1
|
Cogan G, Bourgon N, Borghese R, Julien E, Jaquette A, Stos B, Achaiaa A, Chuon S, Nitschke P, Fourrage C, Stirnemann J, Boutaud L, Attie‐Bitach T. Diagnosis of Menke-Hennekam syndrome by prenatal whole exome sequencing and review of prenatal signs. Mol Genet Genomic Med 2023; 11:e2219. [PMID: 37353886 PMCID: PMC10496051 DOI: 10.1002/mgg3.2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION CREBBP truncating mutations and deletions are responsible for the well-known Rubinstein-Taybi syndrome. Recently, a new, distinct CREBBP-linked syndrome has been described: missense mutations located at the 3' end of exon 30 and the 5' portion of exon 31 induce Menke-Hennekam syndrome. Patients with this syndrome present a recognizable facial dysmorphism, intellectual disability of variable severity, microcephaly, short stature, autism, epilepsy, visual and hearing impairments, feeding problems, upper airway infections, scoliosis, and/or kyphosis. To date, all diagnoses were made postnatally. METHOD AND CASE REPORT Trio-whole exome sequencing (WES) was performed in a fetus showing increased nuchal translucency persistence and aorta abnormalities at 28 weeks of gestation (WG). RESULTS WES revealed a CREBBP de novo missense mutation (c.5602C>T; p.Arg1868Trp) in exon 31, previously reported as the cause of Menke-Hennekam syndrome. Termination of pregnancy was performed at 32 WG. We further reviewed the prenatal signs of Menke-Hennekam syndrome already reported. Among the 35 patients reported and diagnosed postnatally up to this day, 15 presented recognizable prenatal signs, the most frequent being intra-uterine growth retardation, brain, and cardiovascular anomalies. CONCLUSION Menke-Hennekam is a rare syndrome with unspecific, heterogeneous, and inconstant prenatal symptoms occurring most frequently with the c.5602C>T, p.(Arg1868Trp) mutation. Therefore, the prenatal diagnosis of Menke-Hennekam syndrome is only possible by molecular investigation. Moreover, this case report and review reinforce the importance of performing prenatal WES when unspecific signs are present on imaging.
Collapse
Affiliation(s)
- Guillaume Cogan
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Nicolas Bourgon
- Service d'Obstétrique—Maternité Chirurgie, Médecine et Imagerie foetales, AP‐HP.CentreHôpital Necker Enfants MaladesParisFrance
| | - Roxana Borghese
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Emmanuel Julien
- Service d'ObstétriqueCentre hospitalier du MansLe MansFrance
| | - Aurélia Jaquette
- Service de Pédiatrie, génétique médicaleCentre hospitalier d'AlençonAlençonFrance
| | - Bertrand Stos
- AP‐HP.CentreCardiologie Pédiatrique Hôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Amale Achaiaa
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Sophie Chuon
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Patrick Nitschke
- Bioinformatics Platform, Institut ImagineINSERM UMR 1163ParisFrance
| | - Cécile Fourrage
- Bioinformatics Platform, Institut ImagineINSERM UMR 1163ParisFrance
| | - Julien Stirnemann
- Service d'Obstétrique—Maternité Chirurgie, Médecine et Imagerie foetales, AP‐HP.CentreHôpital Necker Enfants MaladesParisFrance
| | - Lucile Boutaud
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | - Tania Attie‐Bitach
- Service de médecine génomique des maladies rares, AP‐HP.Centre, Institut ImagineHôpital Universitaire Necker‐Enfants MaladesParisFrance
| |
Collapse
|
2
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
4
|
Wang YY, Zhang J, Liu XM, Li Y, Sui J, Dong MQ, Ye K, Du LL. Molecular and structural mechanisms of ZZ domain-mediated cargo selection by Nbr1. EMBO J 2021; 40:e107497. [PMID: 34169534 DOI: 10.15252/embj.2020107497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Ying-Ying Wang
