1
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
2
|
Ahmad R, Sayyad F, Naeem M, Houlden H. Report of a novel missense TDP1 variant in a Pakistani family affected with an extremely rare disorder congenital spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Mol Biol Rep 2024; 52:7. [PMID: 39576382 PMCID: PMC11584435 DOI: 10.1007/s11033-024-10085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Spinocerebellar ataxia with axonal neuropathy type 1 (OMIM: 607250) is an extremely rare autosomal recessive disorder caused by a mutation in the tyrosyl-DNA phosphodiesterase 1 (TDP1) gene. Only a single missense variant (p.His493Arg) in this gene has been reported. This variant was found in three Arab families with a possible common founder effect. METHODS AND RESULTS We report a female patient born to a consanguineous Pakistani family segregating autosomal recessive spinocerebellar ataxia with axonal neuropathy type 1. The patient presents additional clinical features distinct from previously reported Arab families including congenital onset of the disease. We performed whole exome sequencing with the patient's DNA and identified a novel missense variant (NC_000014.9:g.89991982C > T; p.His478Tyr) in exon 13 of the TDP1 gene. Sanger sequencing was performed to verify the autosomal recessive segregation of the p.His478Tyr variant in the family. CONCLUSION The current study expands both the clinical and mutation spectrum of the TDP1 associated spinocerebellar ataxia with axonal neuropathy type 1 and increases the body of evidence that supports the pathogenic role of TDP1 in cerebellar ataxias with peripheral neuropathy.
Collapse
Affiliation(s)
- Riaz Ahmad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Filza Sayyad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Naeem
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
3
|
Wojtaszek JL, Williams RS. From the TOP: Formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair (Amst) 2024; 142:103751. [PMID: 39180935 PMCID: PMC11404304 DOI: 10.1016/j.dnarep.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
4
|
Anticevic I, Otten C, Vinkovic L, Jukic L, Popovic M. Tyrosyl-DNA phosphodiesterase 1 (TDP1) and SPRTN protease repair histone 3 and topoisomerase 1 DNA-protein crosslinks in vivo. Open Biol 2023; 13:230113. [PMID: 37788708 PMCID: PMC10547559 DOI: 10.1098/rsob.230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/14/2023] [Indexed: 10/05/2023] Open
Abstract
DNA-protein crosslinks (DPCs) are frequent and damaging DNA lesions that affect all DNA transactions, which in turn can lead to the formation of double-strand breaks, genomic instability and cell death. At the organismal level, impaired DPC repair (DPCR) is associated with cancer, ageing and neurodegeneration. Despite the severe consequences of DPCs, little is known about the processes underlying repair pathways at the organism level. SPRTN is a protease that removes most cellular DPCs during replication, whereas tyrosyl-DNA phosphodiesterase 1 repairs one of the most abundant enzymatic DPCs, topoisomerase 1-DPC (TOP1-DPC). How these two enzymes repair DPCs at the organism level is currently unknown. We perform phylogenetic, syntenic, structural and expression analysis to compare tyrosyl-DNA phosphodiesterase 1 (TDP1) orthologues between human, mouse and zebrafish. Using the zebrafish animal model and human cells, we demonstrate that TDP1 and SPRTN repair endogenous, camptothecin- and formaldehyde-induced DPCs, including histone H3- and TOP1-DPCs. We show that resolution of H3-DNA crosslinks depends on upstream proteolysis by SPRTN and subsequent peptide removal by TDP1 in RPE1 cells and zebrafish embryos, whereas SPRTN and TDP1 function in different pathways in the repair of endogenous TOP1-DPCs and total DPCs. Furthermore, we have found increased TDP2 expression in TDP1-deficient cells and embryos. Understanding the role of TDP1 in DPCR at the cellular and organismal levels could provide an impetus for the development of new drugs and combination therapies with TOP1-DPC inducing drugs.
Collapse
Affiliation(s)
- Ivan Anticevic
- Department for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Institute Ruder Boskovic, Zagreb, Croatia
| | - Cecile Otten
- Department for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Institute Ruder Boskovic, Zagreb, Croatia
| | - Luka Vinkovic
- Department for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Institute Ruder Boskovic, Zagreb, Croatia
| | - Luka Jukic
- Department for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Institute Ruder Boskovic, Zagreb, Croatia
| | - Marta Popovic
- Department for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Institute Ruder Boskovic, Zagreb, Croatia
| |
Collapse
|
5
|
Zhao XZ, Wang W, Lountos GT, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR. Identification of multidentate tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors that simultaneously access the DNA, protein and catalytic-binding sites by oxime diversification. RSC Chem Biol 2023; 4:334-343. [PMID: 37181631 PMCID: PMC10170656 DOI: 10.1039/d2cb00230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a member of the phospholipase D family that can downregulate the anticancer effects of the type I topoisomerase (TOP1) inhibitors by hydrolyzing the 3'-phosphodiester bond between DNA and the TOP1 residue Y723 in the critical stalled intermediate that is the foundation of TOP1 inhibitor mechanism of action. Thus, TDP1 antagonists are attractive as potential enhancers of TOP1 inhibitors. However, the open and extended nature of the TOP1-DNA substrate-binding region has made the development of TDP1 inhibitors extremely challenging. In this study, starting from our recently identified small molecule microarray (SMM)-derived TDP1-inhibitory imidazopyridine motif, we employed a click-based oxime protocol to extend the parent platform into the DNA and TOP1 peptide substrate-binding channels. We applied one-pot Groebke-Blackburn-Bienayme multicomponent reactions (GBBRs) to prepare the needed aminooxy-containing substrates. By reacting these precursors with approximately 250 aldehydes in microtiter format, we screened a library of nearly 500 oximes for their TDP1 inhibitory potencies using an in vitro florescence-based catalytic assay. Select hits were structurally explored as their triazole- and ether-based isosteres. We obtained crystal structures of two of the resulting inhibitors bound to the TDP1 catalytic domain. The structures reveal that the inhibitors form hydrogen bonds with the catalytic His-Lys-Asn triads ("HKN" motifs: H263, K265, N283 and H493, K495, N516), while simultaneously extending into both the substrate DNA and TOP1 peptide-binding grooves. This work provides a structural model for developing multivalent TDP1 inhibitors capable of binding in a tridentate fashion with a central component situated within the catalytic pocket and extensions that project into both the DNA and TOP1 peptide substrate-binding regions.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD USA
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD USA
| | - George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research Frederick MD USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD USA
| | - Joseph E Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD USA
| |
Collapse
|
6
|
Brettrager EJ, Cuya SM, Tibbs ZE, Zhang J, Falany CN, Aller SG, van Waardenburg RCAM. N-terminal domain of tyrosyl-DNA phosphodiesterase I regulates topoisomerase I-induced toxicity in cells. Sci Rep 2023; 13:1377. [PMID: 36697463 PMCID: PMC9876888 DOI: 10.1038/s41598-023-28564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes phosphodiester-linked adducts from both ends of DNA. This includes the topoisomerase I (TOP1)-DNA covalent reaction intermediate that is the target of the camptothecin class of chemotherapeutics. Tdp1 two-step catalysis is centered on the formation of a Tdp1-DNA covalent complex (Tdp1cc) using two catalytic histidines. Here, we examined the role of the understudied, structurally undefined, and poorly conserved N-terminal domain (NTD) of Tdp1 in context of full-length protein in its ability to remove TOP1cc in cells. Using toxic Tdp1 mutants, we observed that the NTD is critical for Tdp1's ability to remove TOP1-DNA adducts in yeast. Full-length and N-terminal truncated Tdp1 mutants showed similar expression levels and cellular distribution yet an inversed TOP1-dependent toxicity. Single turnover catalysis was significantly different between full-length and truncated catalytic mutants but not wild-type enzyme, suggesting that Tdp1 mutants depend on the NTD for catalysis. These observations suggest that the NTD plays a critical role in the regulation of Tdp1 activity and interaction with protein-DNA adducts such as TOP1cc in cells. We propose that the NTD is a regulatory domain and coordinates stabilization of the DNA-adducted end within the catalytic pocket to access the phosphodiester linkage for hydrolysis.
