thiazole moiety). Herein, we will describe the three-dimensional structure of THI1 protein from Arabidopsis thaliana determined by single wavelength anomalous diffraction to 1.6A resolution. The protein was produced using heterologous expression in bacteria, unexpectedly bound to 2-carboxylate-4-methyl-5-beta-(ethyl adenosine 5-diphosphate) thiazole, a potential intermediate of the thiazole biosynthesis in Eukaryotes. THI1 has a topology similar to dinucleotide binding domains and although details concerning its function are unknown, this work provides new clues about the thiazole biosynthesis in Eukaryotes.
Collapse
Affiliation(s)
- Paulo H C Godoi
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, CP 369, 13560-970, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Nosaka K. Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2006; 72:30-40. [PMID: 16826377 DOI: 10.1007/s00253-006-0464-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/03/2006] [Accepted: 04/17/2006] [Indexed: 11/25/2022]
Abstract
The yeast Saccharomyces cerevisiae is able to synthesize thiamin pyrophosphate (TPP) de novo, which involves the independent formation of two ring structures, 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-beta-hydroxyethylthiazole, in the early steps. In addition, this organism can efficiently utilize thiamin from the extracellular environment to produce TPP. Nineteen genes involved in the synthesis of TPP and the utilization of thiamin (THI genes) have been identified, and the function of several THI genes has been elucidated. All THI genes participating in the synthesis of the pyrimidine unit belong to multigene families. It is also intriguing that some thiamin biosynthetic proteins are composed of two distinct domains or form an enzyme complex. The expression of THI genes is coordinately induced in response to thiamin starvation. It is likely that the induction of THI genes is activated by a positive regulatory factor complex and that the protein-protein interaction among the factors is disturbed by TPP. Thiamin-hyperproducing yeast and fermented food containing a high content of thiamin are expected to be available in the future based on the progress in understanding thiamin biosynthesis and its genetic regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Kazuto Nosaka
- Department of Chemistry, Kyoto Prefectural University of Medicine, Kita-ku, Kyoto, 603-8334, Japan.
| |
Collapse
|
19
|
Medina-Silva R, Barros MP, Galhardo RS, Netto LES, Colepicolo P, Menck CFM. Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis. Res Microbiol 2006; 157:275-81. [PMID: 16171982 DOI: 10.1016/j.resmic.2005.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 07/07/2005] [Accepted: 07/07/2005] [Indexed: 11/24/2022]
Abstract
The Thi4 protein from Saccharomyces cerevisiae plays a pivotal role in the biosynthesis of thiazole, a precursor of thiamine (vitamin B1). In addition, the thi4-disrupted strain has shown increased frequencies of mitochondrial mutants (petite colonies) upon treatment with DNA damaging agents. In this work, we show that the thi4 strain presents significant induction of petites and reduced oxygen consumption when grown at 37 degrees C, a condition that induces high levels of reactive oxygen species in yeast. Oxidative stress parameters were thus measured in thi4 cells. The activities of superoxide dismutase and phospholipid hydroperoxide glutathione peroxidase were significantly increased when these mutants were grown at 37 degrees C compared to the wild-type strain (W303). The levels of carbonyl protein groups were also significantly higher for the thi4 strain than for W303. Still, significant reductions in protein thiols and reduced glutathione were observed for the mutated strain. Therefore, the Thi4 protein appears to play an important protective role during heat stress in yeast cells, a feature probably related to the mitochondrial instability and altered oxidative status observed in thi4 mutants.
Collapse
Affiliation(s)
- Renata Medina-Silva
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, Cidade Universitária, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Pemberton TJ, Kay JE. The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe. Yeast 2005; 22:927-45. [PMID: 16134115 DOI: 10.1002/yea.1288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe is comprised of nine members that are distributed over all three of its chromosomes and range from small single-domain to large multi-domain proteins. Each cyclophilin possesses only a single prolyl-isomerase domain, and these vary in their degree of consensus, including at positions that are likely to affect their drug-binding ability and catalytic activity. The additional identified motifs are involved in putative protein or RNA interactions, while a novel domain that is specific to SpCyp7 and its orthologues may have functions that include an interaction with hnRNPs. The Sz. pombe cyclophilins are found throughout the cell but appear to be absent from the mitochondria, which is unique among the characterized eukaryotic repertoires. SpCyp5, SpCyp6 and SpCyp8 have exhibited significant upregulation of their expression during the meiotic cycle and SpCyp5 has exhibited significant upregulation of its expression during heat stress. All nine have identified members in the repertoires of H. sapiens, D. melanogaster and A. thaliana. However, only three identified members in the cyclophilin repertoire of S. cerevisiae with SpCyp7 identifying a fourth protein that is not a member of the recognized repertoire due to its possession of a degenerate prolyl-isomerase domain. The cyclophilin repertoire of Sz. pombe therefore represents a better model group for the study of cyclophilin function in the higher eukaryotes.
Collapse
Affiliation(s)
- Trevor J Pemberton
- The Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, East Sussex BN1 9PX, UK.
| | | |
Collapse
|
21
|
Faou P, Tropschug M. Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast Thi4p function in the synthesis of vitamin B1. J Mol Biol 2005; 344:1147-57. [PMID: 15544818 DOI: 10.1016/j.jmb.2004.09.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/08/2004] [Accepted: 09/21/2004] [Indexed: 11/15/2022]
Abstract
Recently, we identified CyPBP37 of Neurospora crassa as a binding partner of cyclophilin41. CyPBP37 function had not yet been described, although orthologs in other organisms have been implicated in the biosynthesis of the thiazole moiety of thiamine (vitamin B1) and/or stress-related pathways. Here, CyPBP37 is characterized as an abundant cytosolic protein with a functional NAD-binding site. Saccharomyces cerevisiae mutants lacking Thi4p (the CyPBP37 ortholog) are auxotrophic for vitamin B1 (thiamine) but can grow in the presence of the thiazole moiety of thiamine, suggesting a role for Thi4p in the biosynthesis of thiazole. N.crassa CyPBP37 is able to functionally replace Thi4p in yeast thiazole synthesis. Cellular fractionation studies revealed that Thi4p is a cytosolic protein in S.cerevisiae, like its ortholog CyPBP37 in N.crassa. This implies that thiamine synthesis takes place in the cytosol of both organisms and not in the mitochondria, as suggested. The expression of CyPBP37 and Thi4p is repressed by thiamine but not by thiazole in the growth medium. In addition to its function in thiazole synthesis, CyPBP37 is a stress-inducible protein. N.crassa cyclophilin41 can chaperone the folding of CyPBP37, its own binding partner.
Collapse
Affiliation(s)
- Pierre Faou
- Institut für Biochemie und Molekularbiologie der Universität Freiburg i.Br., Hermann-Herder-Str. 7, D-79104 Freiburg i.Br., Germany
| | | |
Collapse
|