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Brandis JEP, Zalesak SM, Kane MA, Michel SLJ. Cadmium Exchange with Zinc in the Non-Classical Zinc Finger Protein Tristetraprolin. Inorg Chem 2021; 60:7697-7707. [PMID: 33999622 PMCID: PMC8501473 DOI: 10.1021/acs.inorgchem.0c03808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tristetraprolin (TTP) is a nonclassical CCCH zinc finger protein that regulates inflammation. TTP targets AU-rich RNA sequences of cytokine mRNAs forming a TTP/mRNA complex. This complex is then degraded, switching off the inflammatory response. Cadmium, a known carcinogen, triggers proinflammatory effects, and there is evidence that Cd increases TTP expression in cells, suggesting that Zn-TTP may be a target for cadmium toxicity. We sought to determine whether Cd exchanges with Zn in the TTP active site and measure the effect of RNA binding on this exchange. A construct of TTP that contains the two CCCH domains (TTP-2D) was employed to investigate these interactions. A spin-filter ICP-MS experiment to quantify the metal that is bound to the ZF after metal exchange was performed, and it was determined that Cd exchanges with Zn in Zn2-TTP-2D and that Zn exchanges with Cd in Cd2-TTP-2D. A native ESI-MS experiment to identify the metal-ZF complexes formed after metal exchange was performed, and M-TTP-2D complexes with singular and double metal exchange were observed. Metal exchange was measured in both the absence and presence of TTP's partner RNA, with retention of RNA binding. These data show that Cd can exchange with Zn in TTP without affecting function.
Collapse
Affiliation(s)
- Joel E P Brandis
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Stephanie M Zalesak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Stelman CR, Smith BM, Chandra B, Roberts-Galbraith RH. CBP/p300 homologs CBP2 and CBP3 play distinct roles in planarian stem cell function. Dev Biol 2021; 473:130-143. [PMID: 33607113 DOI: 10.1016/j.ydbio.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Chromatin modifications function as critical regulators of gene expression and cellular identity, especially in the regulation and maintenance of the pluripotent state. However, many studies of chromatin modification in stem cells-and pluripotent stem cells in particular-are performed in mammalian stem cell culture, an in vitro condition mimicking a very transient state during mammalian development. Thus, new models for studying pluripotent stem cells in vivo could be helpful for understanding the roles of chromatin modification, for confirming prior in vitro studies, and for exploring evolution of the pluripotent state. The freshwater flatworm, Schmidtea mediterranea, is an excellent model for studying adult pluripotent stem cells, particularly in the context of robust, whole-body regeneration. To identify chromatin modifying and remodeling enzymes critical for planarian regeneration and stem cell maintenance, we took a candidate approach and screened planarian homologs of 25 genes known to regulate chromatin biology in other organisms. Through our study, we identified six genes with novel functions in planarian homeostasis, regeneration, and behavior. Of the list of genes characterized, we identified five planarian homologs of the mammalian CREB-Binding Protein (CBP) and p300 family of histone acetyltransferases, representing an expansion of this family in planarians. We find that two planarian CBP family members are required for planarian survival, with knockdown of Smed-CBP2 and Smed-CBP3 causing distinct defects in stem cell maintenance or function. Loss of CBP2 causes a quick, dramatic loss of stem cells, while knockdown of CBP3 affects stem cells more narrowly, influencing differentiation of several cell types that include neuronal subtypes and cells of the eye. Further, we find that Smed-CBP1 is required for planarian fissioning behavior. We propose that the division of labor among a diversified CBP family in planarians presents an opportunity to dissect specific functions of a broadly important histone acetyltransferase family.