Collapse
Affiliation(s)
- Evan J Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Zachary E Tibbs
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Cardiothoracic Surgery - Ascension Medical Group, 10580 North Meridian St. Ste 105, Carmel, IN, 46290, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Zhao XZ, Wang W, Lountos GT, Tropea JE, Needle D, Pommier Y, Burke TR. Phosphonic acid-containing inhibitors of tyrosyl-DNA phosphodiesterase 1. Front Chem 2022; 10:910953. [PMID: 36051621 PMCID: PMC9424690 DOI: 10.3389/fchem.2022.910953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs stalled type I topoisomerase (TOP1)-DNA complexes by hydrolyzing the phosphodiester bond between the TOP1 Y723 residue and the 3′-phosphate of its DNA substrate. Although TDP1 antagonists could potentially reduce the dose of TOP1 inhibitors needed to achieve effective anticancer effects, the development of validated TDP1 inhibitors has proven to be challenging. This may, in part, be due to the open and extended nature of the TOP1 substrate binding region. We have previously reported imidazopyrazines and imidazopyridines that can inhibit TDP1 catalytic function in vitro. We solved the TDP1 crystal structures with bound inhibitors of this class and found that the dicarboxylic acid functionality within the N-(3,4-dicarboxyphenyl)-2-diphenylimidazo [1,2-a]pyridin-3-amine platform overlaps with aspects of phosphoryl substrate recognition. Yet phosphonic acids could potentially better-replicate cognate TOP1-DNA substrate binding interactions than carboxylic acids. As reported herein, we designed phosphonic acid-containing variants of our previously reported carboxylic acid-containing imidazopyrazine and imidazopyridine inhibitors and effected their synthesis using one-pot Groebke–Blackburn–Bienayme multicomponent reactions. We obtained crystal structures of TDP1 complexed with a subset of inhibitors. We discuss binding interactions of these inhibitors within the context of phosphate-containing substrate and carboxylic acid-based inhibitors. These compounds represent a new structural class of small molecule ligands that mimic aspects of the 3′-processed substrate that results from TDP1 catalysis.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
- *Correspondence: Xue Zhi Zhao,
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
8
|
Yadav S, Shinde RN, Singh S, Karthikeyan S, Singh B. Structurally disordered C-terminal residues of GTP cyclohydrolase II are essential for its enzymatic activity. J Biomol Struct Dyn 2021; 40:9318-9331. [PMID: 34032179 DOI: 10.1080/07391102.2021.1926326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GTP cyclohydrolase II (GCHII) is one of the rate limiting enzymes in riboflavin biosynthesis pathway and is shown to be a potential drug target for most of the pathogens. Previous biochemical and structural studies have identified the active site residues and elucidated the steps involved in the catalytic mechanism of GCHII. However, the last ∼20-25 C-terminal residues of GCHII remains unstructured in all the crystal structures determined to date and their role in the catalytic activity, if any, remains elusive. Therefore, to understand the role of these unstructured C-terminal residues, a series of C-terminal deletion mutants of GCHII from Helicobacter pylori (hGCHII) were generated and their catalytic activity was compared with its wild-type. Surprisingly, none of the C-terminal deletion mutants shows any enzymatic activity indicating that these are essential for GCHII function. To get additional insights for such loss of activity, homology models of full-length and deletion mutants of hGCHII in complex with GTP, Mg2+, and Zn2+ were generated and subjected to molecular dynamics simulation studies. The simulation studies show that a conserved histidine at 190th position from the unstructured C-terminal region of hGCHII interacts with α-phosphate of GTP. We propose that His-190 may play a role in the hydrolysis of pyrophosphate from GTP and in releasing the product, DARP. In summary, we demonstrate that the unstructured C-terminal residues of GCHII are important for its enzymatic activity and must be considered during rational drug designing. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Savita Yadav
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Ranajit Nivrutti Shinde
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Suruchi Singh
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Balvinder Singh
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
9
|
Wiegand T, Malär AA, Cadalbert R, Ernst M, Böckmann A, Meier BH. Asparagine and Glutamine Side-Chains and Ladders in HET-s(218-289) Amyloid Fibrils Studied by Fast Magic-Angle Spinning NMR. Front Mol Biosci 2020; 7:582033. [PMID: 33195425 PMCID: PMC7556116 DOI: 10.3389/fmolb.2020.582033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Asparagine and glutamine side-chains can form hydrogen-bonded ladders which contribute significantly to the stability of amyloid fibrils. We show, using the example of HET-s(218–289) fibrils, that the primary amide side-chain proton resonances can be detected in cross-polarization based solid-state NMR spectra at fast magic-angle spinning (MAS). J-coupling based experiments offer the possibility to distinguish them from backbone amide groups if the spin-echo lifetimes are long enough, which turned out to be the case for the glutamine side-chains, but not for the asparagine side-chains forming asparagine ladders. We explore the sensitivity of NMR observables to asparagine ladder formation. One of the two possible asparagine ladders in HET-s(218–289), the one comprising N226 and N262, is assigned by proton-detected 3D experiments at fast MAS and significant de-shielding of one of the NH2 proton resonances indicative of hydrogen-bond formation is observed. Small rotating-frame 15N relaxation-rate constants point to rigidified asparagine side-chains in this ladder. The proton resonances are homogeneously broadened which could indicate chemical exchange, but is presently not fully understood. The second asparagine ladder (N243 and N279) in contrast remains more flexible.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alexander A Malär
- Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Riccardo Cadalbert
- Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon, France
| | - Beat H Meier
- Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Brettrager EJ, van Waardenburg RC. Targeting Tyrosyl-DNA phosphodiesterase I to enhance toxicity of phosphodiester linked DNA-adducts. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1153-1163. [PMID: 31875206 PMCID: PMC6929713 DOI: 10.20517/cdr.2019.91] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Our genomic DNA is under constant assault from endogenous and exogenous sources, which needs to be resolved to maintain cellular homeostasis. The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends. Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts. These DNA-adducts can be divided into two groups: small adducts, including oxidized nucleotides, RNA, and non-canonical nucleoside analogs, and large adducts, such as (drug-stabilized) topoisomerase- DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA. Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance, making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents. Tdp1's unique catalytic cycle, which is centered on the formation of Tdp1-DNA covalent reaction intermediate, allows for two principally different targeting strategies: (1) catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics; and (2) poisoning of Tdp1 by stabilization of the Tdp1- DNA covalent reaction intermediate, which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution, analogous to topoisomerase targeted poisons such as topotecan or etoposide. The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept; however, no small molecules have been reported for this strategy. Herein, we concisely discuss the development of Tdp1 catalytic inhibitors and their results.
Collapse
Affiliation(s)
- Evan J. Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
11
|
Lountos GT, Zhao XZ, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR, Waugh DS. Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening. Nucleic Acids Res 2019; 47:10134-10150. [PMID: 31199869 DOI: 10.1093/nar/gkz515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 02/02/2023] Open
Abstract
Tyrosyl DNA-phosphodiesterase I (TDP1) repairs type IB topoisomerase (TOP1) cleavage complexes generated by TOP1 inhibitors commonly used as anticancer agents. TDP1 also removes DNA 3' end blocking lesions generated by chain-terminating nucleosides and alkylating agents, and base oxidation both in the nuclear and mitochondrial genomes. Combination therapy with TDP1 inhibitors is proposed to synergize with topoisomerase targeting drugs to enhance selectivity against cancer cells exhibiting deficiencies in parallel DNA repair pathways. A crystallographic fragment screening campaign against the catalytic domain of TDP1 was conducted to identify new lead compounds. Crystal structures revealed two fragments that bind to the TDP1 active site and exhibit inhibitory activity against TDP1. These fragments occupy a similar position in the TDP1 active site as seen in prior crystal structures of TDP1 with bound vanadate, a transition state mimic. Using structural insights into fragment binding, several fragment derivatives have been prepared and evaluated in biochemical assays. These results demonstrate that fragment-based methods can be a highly feasible approach toward the discovery of small-molecule chemical scaffolds to target TDP1, and for the first time, we provide co-crystal structures of small molecule inhibitors bound to TDP1, which could serve for the rational development of medicinal TDP1 inhibitors.
