1
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
3
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
4
|
Bickelmann C, Morrow JM, Du J, Schott RK, van Hazel I, Lim S, Müller J, Chang BSW. The molecular origin and evolution of dim-light vision in mammals. Evolution 2015; 69:2995-3003. [PMID: 26536060 DOI: 10.1111/evo.12794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 01/19/2023]
Abstract
The nocturnal origin of mammals is a longstanding hypothesis that is considered instrumental for the evolution of endothermy, a potential key innovation in this successful clade. This hypothesis is primarily based on indirect anatomical inference from fossils. Here, we reconstruct the evolutionary history of rhodopsin--the vertebrate visual pigment mediating the first step in phototransduction at low-light levels--via codon-based model tests for selection, combined with gene resurrection methods that allow for the study of ancient proteins. Rhodopsin coding sequences were reconstructed for three key nodes: Amniota, Mammalia, and Theria. When expressed in vitro, all sequences generated stable visual pigments with λMAX values similar to the well-studied bovine rhodopsin. Retinal release rates of mammalian and therian ancestral rhodopsins, measured via fluorescence spectroscopy, were significantly slower than those of the amniote ancestor, indicating altered molecular function possibly related to nocturnality. Positive selection along the therian branch suggests adaptive evolution in rhodopsin concurrent with therian ecological diversification events during the Mesozoic that allowed for an exploration of the environment at varying light levels.
Collapse
Affiliation(s)
- Constanze Bickelmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany.
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jing Du
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Ilke van Hazel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Steve Lim
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada. .,Centre for the Analysis of Genome Evolution and Function, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
5
|
Johnston JM, Filizola M. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:95-125. [PMID: 24158803 PMCID: PMC4074508 DOI: 10.1007/978-94-007-7423-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field.
Collapse
Affiliation(s)
- Jennifer M. Johnston
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
6
|
Provasi D, Filizola M. Putative active states of a prototypic g-protein-coupled receptor from biased molecular dynamics. Biophys J 2010; 98:2347-55. [PMID: 20483344 DOI: 10.1016/j.bpj.2010.01.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022] Open
Abstract
A major current focus of structural work on G-protein-coupled receptors (GPCRs) pertains to the investigation of their active states. However, for virtually all GPCRs, active agonist-bound intermediate states have been difficult to characterize experimentally owing to their higher conformational flexibility, and thus intrinsic instability, as compared to inactive inverse agonist-bound states. In this work, we explored possible activation pathways of the prototypic GPCR bovine rhodopsin by means of biased molecular dynamics simulations. Specifically, we used an explicit atomistic representation of the receptor and its environment, and sampled the conformational transition from the crystal structure of a photoactivated deprotonated state of rhodopsin to the low pH crystal structure of opsin in the presence of 11-trans-retinal, using adiabatic biased molecular dynamics simulations. We then reconstructed the system free-energy landscape along the predetermined transition trajectories using a path collective variable approach based on metadynamics. Our results suggest that the two experimental endpoints of rhodopsin/opsin are connected by at least two different pathways, and that the conformational transition is populated by at least four metastable states of the receptor, characterized by a different amplitude of the outward movement of transmembrane helix 6.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
7
|
Lüdeke S, Mahalingam M, Vogel R. Rhodopsin activation switches in a native membrane environment. Photochem Photobiol 2009; 85:437-41. [PMID: 19267869 DOI: 10.1111/j.1751-1097.2008.00490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elucidation of structure-function relationships of membrane proteins still poses a considerable challenge due to the sometimes profound influence of the lipid bilayer on the functional properties of the protein. The visual pigment rhodopsin is a prototype of the family of G protein-coupled transmembrane receptors and a considerable part of our knowledge on its activation mechanisms has been derived from studies on detergent-solubilized proteins. This includes in particular the events associated with the conformational transitions of the receptor from the still inactive Meta I to the Meta II photoproduct states, which are involved in signaling. These events involve disruption of an internal salt bridge of the retinal protonated Schiff base, movement of helices and proton uptake from the solvent by the conserved cytoplasmic E(D)RY network around Glu134. As the equilibria associated with these events are considerably altered by the detergent environment, we set out to investigate these equilibria in the native membrane environment and to develop a coherent thermodynamic model of these activating steps using UV-visible and Fourier-transform infrared spectroscopy as complementary techniques. Particular emphasis is put on the role of protonation of Glu134 from the solvent, which is a thermodynamic prerequisite for full receptor activation in membranes, but not in detergent. In view of the conservation of this carboxylate group in family A G protein-coupled receptors, it may also play a similar role in the activation of other family members.