Collapse
Affiliation(s)
- Clara R Stelman
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Britessia M Smith
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rachel H Roberts-Galbraith
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Oroz J, Félix SS, Cabrita EJ, Laurents DV. Structural transitions in Orb2 prion-like domain relevant for functional aggregation in memory consolidation. J Biol Chem 2020; 295:18122-18133. [PMID: 33093173 PMCID: PMC7939463 DOI: 10.1074/jbc.ra120.015211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The recent structural elucidation of ex vivo Drosophila Orb2 fibrils revealed a novel amyloid formed by interdigitated Gln and His residue side chains belonging to the prion-like domain. However, atomic-level details on the conformational transitions associated with memory consolidation remain unknown. Here, we have characterized the nascent conformation and dynamics of the prion-like domain (PLD) of Orb2A using a nonconventional liquid-state NMR spectroscopy strategy based on 13C detection to afford an essentially complete set of 13Cα, 13Cβ, 1Hα, and backbone 13CO and 15N assignments. At pH 4, where His residues are protonated, the PLD is disordered and flexible, except for a partially populated α-helix spanning residues 55-60, and binds RNA oligos, but not divalent cations. At pH 7, in contrast, His residues are predominantly neutral, and the Q/H segments adopt minor populations of helical structure, show decreased mobility and start to self-associate. At pH 7, the His residues do not bind RNA or Ca2+, but do bind Zn2+, which promotes further association. These findings represent a remarkable case of structural plasticity, based on which an updated model for Orb2A functional amyloidogenesis is suggested.
Collapse
Affiliation(s)
- Javier Oroz
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Madrid, Spain
| | - Sara S Félix
- Departamento de Química Faculdade de Ciências e Tecnologia, UCIBIO, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- Departamento de Química Faculdade de Ciências e Tecnologia, UCIBIO, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
8
|
Evans KS, Zdraljevic S, Stevens L, Collins K, Tanny RE, Andersen EC. Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008986. [PMID: 33175833 PMCID: PMC7682890 DOI: 10.1371/journal.pgen.1008986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.
Collapse
Affiliation(s)
- Kathryn S. Evans
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Lewis Stevens
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Kimberly Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Robyn E. Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
Cross E, Duncan-Flavell PJ, Howarth RJ, Hobbs JI, Thomas NS, Bunyan DJ. Screening of a large Rubinstein-Taybi cohort identified many novel variants and emphasizes the importance of the CREBBP histone acetyltransferase domain. Am J Med Genet A 2020; 182:2508-2520. [PMID: 32827181 DOI: 10.1002/ajmg.a.61813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Pathogenic variants within the CREBBP and EP300 genes account for the majority of individuals with Rubinstein-Taybi syndrome (RSTS). Data are presented from a large cohort of 395 individuals referred for diagnostic testing of CREBBP, and of the 19 CREBBP missense variants classified as likely pathogenic in this study, 17 were within the histone acetyltransferase (HAT) domain, providing evidence that this domain is critical to the normal function of the CREBBP protein (CBP). The data presented here, combined with other published results, suggest that the presence of a missense variant within the CBP HAT domain can be considered as moderate evidence of pathogenicity in the context of official variant interpretation guidelines. Within our study cohort, 129 had a pathogenic or likely pathogenic CREBBP variant and 5 had a variant of uncertain significance (VUS) which warranted familial studies. 147 of the remaining probands were also screened for EP300 and a further 16 pathogenic or likely pathogenic variants were identified, plus one VUS. Therefore, this analysis has provided a molecular diagnosis in at least 145 individuals with RSTS (37%) and identified a wide range of variants (n = 133) of which 103 were novel.
Collapse
Affiliation(s)
- Esther Cross
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | | | - Rachel J Howarth
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - James I Hobbs
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Nicholas Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Faculty of Medicine, University of Southampton, Southampton, UK
| | - David J Bunyan
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Miyamoto K, Migita K, Saito K. Solution structure of the zinc finger domain of human RNF144A ubiquitin ligase. Protein Sci 2020; 29:1836-1842. [PMID: 32557973 DOI: 10.1002/pro.3903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
RNF144A is involved in protein ubiquitination and functions as an ubiquitin-protein ligase (E3) via its RING finger domain (RNF144A RING). RNF144A is associated with degradation of heat-shock protein family A member 2 (HSPA2), which leads to the suppression of breast cancer cell proliferation. In this study, the solution structure of RNF144A RING was determined using nuclear magnetic resonance. Moreover, using a metallochromic indicator, we spectrophotometrically determined the stoichiometry of zinc ions and elucidated that RNF144A RING binds two zinc atoms. This structural analysis provided the position and range of the active site of RNF144A RING at the atomic level, which contributes to the creation of artificial RING fingers having the specific ubiquitin-conjugating enzyme (E2)-binding capability.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Kaori Migita
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| |
Collapse
|
11
|
Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 2020; 579:448-451. [PMID: 32188943 PMCID: PMC7093204 DOI: 10.1038/s41586-020-2088-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Chromatin remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. The essential Saccharomyces cerevisiae SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and –1 nucleosomes that flank NDRs8,9. Here, we present the cryo-EM structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and ARP modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with their ‘SnAC’ and ‘finger’ elements, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity5. The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.