Collapse
Affiliation(s)
- George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joseph E Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle Needle
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
12
|
Tyrosyl-DNA Phosphodiesterase I N-Terminal Domain Modifications and Interactions Regulate Cellular Function. Genes (Basel) 2019; 10:genes10110897. [PMID: 31698852 PMCID: PMC6895789 DOI: 10.3390/genes10110897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The conserved eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) removes a diverse array of adducts from the end of DNA strand breaks. Tdp1 specifically catalyzes the hydrolysis of phosphodiester linked DNA-adducts. These DNA lesions range from damaged nucleotides to peptide-DNA adducts to protein-DNA covalent complexes and are products of endogenously or exogenously induced insults or simply failed reaction products. These adducts include DNA inserted ribonucleotides and non-conventional nucleotides, as well as covalent reaction intermediates of DNA topoisomerases with DNA and a Tdp1-DNA adduct in trans. This implies that Tdp1 plays a role in maintaining genome stability and cellular homeostasis. Dysregulation of Tdp1 protein levels or catalysis shifts the equilibrium to genome instability and is associated with driving human pathologies such as cancer and neurodegeneration. In this review, we highlight the function of the N-terminal domain of Tdp1. This domain is understudied, structurally unresolved, and the least conserved in amino acid sequence and length compared to the rest of the enzyme. However, over time it emerged that the N-terminal domain was post-translationally modified by, among others, phosphorylation, SUMOylation, and Ubiquitinoylation, which regulate Tdp1 protein interactions with other DNA repair associated proteins, cellular localization, and Tdp1 protein stability.
Collapse
|
13
|
Komarova AO, Drenichev MS, Dyrkheeva NS, Kulikova IV, Oslovsky VE, Zakharova OD, Zakharenko AL, Mikhailov SN, Lavrik OI. Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy. J Enzyme Inhib Med Chem 2018; 33:1415-1429. [PMID: 30191738 PMCID: PMC6136360 DOI: 10.1080/14756366.2018.1509210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023] Open
Abstract
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4-18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor's action.
Collapse
Affiliation(s)
- Anastasia O. Komarova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
14
|
Probing the evolutionary conserved residues Y204, F259, S400 and W590 that shape the catalytic groove of human TDP1 for 3'- and 5'-phosphodiester-DNA bond cleavage. DNA Repair (Amst) 2018; 66-67:64-71. [PMID: 29747024 DOI: 10.1016/j.dnarep.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an ubiquitous DNA repair enzyme present in yeast, plants and animals. It removes a broad range of blocking lesions at the ends of DNA breaks. The catalytic core of TDP1 consists in a pair of conserved histidine-lysine-asparagine (HKN) motifs. Analysis of the human TDP1 (hTDP1) crystal structure reveals potential involvement of additional residues that shape the substrate binding site. In this biochemical study, we analyzed four such conserved residues, tyrosine 204 (Y204), phenylalanine 259 (F259), serine 400 (S400) and tryptophan 590 (W590). We show that the F259 residue of hTDP1 is critical for both 3'- and 5'-phosphodiesterase catalysis. We propose that the double π-π interactions of the F259 residue with the -2 and -3 nucleobases serve to position the nucleopeptide substrate in phase with the active site histidines of hTDP1. Mutating Y204 of hTDP1 to phenylalanine (Y204F), as in fly and yeast TDP1 enzymes, had minor impact on TDP1 activity. In constrast, we find that S400 enhances 3'-processing activity while it suppresses 5'-processing activity, thereby promoting specificity for 3'-substrates. W590 is selectively important for 5'-processing. These results reveal the impact of conserved amino acid residues that participate in defining the DNA binding groove around the dual HKN catalytic core motif of TDP1, and their differential roles in facilitating the 3'- vs 5'-end processing activities of hTDP1.
Collapse
|
15
|
Zakharenko AL, Lebedeva NA, Lavrik OI. DNA Repair Enzymes as Promising Targets in Oncotherapy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Cuya SM, Comeaux EQ, Wanzeck K, Yoon KJ, van Waardenburg RCAM. Dysregulated human Tyrosyl-DNA phosphodiesterase I acts as cellular toxin. Oncotarget 2018; 7:86660-86674. [PMID: 27893431 PMCID: PMC5349943 DOI: 10.18632/oncotarget.13528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1) hydrolyzes the drug-stabilized 3’phospho-tyrosyl bond formed between DNA topoisomerase I (TOPO1) and DNA. TDP1-mediated hydrolysis uses a nucleophilic histidine (Hisnuc) and a general acid/base histidine (Hisgab). A Tdp1Hisgab to Arg mutant identified in patients with the autosomal recessive neurodegenerative disease SCAN1 causes stabilization of the TDP1-DNA intermediate. Based on our previously reported Hisgab-substitutions inducing yeast toxicity (Gajewski et al. J. Mol. Biol. 415, 741-758, 2012), we propose that converting TDP1 into a cellular poison by stabilizing the covalent enzyme-DNA intermediate is a novel therapeutic strategy for cancer treatment. Here, we analyzed the toxic effects of two TDP1 catalytic mutants in HEK293 cells. Expression of human Tdp1HisnucAla and Tdp1HisgabAsn mutants results in stabilization of the covalent TDP1-DNA intermediate and induces cytotoxicity. Moreover, these mutants display reduced in vitro catalytic activity compared to wild type. Co-treatment of Tdp1mutant with topotecan shows more than additive cytotoxicity. Overall, these results support the hypothesis that stabilization of the TDP1-DNA covalent intermediate is a potential anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Keith Wanzeck
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
17
|
Wang P, Elsayed MSA, Plescia CB, Ravji A, Redon CE, Kiselev E, Marchand C, Zeleznik O, Agama K, Pommier Y, Cushman M. Synthesis and Biological Evaluation of the First Triple Inhibitors of Human Topoisomerase 1, Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), and Tyrosyl-DNA Phosphodiesterase 2 (Tdp2). J Med Chem 2017; 60:3275-3288. [PMID: 28418653 DOI: 10.1021/acs.jmedchem.6b01565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tdp1 and Tdp2 are two tyrosyl-DNA phosphodiesterases that can repair damaged DNA resulting from topoisomerase inhibitors and a variety of other DNA-damaging agents. Both Tdp1 and Tdp2 inhibition could hypothetically potentiate the cytotoxicities of topoisomerase inhibitors. This study reports the successful structure-based design and synthesis of new 7-azaindenoisoquinolines that act as triple inhibitors of Top1, Tdp1, and Tdp2. Enzyme inhibitory data and cytotoxicity data from human cancer cell cultures establish that modification of the lactam side chain of the 7-azaindenoisoquinolines can modulate their inhibitory potencies and selectivities vs Top1, Tdp1, and Tdp2. Molecular modeling of selected target compounds bound to Top1, Tdp1, and Tdp2 was used to design the inhibitors and facilitate the structure-activity relationship analysis. The monitoring of DNA damage by γ-H2AX foci formation in human PBMCs (lymphocytes) and acute lymphoblastic leukemia CCRF-CEM cells documented significantly more DNA damage in the cancer cells vs normal cells.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Mohamed S A Elsayed
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Caroline B Plescia
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Azhar Ravji
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Christophe E Redon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Olga Zeleznik
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Laev SS, Salakhutdinov NF, Lavrik OI. Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential. Bioorg Med Chem 2016; 24:5017-5027. [PMID: 27687971 DOI: 10.1016/j.bmc.2016.09.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 10/21/2022]
Abstract