Collapse
Affiliation(s)
- Steffen Lüdeke
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
8
|
Grossfield A, Pitman MC, Feller SE, Soubias O, Gawrisch K. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J Mol Biol 2008; 381:478-86. [PMID: 18585736 DOI: 10.1016/j.jmb.2008.05.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/14/2008] [Accepted: 05/16/2008] [Indexed: 11/27/2022]
Abstract
Rhodopsin, the membrane protein responsible for dim-light vision, until recently was the only G-protein-coupled receptor (GPCR) with a known crystal structure. As a result, there is enormous interest in studying its structure, dynamics, and function. Here we report the results of three all-atom molecular dynamics simulations, each at least 1.5 micros, which predict that substantial changes in internal hydration play a functional role in rhodopsin activation. We confirm with (1)H magic angle spinning NMR that the increased hydration is specific to the metarhodopsin-I intermediate. The internal water molecules interact with several conserved residues, suggesting that changes in internal hydration may be important during the activation of other GPCRs. The results serve to illustrate the synergism of long-time-scale molecular dynamics simulations and NMR in enhancing our understanding of GPCR function.
Collapse
Affiliation(s)
- Alan Grossfield
- IBM TJ Watson Research Center, 1101 Kitchawan Road, PO Box 218, Yorktown Heights, NY 10598, USA
| | | | | | | | | |
Collapse
|
9
|
Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors. J Mol Biol 2008; 380:648-55. [PMID: 18554610 DOI: 10.1016/j.jmb.2008.05.022] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/06/2008] [Accepted: 05/09/2008] [Indexed: 11/23/2022]
Abstract
Activation of family A G-protein-coupled receptors involves a rearrangement of a conserved interhelical cytoplasmic hydrogen bond network between the E(D)RY motif on transmembrane helix 3 (H3) and residues on H6, which is commonly termed the cytoplasmic "ionic lock." Glu134(3.49) of the E(D)RY motif also forms an intrahelical salt bridge with neighboring Arg135(3.50) in the dark-state crystal structure of rhodopsin. We examined the roles of Glu134(3.49) and Arg135(3.50) on H3 and Glu247(6.30) and Glu249(6.32) on H6 on the activation of rhodopsin using Fourier transform infrared spectroscopy of wild-type and mutant pigments reconstituted into lipid membranes. Activation of rhodopsin is pH-dependent with proton uptake during the transition from the inactive Meta I to the active Meta II state. Glu134(3.49) of the ERY motif is identified as the proton-accepting group, using the Fourier transform infrared protonation signature and the absence of a pH dependence of activation in the E134Q mutant. Neutralization of Arg135(3.50) similarly leads to pH-independent receptor activation, but with structural alterations in the Meta II state. Neutralization of Glu247(6.30) and Glu249(6.32) on H6, which are involved in interhelical interactions with H3 and H7, respectively, led to a shift toward Meta II in the E247Q and E249Q mutants while retaining the pH sensitivity of the equilibrium. Disruption of the interhelical interaction of Glu247(6.30) and Glu249(6.32) on H6 with H3 and H7 plays its role during receptor activation, but neutralization of the intrahelical salt bridge between Glu134(3.49) and Arg135(3.50) is considerably more critical for shifting the photoproduct equilibrium to the active conformation. These conclusions are discussed in the context of recent structural data of the beta(2)-adrenergic receptor.
Collapse
|
10
|
Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences. Biophys J 2008; 94:3217-26. [PMID: 18199669 DOI: 10.1529/biophysj.107.105163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the low-frequency terahertz spectroscopy of two photoactive protein systems, rhodopsin and bacteriorhodopsin, as a means to characterize collective low-frequency motions in helical transmembrane proteins. From this work, we found that the nature of the vibrational motions activated by terahertz radiation is surprisingly similar between these two structurally similar proteins. Specifically, at the lowest frequencies probed, the cytoplasmic loop regions of the proteins are highly active; and at the higher terahertz frequencies studied, the extracellular loop regions of the protein systems become vibrationally activated. In the case of bacteriorhodopsin, the calculated terahertz spectra are compared with the experimental terahertz signature. This work illustrates the importance of terahertz spectroscopy to identify vibrational degrees of freedom which correlate to known conformational changes in these proteins.