Collapse
|
12
|
Zhao Z, Li T, Peng X, Wu K, Yang S. Identification and Characterization of Tomato SWI3-Like Proteins: Overexpression of SlSWIC Increases the Leaf Size in Transgenic Arabidopsis. Int J Mol Sci 2019; 20:ijms20205121. [PMID: 31623074 PMCID: PMC6829904 DOI: 10.3390/ijms20205121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
As the subunits of the SWI/SNF (mating-type switching (SWI) and sucrose nonfermenting (SNF)) chromatin-remodeling complexes (CRCs), Swi3-like proteins are crucial to chromatin remodeling in yeast and human. Growing evidence indicate that AtSWI3s are also essential for development and response to hormones in Arabidopsis. Nevertheless, the biological functions of Swi3-like proteins in tomato (Solanum lycopersicum) have not been investigated. Here we identified four Swi3-like proteins from tomato, namely SlSWI3A, SlSWI3B, SlSWI3C, and SlSWI3D. Subcellular localization analysis revealed that all SlSWI3s are localized in the nucleus. The expression patterns showed that all SlSWI3s are ubiquitously expressed in all tissues and organs, and SlSWI3A and SlSWI3B can be induced by cold treatment. In addition, we found that SlSWI3B can form homodimers with itself and heterodimers with SlSWI3A and SlSWI3C. SlSWI3B can also interact with SlRIN and SlCHR8, two proteins involved in tomato reproductive development. Overexpression of SlSWI3C increased the leaf size in transgenic Arabidopsis with increased expression of GROWTH REGULATING FACTORs, such as GRF3, GRF5, and GRF6. Taken together, our results indicate that SlSWI3s may play important roles in tomato growth and development.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Tao Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510650, China.
| | - Xiuling Peng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan.
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
13
|
Miyamoto K, Fujiwara Y, Saito K. Zinc finger domain of the human DTX protein adopts a unique RING fold. Protein Sci 2019; 28:1151-1156. [PMID: 30927328 DOI: 10.1002/pro.3610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
Abstract
The Deltex (DTX) family is involved in ubiquitination and acts as Notch signaling modifiers for controlling cell fate determination. DTX promotes the development of the ubiquitin chain via its RING finger (DTX_RING). In this study, the solution structure of DTX_RING was determined using nuclear magnetic resonance (NMR). Moreover, by experiments with a metallochromic indicator, we spectrophotometrically estimated the stoichiometry of zinc ions and found that DTX_RING possesses zinc-binding capabilities. The Simple Modular Architecture Research Tool database predicted the structure of DTX_RING as a typical RING finger. However, the actual DTX_RING structure adopts a novel RING fold with a unique topology distinct from other RING fingers. We unveiled the position and the range of the DTX_RING active site at the atomic level. Artificial RING fingers (ARFs) are made by grafting active sites of the RING fingers onto cross-brace structure motifs. Therefore, the present structural analysis could be useful for designing a novel ARF.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Yuma Fujiwara
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| |
Collapse
|
14
|
Angius A, Uva P, Oppo M, Persico I, Onano S, Olla S, Pes V, Perria C, Cuccuru G, Atzeni R, Serra G, Cucca F, Sotgiu S, Hennekam RC, Crisponi L. Confirmation of a new phenotype in an individual with a variant in the last part of exon 30 of CREBBP. Am J Med Genet A 2019; 179:634-638. [PMID: 30737887 DOI: 10.1002/ajmg.a.61052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 11/10/2022]
Abstract
We report here a novel de novo missense variant affecting the last amino acid of exon 30 of CREBBP [NM_004380, c.5170G>A; p.(Glu1724Lys)] in a 17-year-old boy presenting mild intellectual disability and dysmorphisms but not resembling the phenotype of classical Rubinstein-Taybi syndrome. The patient showed a marked overweight from early infancy on and had cortical heterotopias. Recently, 22 individuals have been reported with missense mutations in the last part of exon 30 and the beginning of exon 31 of CREBBP, showing this new phenotype. This additional case further delineates the genotype-phenotype correlations within the molecular and phenotypic spectrum of variants in CREBBP and EP300.