DNA topoisomerases are essential during transcription and replication. The therapeutic mechanism of action of topoisomerase inhibitors is enzyme poisoning rather than catalytic inhibition. Tyrosyl-DNA phosphodiesterases 1 or 2 were found as DNA repair enzymes hydrolyzing the covalent bond between the tyrosyl residue of topoisomerases I or II and the 3'- or 5'-phosphate groups in DNA, respectively. Tyrosyl-DNA phosphodiesterase 1 is a key enzyme in DNA repair machinery and a promising target for antitumor and neurodegenerative therapy. Inhibitors of tyrosyl-DNA phosphodiesterase 1 could act synergistically with topoisomerase I inhibitors and thereby potentiate the effects of topoisomerase I poisons. Tyrosyl-DNA phosphodiesterase 2 is an enzyme that specifically repairs DNA damages induced by topoisomerase II poisons and causes resistance to these drugs. Selective inhibition of tyrosyl-DNA phosphodiesterase 2 may be a novel approach to overcome intrinsic or acquired resistance to topoisomerase II-targeted drug therapy. Thus, agents that inhibit tyrosyl-DNA phosphodiesterases 1 and 2 have many applications in biochemical and physiological research and they have the potential to become anticancer and antiviral drugs. The structures, mechanism of action and therapeutic rationale of tyrosyl-DNA phosphodiesterase inhibitors and their development for combinations with topoisomerase inhibitors and DNA damaging agents are discussed.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation; Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 8, Novosibirsk 630090, Russian Federation
| |
Collapse
|
19
|
Kuznetsov NA, Lebedeva NA, Kuznetsova AA, Rechkunova NI, Dyrkheeva NS, Kupryushkin MS, Stetsenko DA, Pyshnyi DV, Fedorova OS, Lavrik OI. Pre-steady state kinetics of DNA binding and abasic site hydrolysis by tyrosyl-DNA phosphodiesterase 1. J Biomol Struct Dyn 2016; 35:2314-2327. [PMID: 27687298 DOI: 10.1080/07391102.2016.1220331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) processes DNA 3'-end-blocking modifications, possesses DNA and RNA 3'-nucleosidase activity and is also able to hydrolyze an internal apurinic/apyrimidinic (AP) site and its synthetic analogs. The mechanism of Tdp1 interaction with DNA was analyzed using pre-steady state stopped-flow kinetics with tryptophan, 2-aminopurine and Förster resonance energy transfer fluorescence detection. Phosphorothioate or tetramethyl phosphoryl guanidine groups at the 3'-end of DNA have been used to prevent 3'-nucleosidase digestion by Tdp1. DNA binding and catalytic properties of Tdp1 and its mutants H493R (Tdp1 mutant SCAN1) and H263A have been compared. The data indicate that the initial step of Tdp1 interaction with DNA includes binding of Tdp1 to the DNA ends followed by the 3'-nucleosidase reaction. In the case of DNA containing AP site, three steps of fluorescence variation were detected that characterize (i) initial binding the enzyme to the termini of DNA, (ii) the conformational transitions of Tdp1 and (iii) search for and recognition of the AP-site in DNA, which leads to the formation of the catalytically active complex and to the AP-site cleavage reaction. Analysis of Tdp1 interaction with single- and double-stranded DNA substrates shows that the rates of the 3'-nucleosidase and AP-site cleavage reactions have similar values in the case of single-stranded DNA, whereas in double-stranded DNA, the cleavage of the AP-site proceeds two times faster than 3'-nucleosidase digestion. Therefore, the data show that the AP-site cleavage reaction is an essential function of Tdp1 which may comprise an independent of AP endonuclease 1 AP-site repair pathway.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Natalia A Lebedeva
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Alexandra A Kuznetsova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Nadejda I Rechkunova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Nadezhda S Dyrkheeva
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Maxim S Kupryushkin
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Dmitry A Stetsenko
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Dmitrii V Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olga S Fedorova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olga I Lavrik
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
20
|
Jiang B, Glover JNM, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev 2016; 161:130-140. [PMID: 27470939 DOI: 10.1016/j.mad.2016.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
The termini of DNA strand breaks induced by reactive oxygen species or by abortive DNA metabolic intermediates require processing to enable subsequent gap filling and ligation to proceed. The three proteins, tyrosyl DNA-phosphodiesterase 1 (TDP1), aprataxin (APTX) and polynucleotide kinase/phosphatase (PNKP) each act on a discrete set of modified strand-break termini. Recently, a series of neurodegenerative and neurodevelopmental disorders have been associated with mutations in the genes coding for these proteins. Mutations in TDP1 and APTX have been linked to Spinocerebellar ataxia with axonal neuropathy (SCAN1) and Ataxia-ocular motor apraxia 1 (AOA1), respectively, while mutations in PNKP are considered to be responsible for Microcephaly with seizures (MCSZ) and Ataxia-ocular motor apraxia 4 (AOA4). Here we present an overview of the mechanisms of these proteins and how their impairment may give rise to their respective disorders.
Collapse
Affiliation(s)
- Bingcheng Jiang
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| | - J N Mark Glover
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
21
|
Rechkunova NI, Lebedeva NA, Lavrik OI. [Tyrosyl-DNA Phosphodiesterase 1 Is a New Player in Repair of Apurinic/Apyrimidinic Sites]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:531-8. [PMID: 26762090 DOI: 10.1134/s106816201505012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genomic DNA is constantly damaged by the action of exogenous factors and endogenous reactive metabolites. Apurinic/apyrimidinic sites (AP sites), which occur as a result of DNA glycosylase induced or spontaneous hydrolysis of the N-glycosidic bonds, are the most common damages of DNA. The chemical reactivity of AP sites is the cause of DNA breaks, and DNA-protein and DNA-DNA crosslinks. Repair of AP sites is one of the most important mechanisms for maintaining genome stability. Despite the fact that the main participants of the AP site repair are very well studied, the new proteins that could be involved potentially in this process as "back up" players or perform certain specialized functions are being found. This review is dedicated to one of these proteins, tyrosyl-DNA phosphodiesterase 1 (Tdp1), for which we have recently shown that in addition to its main activity of specific cleavage of the tyrosyl-DNA bond formed via a covalent attachment of topoisomerase 1 (Top1) to DNA, Tdp1 is able to initiate the cleavage of the internal AP sites in DNA and their following repair. Tdp1 was discovered in Saccharomyces cerevisiae yeast as an enzyme hydrolyzing the covalent bond between tyrosyl residue of topoisomerase 1 and 3'-phosphate group in DNA. Tdp1 is the major enzyme which carries out the repair of the irreversible complexes of DNA and topoisomerase 1, which appear. in the presence of Top 1 inhibitors, such as camptothecin, therefore Tdp1 is a very important target for the development of inhibitors--anticancer drugs. Besides, Tdp1 hydrolyzes a wide range of 3'-terminal DNA modifications and the 3'-end nucleosides and its derivatives to form a 3'-phosphate. Tdp1 ability to cleave AP sites suggests its involvement in the base excision repair as an alternative enzyme to cleave AP sites instead of AP endonuclease 1--the major enzyme hydrolyzing AP sites in DNA repair process.
Collapse
|
22
|
van Waardenburg RC. Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2016; 1:25-29. [PMID: 27747316 PMCID: PMC5064944 DOI: 10.29245/2572.942x/2016/5.1048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H493R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.
Collapse
|
23
|
Comeaux EQ, Cuya SM, Kojima K, Jafari N, Wanzeck KC, Mobley JA, Bjornsti MA, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage. J Biol Chem 2015; 290:6203-14. [PMID: 25609251 DOI: 10.1074/jbc.m114.635284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.