Collapse
|
11
|
Lodowski DT, Salom D, Le Trong I, Teller DC, Ballesteros JA, Palczewski K, Stenkamp RE. Crystal packing analysis of Rhodopsin crystals. J Struct Biol 2007; 158:455-62. [PMID: 17374491 PMCID: PMC1950280 DOI: 10.1016/j.jsb.2007.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/04/2007] [Accepted: 01/12/2007] [Indexed: 11/25/2022]
Abstract
Oligomerization has been proposed as one of several mechanisms to regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallographic analyses of two new crystal forms of rhodopsin reveal an interaction surface which may be involved in the formation of functional dimers or oligomers. New crystallization conditions lead to the formation of two crystal forms with similar rhodopsin-rhodopsin interactions, but changes in the crystal lattice are induced by the addition of different surfactant additives. However, the intermolecular interactions between rhodopsin molecules in these crystal structures may reflect the contacts necessary for the maintenance of dimers or oligomers in rod outer segment membranes. Similar contacts may assist in the formation of dimers or oligomers in other GPCRs as well. These new dimers are compared with other models proposed by crystallography or EM and AFM studies. The inter-monomer surface contacts are different for each model, but several of these models coincide in implicating helix I, II, and H-8 as contributors to the main contact surface stabilizing the dimers.
Collapse
Affiliation(s)
- David T Lodowski
- Department of Pharmacology, Case-Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The rhodopsin crystal structure provides a structural basis for understanding the function of this and other G protein-coupled receptors (GPCRs). The major structural motifs observed for rhodopsin are expected to carry over to other GPCRs, and the mechanism of transformation of the receptor from inactive to active forms is thus likely conserved. Moreover, the high expression level of rhodopsin in the retina, its specific localization in the internal disks of the photoreceptor structures [termed rod outer segments (ROS)], and the lack of other highly abundant membrane proteins allow rhodopsin to be examined in the native disk membranes by a number of methods. The results of these investigations provide evidence of the propensity of rhodopsin and, most likely, other GPCRs to dimerize, a property that may be pertinent to their function.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
13
|
Botelho AV, Huber T, Sakmar TP, Brown MF. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 2006; 91:4464-77. [PMID: 17012328 PMCID: PMC1779922 DOI: 10.1529/biophysj.106.082776] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 09/19/2006] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence resonance energy transfer how association of rhodopsin occurs by long-range lipid-protein interactions due to geometrical forces, yielding greater receptor crowding. Constitutive association of rhodopsin is promoted by a reduction in membrane thickness (hydrophobic mismatch), but also by an increase in protein/lipid molar ratio, showing the importance of interactions extending well beyond a single annulus of boundary lipids. The fluorescence data correlate with the pK(a) for the MI-to-MII transition of rhodopsin, where deprotonation of the retinylidene Schiff base occurs in conjunction with helical movements leading to activation of the photoreceptor. A more dispersed membrane environment optimizes formation of the MII conformation that results in visual function. A flexible surface model explains both the dispersal and activation of rhodopsin in terms of bilayer curvature deformation (strain) and hydrophobic solvation energy. The bilayer stress is related to the lateral pressure profile in terms of the spontaneous curvature and associated bending rigidity. Transduction of the strain energy (frustration) of the bilayer drives protein oligomerization and conformational changes in a coupled manner. Our findings illuminate the physical principles of membrane protein association due to chemically nonspecific interactions in fluid lipid bilayers. Moreover, they yield a conceptual framework for understanding how the tightly regulated lipid compositions of cellular membranes influence their protein-mediated functions.
Collapse
Affiliation(s)
- Ana Vitória Botelho
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
14
|
Salom D, Le Trong I, Pohl E, Ballesteros JA, Stenkamp RE, Palczewski K, Lodowski DT. Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals. J Struct Biol 2006; 156:497-504. [PMID: 16837211 DOI: 10.1016/j.jsb.2006.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/02/2006] [Accepted: 05/19/2006] [Indexed: 11/21/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.