Collapse
Affiliation(s)
- Evan Q Comeaux
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Selma M Cuya
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kyoko Kojima
- the University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nauzanene Jafari
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - Keith C Wanzeck
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James A Mobley
- the Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary-Ann Bjornsti
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Robert C A M van Waardenburg
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
24
|
Autosomal Recessive Ataxias Due to Defects in DNA Repair. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Andres SN, Schellenberg MJ, Wallace BD, Tumbale P, Williams RS. Recognition and repair of chemically heterogeneous structures at DNA ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:1-21. [PMID: 25111769 PMCID: PMC4303525 DOI: 10.1002/em.21892] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/28/2014] [Indexed: 05/13/2023]
Abstract
Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.
Collapse
Affiliation(s)
- Sara N Andres
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, North Carolina
| | | | | | | | | |
Collapse
|
26
|
Comeaux EQ, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab Rev 2014; 46:494-507. [PMID: 25327705 DOI: 10.3109/03602532.2014.971957] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA is subject to a wide range of insults, resulting from endogenous and exogenous sources that need to be metabolized/resolved to maintain genome integrity. Tyrosyl-DNA phosphodiesterase I (Tdp1) is a eukaryotic DNA repair enzyme that catalyzes the removal of covalent 3'-DNA adducts. As a phospholipase D superfamily member Tdp1 utilizes two catalytic histidines each within a His-Lys-Asn motif. Tdp1 was discovered for its ability to hydrolyze the 3'-phospho-tyrosyl that in the cell covalently links DNA Topoisomerase I (Topo1) and DNA. Tdp1's list of substrates has since grown and can be divided into two groups: protein-DNA adducts, such as camptothecin stabilized Topo1-DNA adducts, and modified nucleotides, including oxidized nucleotides and chain terminating nucleoside analogs. Since many of Tdp1's substrates are generated by clinically relevant chemotherapeutics, Tdp1 became a therapeutic target for molecularly targeted small molecules. Tdp1's unique catalytic cycle allows for two different targeting strategies: (1) the intuitive inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of chemotherapeutically induced DNA adducts, thereby enhancing their toxicity and (2) stabilization of the Tdp1-DNA covalent reaction intermediate, prevents resolution of Tdp1-DNA adduct and increases the half-life of this potentially toxic DNA adduct. This concept is best illustrated by a catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy, and results in an increased stability of its Tdp1-DNA reaction intermediate. Here, we will discuss Tdp1 catalysis from a structure-function perspective, Tdp1 substrates and Tdp1 potential as a therapeutic target.
Collapse
Affiliation(s)
- Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham , Birmingham, AL , USA
| | | |
Collapse
|
27
|
Abstract
TDP1 and TDP2 were discovered and named based on the fact they process 3'- and 5'-DNA ends by excising irreversible protein tyrosyl-DNA complexes involving topoisomerases I and II, respectively. Yet, both enzymes have an extended spectrum of activities. TDP1 not only excises trapped topoisomerases I (Top1 in the nucleus and Top1mt in mitochondria), but also repairs oxidative damage-induced 3'-phosphoglycolates and alkylation damage-induced DNA breaks, and excises chain terminating anticancer and antiviral nucleosides in the nucleus and mitochondria. The repair function of TDP2 is devoted to the excision of topoisomerase II- and potentially topoisomerases III-DNA adducts. TDP2 is also essential for the life cycle of picornaviruses (important human and bovine pathogens) as it unlinks VPg proteins from the 5'-end of the viral RNA genome. Moreover, TDP2 has been involved in signal transduction (under the former names of TTRAP or EAPII). The DNA repair partners of TDP1 include PARP1, XRCC1, ligase III and PNKP from the base excision repair (BER) pathway. By contrast, TDP2 repair functions are coordinated with Ku and ligase IV in the non-homologous end joining pathway (NHEJ). This article summarizes and compares the biochemistry, functions, and post-translational regulation of TDP1 and TDP2, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents. We discuss the rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors (topotecan, irinotecan, doxorubicin, etoposide, mitoxantrone) and DNA damaging agents (temozolomide, bleomycin, cytarabine, and ionizing radiation), and as novel antiviral agents.
Collapse
Affiliation(s)
- Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA.
| | - Shar-yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| | - Rui Gao
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| | - Benu Brata Das
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA; Laboratory of Molecular Biology, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA; Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku 606-8501, Japan
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Lv PC, Agama K, Marchand C, Pommier Y, Cushman M. Design, synthesis, and biological evaluation of O-2-modified indenoisoquinolines as dual topoisomerase I-tyrosyl-DNA phosphodiesterase I inhibitors. J Med Chem 2014; 57:4324-36. [PMID: 24800942 PMCID: PMC4033654 DOI: 10.1021/jm500294a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Tyrosyl-DNA
phosphodiesterase I (TDP1) repairs stalled topoisomerase
I (Top1)–DNA covalent complexes and has been proposed to be
a promising and attractive target for cancer treatment. Inhibitors
of TDP1 could conceivably act synergistically with Top1 inhibitors
and thereby potentiate the effects of Top1 poisons. This study describes
the successful design and synthesis of 2-position-modified indenoisoquinolines
as dual Top1–TDP1 inhibitors using a structure-based drug design
approach. Enzyme inhibition studies indicate that indenoisoquinolines
modified at the 2-position with three-carbon side chains ending with
amino substituents show both promising Top1 and TDP1 inhibitory activity.
Molecular modeling of selected target compounds bound to Top1 and
TDP1 was used to rationalize the enzyme inhibition results and structure–activity
relationship analysis.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
29
|
DeYonker NJ, Webster CE. Phosphoryl transfers of the phospholipase D superfamily: a quantum mechanical theoretical study. J Am Chem Soc 2013; 135:13764-74. [PMID: 24007383 DOI: 10.1021/ja4042753] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The HKD-containing Phospholipase D superfamily catalyzes the cleavage of the headgroup of phosphatidylcholine to produce phosphatidic acid and choline. The mechanism of this cleavage process is studied theoretically. The geometric basis of our models is the X-ray crystal structure of the five-coordinate phosphohistidine intermediate from Streptomyces sp . Strain PMF (PDB Code = 1V0Y ). Hybrid ONIOM QM:QM methodology with Density Functional Theory (DFT) and semiempirical PM6 (DFT:PM6) is used to acquire thermodynamic and kinetic data for the initial phosphoryl transfer, subsequent hydrolysis, and finally, the formation of the experimentally observed ″dead-end″ phosphohistidine product (PDB Code = 1V0W ). The model contains nineteen amino acid residues (including the two highly conserved HKD-motifs), four explicit water molecules, and the substrate. Via computations, the persistence of the short-lived five-coordinate phosphorane intermediate on the minutes times scale is rationalized. This five-coordinate phosphohistidine intermediate energetically exists between the hydrolysis event and ″substrate reorganization″ (the reorganization of the in vitro model substrate within the active site). Computations directly support the thermodynamic favorability of the in vitro four-coordinate phosphohistidine product. In vivo, the activation energy of substrate reorganization is too high, perhaps due to a combination of substrate immobility when embedded in the lipid bilayer, as well as its larger steric bulk compared to the compound used in the in vitro substrate soaks. On this longer time scale, the enzyme will migrate along the lipid membrane toward its next substrate target, rather than promote the formation of the dead-end product.
Collapse
Affiliation(s)
- Nathan J DeYonker
- The Department of Chemistry, The University of Memphis , 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
| | | |
Collapse
|
30
|
Huang SYN, Murai J, Dalla Rosa I, Dexheimer TS, Naumova A, Gmeiner WH, Pommier Y. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs. Nucleic Acids Res 2013; 41:7793-803. [PMID: 23775789 PMCID: PMC3763526 DOI: 10.1093/nar/gkt483] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs.