Collapse
Affiliation(s)
- David Salom
- Novasite Pharmaceuticals, Inc., San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Szundi I, Ruprecht JJ, Epps J, Villa C, Swartz TE, Lewis JW, Schertler GF, Kliger DS. Rhodopsin photointermediates in two-dimensional crystals at physiological temperatures. Biochemistry 2006; 45:4974-82. [PMID: 16605265 PMCID: PMC2556952 DOI: 10.1021/bi0524619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bovine rhodopsin photointermediates formed in two-dimensional (2D) rhodopsin crystal suspensions were studied by measuring the time-dependent absorbance changes produced after excitation with 7 ns laser pulses at 15, 25, and 35 degrees C. The crystalline environment favored the Meta I(480) photointermediate, with its formation from Lumi beginning faster than it does in rhodopsin membrane suspensions at 35 degrees C and its decay to a 380 nm absorbing species being less complete than it is in the native membrane at all temperatures. Measurements performed at pH 5.5 in 2D crystals showed that the 380 nm absorbing product of Meta I(480) decay did not display the anomalous pH dependence characteristic of classical Meta II in the native disk membrane. Crystal suspensions bleached at 35 degrees C and quenched to 19 degrees C showed that a rapid equilibrium existed on the approximately 1 s time scale, which suggests that the unprotonated predecessor of Meta II in the native membrane environment (sometimes called MII(a)) forms in 2D rhodopsin crystals but that the non-Schiff base proton uptake completing classical Meta II formation is blocked there. Thus, the 380 nm absorbance arises from an on-pathway intermediate in GPCR activation and does not result from early Schiff base hydrolysis. Kinetic modeling of the time-resolved absorbance data of the 2D crystals was generally consistent with such a mechanism, but details of kinetic spectral changes and the fact that the residuals of exponential fits were not as good as are obtained for rhodopsin in the native membrane suggested the photoexcited samples were heterogeneous. Variable fractional bleach due to the random orientation of linearly dichroic crystals relative to the linearly polarized laser was explored as a cause of heterogeneity but was found unlikely to fully account for it. The fact that the 380 nm product of photoexcitation of rhodopsin 2D crystals is on the physiological pathway of receptor activation suggests that determination of its structure would be of interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gebhard F.X. Schertler
- Alternate corresponding author: MRC Laboratory of Molecular Biology, Cambridge CB2 2QH UK, Telephone: 0044 1223 402328,
| | | |
Collapse
|
16
|
Borucki B, Kyndt JA, Joshi CP, Otto H, Meyer TE, Cusanovich MA, Heyn MP. Effect of salt and pH on the activation of photoactive yellow protein and gateway mutants Y98Q and Y98F. Biochemistry 2006; 44:13650-63. [PMID: 16229455 DOI: 10.1021/bi050991z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the photocycle of mutants Y98Q and Y98F of the photoactive yellow protein (PYP) from Halorhodospira halophila. Y98 is located in the beta4-beta5 loop and is thought to interact with R52 in the alpha3-alpha4 loop thereby stabilizing this region. Y98 is conserved in all known PYP species, except in Ppr and Ppd where it is replaced by F. We find that replacement of Y98 by F has no significant effect on the photocycle kinetics. However, major changes were observed with the Y98Q mutant. Our results indicate a requirement for an aromatic ring at position 98, especially for recovery and a normal I1/I2 equilibrium. The ring of Y98 could stabilize the beta4-beta5 loop. Alternatively, the Y98 ring could transiently interact with the isomerized chromophore ring, thereby stabilizing the I2 intermediate in the I1/I2 equilibrium. For Y98Q, the decay of the signaling state I2' was slowed by a factor of approximately 40, and the rise of the I2 and I2' intermediates was slowed by a factor of 2-3. Moreover, the I1 intermediate is in a pH-dependent equilibrium with I2/I2' with the ratio of the I1 and I2 populations close to one at pH 7 and 50 mM KCl. From pH 5.5 to 8, the equilibrium shifts toward I1, with a pKa of approximately 6.3. Above pH 8, the populations of I1 and I2/I2' decrease due to an equilibrium between I1 and an additional species I1' which absorbs at approximately 425 nm (pKa approximately 9.8) and which we believe to be an I2-like form with a surface-exposed deprotonated chromophore. The I1/I2/I2' equilibrium was found to be strongly dependent on the KCl concentration, with salt stabilizing the signaling state I2' up to 600 mM KCl. This salt-induced transition to I2' was analyzed and interpreted as ion binding to a specific site. Moreover, from analysis of the amplitude spectra, we conclude that KCl exerts its major effect on the I2 to I2' transition, i.e., the global conformational change leading to the signaling state I2' and the exposure of a hydrophobic surface patch. In wild type and Y98F, the I1/I2 equilibrium is more on the side of I2/I2' as compared to Y98Q but is also salt-dependent at pH 7. The I2 to I2' transition appears to be controlled by an ionic lock, possibly involving the salt bridge between K110 on the beta-scaffold and E12 on the N-terminal cap. Salt binding would break the salt bridge and weaken the interaction between the two domains, facilitating the release of the N-terminal domain from the beta-scaffold in the formation of I2'.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Lüdeke S, Beck M, Yan ECY, Sakmar TP, Siebert F, Vogel R. The role of Glu181 in the photoactivation of rhodopsin. J Mol Biol 2005; 353:345-56. [PMID: 16169009 DOI: 10.1016/j.jmb.2005.08.039] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 02/04/2023]
Abstract
The visual pigment rhodopsin is a prototypical seven transmembrane helical G protein-coupled receptor. Photoisomerization of its protonated Schiff base (PSB) retinylidene chromophore initiates a progression of metastable intermediates. We studied the structural dynamics of receptor activation by FTIR spectroscopy of recombinant pigments. Formation of the active state, Meta II, is characterized by neutralization of the PSB and its counterion Glu113. We focused on testing the hypothesis of a PSB counterion switch from Glu113 to Glu181 during the transition of rhodopsin to the still inactive Meta I photointermediate. Our results, especially from studies of the E181Q mutant, support the view that both Glu113 and Glu181 are deprotonated, forming a complex counterion to the PSB in rhodopsin, and that the function of the primary counterion shifts from Glu113 to Glu181 during the transition to Meta I. The Meta I conformation in the E181Q mutant is less constrained compared with that of wild-type Meta I. In particular, the hydrogen bonded network linking transmembrane helices 1, 2, and 7, adopts a conformation that is already Meta II-like, while other parts of the receptor appear to be in a Meta I-like conformation similar to wild-type. We conclude that Glu181 is responsible, in part, for controlling the extraordinary high pK(a) of the chromophore PSB in the dark state, which very likely decreases upon transition to Meta I in a stepwise weakening of the interaction between PSB and its complex counterion during the course of receptor activation. A model for the specific role in coupling chromophore isomerization to protein conformational changes concomitant with receptor activation is presented.
Collapse
Affiliation(s)
- Steffen Lüdeke
- Biophysics Group, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Filipek S. Organization of rhodopsin molecules in native membranes of rod cells–an old theoretical model compared to new experimental data. J Mol Model 2005; 11:385-91. [PMID: 15928919 DOI: 10.1007/s00894-005-0268-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 02/01/2005] [Indexed: 11/25/2022]
Abstract
It has been shown that rhodopsin forms an oligomer in the shape of long double rows of monomers. Because of the importance of rhodopsin as a template for all G protein-coupled receptors, its dimeric, tetrameric and higher-oligomeric structures also provide a useful pattern for similar structures in GPCRs. New experimental data published recently are discussed in the context of a proposed model of the rhodopsin oligomer 1N3M deposited in the protein data bank. The new rhodopsin structure at 2.2 A resolution with all residues resolved as well as an electron cryomicroscopy structure from 2D crystals of rhodopsin are in agreement with the 1N3M model. Accommodation of movement of transmembrane helix VI, regarded as a major event during the activation of rhodopsin, in a steady structure of the oligomer is also discussed. [Figure: see text]. Superimposition of the 1U19 (red wire), 1GZM (purple wire) and 1N3M (blue wire) rhodopsin structures. Size of the wires is proportional to thermal factors of backbone C(alpha) atoms, view parallel to the membrane.