Collapse
Affiliation(s)
- Shar-yin N Huang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA and Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sirivolu VR, Vernekar SKV, Marchand C, Naumova A, Chergui A, Renaud A, Stephen AG, Chen F, Sham YY, Pommier Y, Wang Z. 5-Arylidenethioxothiazolidinones as inhibitors of tyrosyl-DNA phosphodiesterase I. J Med Chem 2012; 55:8671-84. [PMID: 23006064 DOI: 10.1021/jm3008773] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) is a cellular enzyme that repairs the irreversible topoisomerase I (Top1)-DNA complexes and confers chemotherapeutic resistance to Top1 inhibitors. Inhibiting Tdp1 provides an attractive approach to potentiating clinically used Top1 inhibitors. However, despite recent efforts in studying Tdp1 as a therapeutic target, its inhibition remains poorly understood and largely underexplored. We describe herein the discovery of arylidene thioxothiazolidinone as a scaffold for potent Tdp1 inhibitors based on an initial tyrphostin lead compound 8. Through structure-activity relationship (SAR) studies we demonstrated that arylidene thioxothiazolidinones inhibit Tdp1 and identified compound 50 as a submicromolar inhibitor of Tdp1 (IC₅₀ = 0.87 μM). Molecular modeling provided insight into key interactions essential for observed activities. Some derivatives were also active against endogenous Tdp1 in whole cell extracts. These findings contribute to advancing the understanding on Tdp1 inhibition.
Collapse
Affiliation(s)
- Venkata Ramana Sirivolu
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Structure-function studies of a plant tyrosyl-DNA phosphodiesterase provide novel insights into DNA repair mechanisms of Arabidopsis thaliana. Biochem J 2012; 443:49-56. [PMID: 22214184 PMCID: PMC3304491 DOI: 10.1042/bj20111308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TDP1 (tyrosyl-DNA phosphodiesterase 1), a member of the PLD (phospholipase D) superfamily, catalyses the hydrolysis of a phosphodiester bond between a tyrosine residue and the 3′-phosphate of DNA. We have previously identified and characterized the AtTDP gene in Arabidopsis thaliana, an orthologue of yeast and human TDP1 genes. Sequence alignment of TDP1 orthologues revealed that AtTDP has both a conserved C-terminal TDP domain and, uniquely, an N-terminal SMAD/FHA (forkhead-associated) domain. To help understand the function of this novel enzyme, we analysed the substrate saturation kinetics of full-length AtTDP compared with a truncated AtTDP mutant lacking the N-terminal FHA domain. The recombinant AtTDP protein hydrolysed a single-stranded DNA substrate with Km and kcat/Km values of 703±137 nM and (1.5±0.04)×109M−1·min−1 respectively. The AtTDP-(Δ1–122) protein (TDP domain) showed kinetic parameters that were equivalent to those of the full-length AtTDP protein. A basic amino acid sequence (RKKVKP) within the AtTDP-(Δ123–605) protein (FHA domain) was necessary for nuclear localization of AtTDP. Analysis of active-site mutations showed that a histidine and a lysine residue in each of the HKD motifs were critical for enzyme activity. Vanadates, inhibitors of phosphoryl transfer reactions, inhibited AtTDP enzymatic activity and retarded the growth of an Arabidopsis tdp mutant. Finally, we showed that expression of the AtTDP gene could complement a yeast tdp1Δrad1Δ mutant, rescuing the growth inhibitory effects of vanadate analogues and CPT (camptothecin). Taken together, the results of the present study demonstrate the structure-based function of AtTDP through which AtTDP can repair DNA strand breaks in plants.
Collapse
|
33
|
Takagi M, Ueda JY, Hwang JH, Hashimoto J, Izumikawa M, Murakami H, Sekido Y, Shin-ya K. Tyrosyl-DNA phosphodiesterase 1 inhibitor from an anamorphic fungus. JOURNAL OF NATURAL PRODUCTS 2012; 75:764-767. [PMID: 22390627 DOI: 10.1021/np2007389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an enzyme that catalyzes hydrolysis of 3'-phosphotyrosyl bonds and is involved in repair of irreversible topoisomerase I (Top1)-DNA covalent complexes. Tdp1 inhibitors are regarded as potential cancer therapeutics in combination with Top1 inhibitors, which are currently used to treat human cancers. While screening for Tdp1 inhibitors, we discovered a novel compound, JBIR-21 (1), from the culture of an anamorphic fungus, RF-13305. The structure of 1 was established by extensive NMR and MS analyses. Compound 1 showed inhibitory activity against Tdp1 (IC(50) value, 18 μM) and cytotoxic activity against cancer cell lines (IC(50) values, 3.5-13 μM). Compound 1 also exhibited antitumor activity in a mouse xenograft model without adverse effects.
Collapse
Affiliation(s)
- Motoki Takagi
- Biomedicinal Information Research Center (BIRC), Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Tokyo 135-0064, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gajewski S, Comeaux EQ, Jafari N, Bharatham N, Bashford D, White SW, van Waardenburg RCAM. Analysis of the active-site mechanism of tyrosyl-DNA phosphodiesterase I: a member of the phospholipase D superfamily. J Mol Biol 2011; 415:741-58. [PMID: 22155078 DOI: 10.1016/j.jmb.2011.11.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/21/2011] [Accepted: 11/25/2011] [Indexed: 11/28/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines-one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK(a) of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.
Collapse
Affiliation(s)
- Stefan Gajewski
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1. Biochem J 2011; 436:559-66. [PMID: 21463258 DOI: 10.1042/bj20101841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TDP (tyrosyl-DNA phosphodiesterase) 1 catalyses the hydrolysis of phosphodiester linkages between a DNA 3' phosphate and a tyrosine residue as well as a variety of other DNA 3' substituents, and has been implicated in the repair of covalent complexes involving eukaryotic type IB topoisomerases. To better understand the substrate features that are recognized by TDP1, the size of either the DNA or protein component of the substrate was varied. Competition experiments and gel-shift analyses comparing a series of substrates with DNA lengths increasing from 6 to 28 nt indicated that, contrary to predictions based on the crystal structure of the protein, the apparent affinity for the substrate increased as the DNA length was increased over the entire range tested. It has been found previously that a substrate containing the full-length native form of human topoisomerase I protein is not cleaved by TDP1. Protein-oligonucleotide complexes containing either a 53 or 108 amino acid topoisomerase I-derived peptide were efficiently cleaved by TDP1, but similar to the full-length protein, a substrate containing a 333 amino acid topoisomerase I fragment was resistant to cleavage. Consistent with these results, evidence is presented that processing by the proteasome is required for TDP1 cleavage in vivo.
Collapse
|
36
|
Koh EH. Effect of Alcohols Toward the Transphosphatidylation Activity in Phospholipase D Catalyzed Reaction. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2010. [DOI: 10.5012/jkcs.2010.54.02.208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Sasnauskas G, Zakrys L, Zaremba M, Cosstick R, Gaynor JW, Halford SE, Siksnys V. A novel mechanism for the scission of double-stranded DNA: BfiI cuts both 3'-5' and 5'-3' strands by rotating a single active site. Nucleic Acids Res 2010; 38:2399-410. [PMID: 20047964 PMCID: PMC2853115 DOI: 10.1093/nar/gkp1194] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metal-dependent nucleases that generate double-strand breaks in DNA often possess two symmetrically-equivalent subunits, arranged so that the active sites from each subunit act on opposite DNA strands. Restriction endonuclease BfiI belongs to the phospholipase D (PLD) superfamily and does not require metal ions for DNA cleavage. It exists as a dimer but has at its subunit interface a single active site that acts sequentially on both DNA strands. The active site contains two identical histidines related by 2-fold symmetry, one from each subunit. This symmetrical arrangement raises two questions: first, what is the role and the contribution to catalysis of each His residue; secondly, how does a nuclease with a single active site cut two DNA strands of opposite polarities to generate a double-strand break. In this study, the roles of active-site histidines in catalysis were dissected by analysing heterodimeric variants of BfiI lacking the histidine in one subunit. These variants revealed a novel mechanism for the scission of double-stranded DNA, one that requires a single active site to not only switch between strands but also to switch its orientation on the DNA.
Collapse
|
38
|
Walton C, Interthal H, Hirano R, Salih MAM, Takashima H, Boerkoel CF. Spinocerebellar ataxia with axonal neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:75-83. [PMID: 20687496 DOI: 10.1007/978-1-4419-6448-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spinocerebellar ataxia with axonal neuropathy (SCAN 1) is an autosomal recessive disorder caused by a specific point mutation (c.1478A>G, p.H493R) in the tyrosyl-DNA phosphodiesterase (TDP1) gene. Functional and genetic studies suggest that this mutation, which disrupts the active site of the Tdp1 enzyme, causes disease by a combination of decreased catalytic activity and stabilization of the normally transient covalent Tdp1-DNA intermediate. This covalent reaction intermediate can form during the repair of stalled topoisomerase I-DNA adducts or oxidatively damaged bases at the 3' end of the DNA at a strand break. However, our current understanding of the biology of Tdp1 function in humans is limited and does not allow us to fully elucidate the disease mechanism.
Collapse
Affiliation(s)
- Cheryl Walton
- Department of Medical Genetics, Provincial Medical Genetics Program, Child and Family Research Institute, Children's and Women's Health Centre of British Columbia, University of British Columbia Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Uesugi Y, Hatanaka T. Phospholipase D mechanism using Streptomyces PLD. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:962-9. [PMID: 19416643 DOI: 10.1016/j.bbalip.2009.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/19/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
Phospholipase D (PLD) plays various roles in important biological processes and physiological functions, including cell signaling. Streptomyces PLDs show significant sequence similarity and belong to the PLD superfamily containing two catalytic HKD motifs. These PLDs have conserved catalytic regions and are among the smallest PLD enzymes. Therefore, Streptomyces PLDs are thought to be suitable models for studying the reaction mechanism among PLDs from other sources. Furthermore, Streptomyces PLDs present advantages related to their broad substrate specificity and ease of enzyme preparation. Moreover, the tertiary structure of PLD has been elucidated only for PLD from Streptomyces sp. PMF. This article presents a review of recently reported studies of the mechanism of the catalytic reaction, substrate recognition, substrate specificity and stability of Streptomyces PLD using various protein engineering methods and surface plasmon resonance analysis.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences (RIBS), Kaga-gun, Okayama, Japan
| | | |
Collapse
|
40
|
Dexheimer TS, Antony S, Marchand C, Pommier Y. Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med Chem 2008; 8:381-9. [PMID: 18473723 DOI: 10.2174/187152008784220357] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors provided there is a presence of genetic abnormalities related to DNA checkpoint and repair pathways. Human Tdp1 can also hydrolyze other 3'-end DNA alterations including 3'-phosphoglycolates and 3'-abasic sites indicating it may function as a general 3'-DNA phosphodiesterase and repair enzyme. The importance of Tdp1 in humans is highlighted by the observation that a recessive mutation in the human TDP1 gene is responsible for the inherited disorder, spinocerebellar ataxia with axonal neuropathy (SCAN1). This review provides a summary of the biochemical and cellular processes performed by Tdp1 as well as the rationale behind the development of Tdp1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
41
|
Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics 2007; 32:219-28. [PMID: 17957000 DOI: 10.1152/physiolgenomics.00157.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Abstract
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | |
Collapse
|
43
|
He X, van Waardenburg RCAM, Babaoglu K, Price AC, Nitiss KC, Nitiss JL, Bjornsti MA, White SW. Mutation of a Conserved Active Site Residue Converts Tyrosyl-DNA Phosphodiesterase I into a DNA Topoisomerase I-dependent Poison. J Mol Biol 2007; 372:1070-1081. [PMID: 17707402 DOI: 10.1016/j.jmb.2007.07.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the resolution of 3' and 5' phospho-DNA adducts. A defective mutant, associated with the recessive neurodegenerative disease SCAN1, accumulates Tdp1-DNA complexes in vitro. To assess the conservation of enzyme architecture, a 2.0 A crystal structure of yeast Tdp1 was determined that is very similar to human Tdp1. Poorly conserved regions of primary structure are peripheral to an essentially identical catalytic core. Enzyme mechanism was also conserved, because the yeast SCAN1 mutant (H(432)R) enhanced cell sensitivity to the DNA topoisomerase I (Top1) poison camptothecin. A more severe Top1-dependent lethality of Tdp1H(432)N was drug-independent, coinciding with increased covalent Top1-DNA and Tdp1-DNA complex formation in vivo. However, both H(432) mutants were recessive to wild-type Tdp1. Thus, yeast H(432) acts in the general acid/base catalytic mechanism of Tdp1 to resolve 3' phosphotyrosyl and 3' phosphoamide linkages. However, the distinct pattern of mutant Tdp1 activity evident in yeast cells, suggests a more severe defect in Tdp1H(432)N-catalyzed resolution of 3' phospho-adducts.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Kerim Babaoglu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Allen C Price
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karin C Nitiss
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John L Nitiss
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary-Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
44
|
Antony S, Marchand C, Stephen AG, Thibaut L, Agama KK, Fisher RJ, Pommier Y. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. Nucleic Acids Res 2007; 35:4474-84. [PMID: 17576665 PMCID: PMC1935015 DOI: 10.1093/nar/gkm463] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
By enzymatically hydrolyzing the terminal phosphodiester bond at the 3'-ends of DNA breaks, tyrosyl-DNA phosphodiesterase (Tdp1) repairs topoisomerase-DNA covalent complexes and processes the DNA ends for DNA repair. To identify novel Tdp1 inhibitors, we developed a high-throughput assay that uses electrochemiluminescent (ECL) substrates. Subsequent to screening of 1981 compounds from the 'diversity set' of the NCI-Developmental Therapeutics Program, here we report that furamidine inhibits Tdp1 at low micromolar concentrations. Inhibition of Tdp1 by furamidine is effective both with single- and double-stranded substrates but is slightly stronger with the duplex DNA. Surface plasmon resonance studies show that furamidine binds both single- and double-stranded DNA, though more weakly with the single-stranded substrate DNA. Thus, the inhibition of Tdp1 activity could in part be due to the binding of furamidine to DNA. However, the inhibition of Tdp1 by furamidine is independent of the substrate DNA sequence. The kinetics of Tdp1 inhibition by furamidine was influenced by the drug to enzyme ratio and duration of the reaction. Comparison with related dications shows that furamidine inhibits Tdp1 more effectively than berenil, while pentamidine was inactive. Thus, furamidine represents the most potent Tdp1 inhibitor reported to date.