Collapse
Affiliation(s)
- Slawomir Filipek
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St, 02-109, Warsaw, Poland.
| |
Collapse
|
19
|
Liang Y, Fotiadis D, Maeda T, Maeda A, Modzelewska A, Filipek S, Saperstein DA, Engel A, Palczewski K. Rhodopsin signaling and organization in heterozygote rhodopsin knockout mice. J Biol Chem 2004; 279:48189-96. [PMID: 15337746 PMCID: PMC1351248 DOI: 10.1074/jbc.m408362200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin (Rho) resides within internal membrane structures called disc membranes that are found in the rod outer segments (ROS) of photoreceptors in the retina. Rho expression is essential for formation of ROS, which are absent in knockout Rho-/- mice. ROS of mice heterozygous for the Rho gene deletion (Rho+/-) may have a lower Rho density than wild type (WT) membranes, or the ROS structure may be reduced in size due to lower Rho expression. Here, we present evidence that the smaller volume of ROS from heterozygous mice is most likely responsible for observed electrophysiological response differences. In Rho+/- mice as compared with age-matched WT mice, the length of ROS was shorter by 30-40%, and the average diameter of ROS was reduced by approximately 20%, as demonstrated by transmission and scanning electron microscopy. Together, the reduction of the volume of ROS was approximately 60% in Rho+/- mice. Rho content in the eyes was reduced by approximately 43% and 11-cis-retinal content in the eye was reduced by approximately 38%, as determined by UV-visible spectroscopy and retinoid analysis, respectively. Transmission electron microscopy of negatively stained disc membranes from Rho+/- mice indicated a typical morphology apart from the reduced size of disc diameter. Power spectra calculated from disc membrane regions on such electron micrographs displayed a diffuse ring at approximately 4.5 nm(-1), indicating paracrystallinity of Rho. Atomic force microscopy of WT and Rho+/- disc membranes revealed, in both cases, Rho organized in paracrystalline and raftlike structures. From these data, we conclude that the differences in physiological responses measured in WT and Rho+/- mice are due to structural changes of the whole ROS and not due to a lower density of Rho.
Collapse
Affiliation(s)
- Yan Liang
- From the Departments of Ophthalmology
| | - Dimitrios Fotiadis
- M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Basel CH-4056, Switzerland, and the
| | | | | | - Anna Modzelewska
- International Institute of Molecular and Cell Biology, Warsaw PL-02109, Poland
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, Warsaw PL-02109, Poland
| | | | - Andreas Engel
- M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Basel CH-4056, Switzerland, and the
| | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Pharmacology, and
- Chemistry, University of Washington, Seattle, Washington 98195, the
| |
Collapse
|
20
|
Okada T. X-ray crystallographic studies for ligand–protein interaction changes in rhodopsin. Biochem Soc Trans 2004; 32:738-41. [PMID: 15494002 DOI: 10.1042/bst0320738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein-coupled receptors constitute the largest transmembrane receptor family in human. They are generally activated on binding their specific ligands at the extracellular side of membranes. The signal carried by an agonist is then transmitted to the intracellular side through a conformational change of the receptor, which becomes competent to catalyse GDP/GTP exchange in the α-subunit of heterotrimeric G-protein. Since most of the G-protein-coupled receptors (rhodopsin-like subfamily) share a set of conserved amino acid residues in the transmembrane domain, it is probable that the ligand-triggered activation process involves a common mechanism of rearrangement of the hepta-helical transmembrane bundle. For understanding the nature of this event that is not yet characterized sufficiently, X-ray crystallographic studies of rhodopsin with or without light stimulation can provide valuable information. In rhodopsin, the initial cis–trans photoisomerization of retinal chromophore triggers the structural changes of transmembrane helices. This activation process has been characterized with some spectroscopically distinct photoreaction intermediates (batho, lumi, Meta I and Meta II). With recent advances in the conditions for crystallographic experiments, the diffraction limit of the rhodopsin crystals has been substantially extended. As a result, it becomes possible to detect small structural changes evoked after photoactivation under cryogenic conditions.