Collapse
Affiliation(s)
- Smitha Antony
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Weichenberger CX, Sippl MJ. NQ-Flipper: recognition and correction of erroneous asparagine and glutamine side-chain rotamers in protein structures. Nucleic Acids Res 2007; 35:W403-6. [PMID: 17478502 PMCID: PMC1933125 DOI: 10.1093/nar/gkm263] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The current Protein Data Bank (PDB) contains about 40 000 protein structures with approximately half a million incorrect atom positions resulting from erroneously assigned asparagine (Asn) and glutamine (Gln) rotamers. These errors affect applications in protein structure analysis, modeling and docking and therefore the detection, correction and prevention of such errors is highly desirable. We present NQ-Flipper, a web service based on mean force potentials to automatically detect and correct erroneous Asn and Gln rotamers. The service accepts protein structure files formatted in PDB style or PDB codes. For an Asn/Gln side-chain amide NQ-Flipper computes the total interaction energy with the surrounding atoms as the sum of pairwise atom–atom interaction energies. The energy difference between the original and the alternative rotamers identifies the correct configuration of the amide group. The web service lists the interaction energies of all Asn/Gln residues found in a PDB file and shows the structure and offending residues in an interactive 3D viewer. The corrected protein structure is available for download in various compression formats. The web service is accessible at http://flipper.services.came.sbg.ac.at
Collapse
Affiliation(s)
| | - Manfred J. Sippl
- *To whom correspondence should be addressed. +43 662 8044 5797+43 662 8044 176
| |
Collapse
|
46
|
Weichenberger CX, Sippl MJ. Self-consistent assignment of asparagine and glutamine amide rotamers in protein crystal structures. Structure 2006; 14:967-72. [PMID: 16765889 DOI: 10.1016/j.str.2006.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/31/2006] [Accepted: 04/01/2006] [Indexed: 11/17/2022]
Abstract
The current protein structure database contains unfavorable Asn/Gln amide rotamers in the order of 20%. Here, we derive a set of self-consistent potential functions to identify and correct unfavorable rotamers. Potentials of mean force for all heavy atoms are compiled from a database of high-resolution protein crystal structures. Starting from erroneous data, a refinement-correction cycle quickly converges to a self-consistent set of potentials. The refinement is entirely driven by the deposited structure data and does not involve any assumptions on molecular interactions or any artificial constraints. The refined potentials obtained in this way identify unfavorable rotamers with high confidence. Since the state of Asn/Gln rotamers is largely determined by hydrogen bond interactions, the features of the respective potentials are of interest in terms of molecular interactions, protein structure refinement, and prediction. The Asn/Gln rotamer assignment is available as a public web service intended to support protein structure refinement and modeling.
Collapse
Affiliation(s)
- Christian X Weichenberger
- Center of Applied Molecular Engineering, University of Salzburg, Jakob Haringerstrasse 5, 5020 Salzburg, Austria
| | | |
Collapse
|
47
|
Raymond AC, Burgin AB. Tyrosyl-DNA phosphodiesterase (Tdp1) (3'-phosphotyrosyl DNA phosphodiesterase). Methods Enzymol 2006; 409:511-24. [PMID: 16793421 DOI: 10.1016/s0076-6879(05)09030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds in vitro. Because topoisomerase I, a type IB topoisomerase, is the only enzyme known to form 3'-phosphotyrosine bonds in eukaryotic cells, it was proposed that Tdp1 is involved in the repair of dead-end topoisomerase I-DNA covalent complexes that may form in vivo. It has also been proposed that Tdp1 may represent a novel anticancer target since known anticancer agents (e.g., camptothecin) act by stabilizing topoisomerase I-DNA covalent adducts. The importance of Tdp1 in DNA repair is also demonstrated by the observation that a recessive mutation in the human TDP1 gene is responsible for the hereditary disorder Spinocerebellar Ataxia with Axonal Neuropathy (SCAN). Although it has been proposed that Tdp1 may be involved in the repair of multiple DNA lesions, this chapter describes the synthesis and characterization of substrates used to study the role of Tdp1 in repairing topoisomerase I-DNA adducts, and the methods used to study the catalytic mechanism and structure of this novel enzyme.
Collapse
Affiliation(s)
- Amy C Raymond
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | | |
Collapse
|
48
|
Liao Z, Thibaut L, Jobson A, Pommier Y. Inhibition of human tyrosyl-DNA phosphodiesterase by aminoglycoside antibiotics and ribosome inhibitors. Mol Pharmacol 2006; 70:366-72. [PMID: 16618796 DOI: 10.1124/mol.105.021865] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase I (Top1) is the target of camptothecin, and novel Top1 inhibitors are in development as anticancer agents. Top1 inhibitors damage DNA by trapping covalent complexes between the Top1 catalytic tyrosine and the 3'-end of the broken DNA. Tyrosyl-DNA phosphodiesterase (Tdp1) can repair Top1-DNA covalent complexes by hydrolyzing the tyrosyl-DNA bond. Inhibiting Tdp1 has the potential to enhance the anticancer activity of Top1 inhibitors (http://discover.nci.nih.gov/pommier/pommier.htm) and to act as antiproliferative agents. In the present study, we report that neomycin inhibits Tdp1 more effectively than the related aminoglycosides paromomycin and lividomycin A. Inhibition of Tdp1 by neomycin is observed both with single- and double-stranded substrates but is slightly stronger with duplex DNA, which is different from aclarubicin, which only inhibits Tdp1 with the double-stranded substrate. Inhibition by neomycin can be overcome with excess Tdp1 and is greatest at low pH. To our knowledge, aminoglycoside antibiotics and the ribosome inhibitors thiostrepton, clindamycin-2-phosphate, and puromycin are the first reported pharmacological Tdp1 inhibitors.
Collapse
Affiliation(s)
- Zhiyong Liao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
49
|
Interthal H, Chen HJ, Champoux JJ. Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem 2005; 280:36518-28. [PMID: 16141202 PMCID: PMC1351008 DOI: 10.1074/jbc.m508898200] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes the phosphodiester bond between a DNA 3' end and a tyrosyl moiety. In eukaryotic cells, this type of linkage is found in stalled topoisomerase I-DNA covalent complexes, and Tdp1 has been implicated in the repair of such complexes in vivo. We confirm here that the Tdp1 catalytic cycle involves a covalent reaction intermediate in which a histidine residue is connected to a DNA 3'-phosphate through a phosphoamide linkage. Most surprisingly, this linkage can be hydrolyzed by Tdp1, and unlike a topoisomerase I-DNA complex, which requires modification to be an efficient substrate for Tdp1, the native form of Tdp1 can be removed from the DNA. The spinocerebellar ataxia with axonal neuropathy neurodegenerative disease is caused by the H493R mutant form of Tdp1, which shows reduced enzymatic activity and accumulates the Tdp1-DNA covalent intermediate. The ability of wild type Tdp1 to remove the stalled mutant protein from the DNA likely explains the recessive nature of spinocerebellar ataxia with axonal neuropathy. In addition to its activity on phosphotyrosine and phosphohistidine substrates, Tdp1 also possesses a limited DNA and RNA 3'-exonuclease activity in which a single nucleoside is removed from the 3'-hydroxyl end of the substrate. Furthermore, Tdp1 also removes a 3' abasic site and an artificial 3'-biotin adduct from the DNA. In combination with earlier data showing that Tdp1 can use 3'-phosphoglycolate as a substrate, these data suggest that Tdp1 may function to remove a variety of 3' adducts from DNA during DNA repair.
Collapse
Affiliation(s)
- Heidrun Interthal
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-7242, USA
| | | | | |
Collapse
|
50
|
Raymond AC, Staker BL, Burgin AB. Substrate Specificity of Tyrosyl-DNA Phosphodiesterase I (Tdp1). J Biol Chem 2005; 280:22029-35. [PMID: 15811850 DOI: 10.1074/jbc.m502148200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and tyrosine in vitro. Tdp1 is involved in the repair of DNA lesions created by topoisomerase I, although the in vivo substrate is not known. Here we study the kinetic and binding properties of human Tdp1 (hTdp1) to identify appropriate 3'-phosphotyrosyl DNA substrates. Genetic studies argue that Tdp1 is involved in double and single strand break repair pathways; however, x-ray crystal structures suggest that Tdp1 can only bind single strand DNA. Separate kinetic and binding experiments show that hTdp1 has a preference for single-stranded and blunt-ended duplex substrates over nicked and tailed duplex substrate conformations. Based on these results, we present a new model to explain Tdp1/DNA binding properties. These results suggest that Tdp1 only acts upon double strand breaks in vivo, and the roles of Tdp1 in yeast and mammalian cells are discussed.
Collapse
Affiliation(s)
- Amy C Raymond
- deCODE biostructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | | | | |
Collapse
|