Collapse
Affiliation(s)
- T Okada
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| |
Collapse
|
21
|
Jastrzebska B, Maeda T, Zhu L, Fotiadis D, Filipek S, Engel A, Stenkamp RE, Palczewski K. Functional characterization of rhodopsin monomers and dimers in detergents. J Biol Chem 2004; 279:54663-75. [PMID: 15489507 PMCID: PMC1351296 DOI: 10.1074/jbc.m408691200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin (Rho) is a G protein-coupled receptor that initiates phototransduction in rod photoreceptors. High expression levels of Rho in the disc membranes of rod outer segments and the propensity of Rho to form higher oligomeric structures are evident from atomic force microscopy, transmission electron microscopy, and chemical cross-linking experiments. To explore the structural and functional properties of Rho in n-dodecyl-beta-maltoside, frequently used to purify heterologously expressed Rho and its mutants, we used gel filtration techniques, blue native gel electrophoresis, and functional assays. Here, we show that in micelles containing n-dodecyl-beta-maltoside at concentrations greater than 3 mM, Rho is present as a single monomer per detergent micelle. In contrast, in 12 mM 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS), micelles contain mostly dimeric Rho. The cognate G protein transducin (Gt) appears to have a preference for binding to the Rho dimer, and the complexes fall apart in the presence of guanosine 5'-3-O-(thio)triphosphate. Cross-linked Rho dimers release the chromophore at a slower rate than monomers and are much more resistant to heat denaturation. Both Rho(*) monomers and dimers are capable of activating Gt, and both of them are phosphorylated by Rho kinase. Rho expressed in HEK293 cells is also readily cross-linked by a bifunctional reagent. These studies provide an explanation of how detergent influences the oligomer-dimermonomer equilibrium of Rho and describe the functional characterization of Rho monomers and dimers in detergent.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GFX. Electron crystallography reveals the structure of metarhodopsin I. EMBO J 2004; 23:3609-20. [PMID: 15329674 PMCID: PMC517614 DOI: 10.1038/sj.emboj.7600374] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 07/27/2004] [Indexed: 11/08/2022] Open
Abstract
Rhodopsin is the prototypical G protein-coupled receptor, responsible for detection of dim light in vision. Upon absorption of a photon, rhodopsin undergoes structural changes, characterised by distinct photointermediates. Currently, only the ground-state structure has been described. We have determined a density map of a photostationary state highly enriched in metarhodopsin I, to a resolution of 5.5 A in the membrane plane, by electron crystallography. The map shows density for helix 8, the cytoplasmic loops, the extracellular plug, all tryptophan residues, an ordered cholesterol molecule and the beta-ionone ring. Comparison of this map with X-ray structures of the ground state reveals that metarhodopsin I formation does not involve large rigid-body movements of helices, but there is a rearrangement close to the bend of helix 6, at the level of the retinal chromophore. There is no gradual build-up of the large conformational change known to accompany metarhodopsin II formation. The protein remains in a conformation similar to that of the ground state until late in the photobleaching process.
Collapse
Affiliation(s)
| | | | - Reiner Vogel
- Biophysics Group, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Gebhard FX Schertler
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402328; Fax: +44 1223 213556; E-mail:
| |
Collapse
|
23
|
Vogel R, Siebert F, Zhang XY, Fan G, Sheves M. Formation of Meta III during the Decay of Activated Rhodopsin Proceeds via Meta I and Not via Meta II. Biochemistry 2004; 43:9457-66. [PMID: 15260488 DOI: 10.1021/bi049337u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal isomerization of the retinal Schiff base C=N double bond is known to trigger the decay of rhodopsin's Meta I/Meta II photoproduct equilibrium to the inactive Meta III state [Vogel, R., Siebert, F., Mathias, G., Tavan, P., Fan, G., and Sheves, M. (2003) Biochemistry 42, 9863-9874]. Previous studies have indicated that the transition to Meta III does not occur under conditions that strongly favor the active state Meta II but requires a residual amount of Meta I in the initial photoproduct equilibrium. In this study we show that the triggering event, the thermal isomerization of the protonated Schiff base, is independent of the presence of Meta II and occurs even under conditions where the transition to Meta II is completely prevented. We have examined two examples in which the transitions from Lumi to Meta I or from Meta I to Meta II are blocked. This was achieved using dry films of rhodopsin and rhodopsin reconstituted into rather rigid lipid bilayers. In both cases, the resulting fully inactive room temperature photoproducts decay specifically by thermal isomerization of the protonated Schiff base C=N double bond to an all-trans 15-syn chromophore isomer, corresponding to that of Meta III. This thermal isomerization becomes less efficient as the conformation of the respective photoproduct approaches that of Meta II and is fully absent in a pure Meta II state. These results indicate that the decay of the Meta I/Meta II photoproduct equilibrium to Meta III proceeds via Meta I and not via Meta II.
Collapse
Affiliation(s)
- Reiner Vogel
- Biophysics Group, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|