Collapse
Affiliation(s)
- Andrea Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato (CA), Italy
| | - Paolo Uva
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula (CA), Italy
| | - Manuela Oppo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato (CA), Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Ivana Persico
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato (CA), Italy
| | - Stefano Onano
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato (CA), Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Stefania Olla
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato (CA), Italy
| | - Valentina Pes
- Clinica di Neuropsichiatria Infantile, Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy
| | - Chiara Perria
- Clinica di Neuropsichiatria Infantile, Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy
| | - Gianmauro Cuccuru
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula (CA), Italy
| | - Rossano Atzeni
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula (CA), Italy
| | - Gigliola Serra
- Clinica di Neuropsichiatria Infantile, Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato (CA), Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Clinica di Neuropsichiatria Infantile, Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy
| | - Raoul C Hennekam
- Department of Pediatrics, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato (CA), Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
15
|
Miyamoto K, Taguchi Y, Saito K. Unique RING finger structure from the human HRD1 protein. Protein Sci 2018; 28:448-453. [PMID: 30345569 DOI: 10.1002/pro.3532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022]
Abstract
Artificial RING fingers (ARFs) are created by transplanting active sites of RING fingers onto cross-brace structures. Human hydroxymethylglutaryl-coenzyme A reductase degradation protein 1 (HRD1) is involved in the degradation of the endoplasmic reticulum (ER) proteins. HRD1 possesses the RING finger domain (HRD1_RING) that functions as a ubiquitin-ligating (E3) enzyme. Herein, we determined the solution structure of HRD1_RING using nuclear magnetic resonance (NMR). Moreover, using a metallochromic indicator, we determined the stoichiometry of zinc ions spectrophotometrically and found that HRD1_RING binds to two zinc atoms. The Simple Modular Architecture Research Tool database predicted the structure of HRD1_RING as a typical RING finger. However, it was found that the actual structure of HRD1_RING adopts an atypical RING-H2 type RING fold. This structural analysis unveiled the position and range of the active site of HRD1_RING that contribute to its specific ubiquitin-conjugating enzyme (E2)-binding capability.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Yukari Taguchi
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
16
|
Insights into degradation mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter. Nat Commun 2018; 9:3291. [PMID: 30120248 PMCID: PMC6098011 DOI: 10.1038/s41467-018-05825-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
p62/SQSTM1 is the key autophagy adapter protein and the hub of multi-cellular signaling. It was recently reported that autophagy and N-end rule pathways are linked via p62. However, the exact recognition mode of degrading substrates and regulation of p62 in the autophagic pathway remain unknown. Here, we present the complex structures between the ZZ-domain of p62 and various type-1 and type-2 N-degrons. The binding mode employed in the interaction of the ZZ-domain with N-degrons differs from that employed by classic N-recognins. It was also determined that oligomerization via the PB1 domain can control functional affinity to the R-BiP substrate. Unexpectedly, we found that self-oligomerization and disassembly of p62 are pH-dependent. These findings broaden our understanding of the functional repertoire of the N-end rule pathway and provide an insight into the regulation of p62 during the autophagic pathway. The autophagy adapter p62/SQSTM1 plays a key role in selective autophagy and also recognizes N-end rule substrates. Here the authors provide molecular insights into p62 N-end rule substrate recognition by solving the structures of the p62 ZZ-domain in complex with various type 1 and type 2 degrons and also show the pH dependent oligomerization of p62.
Collapse
|
17
|
Miyamoto K, Saito K. Concise machinery for monitoring ubiquitination activities using novel artificial RING fingers. Protein Sci 2018; 27:1354-1363. [PMID: 29663561 DOI: 10.1002/pro.3427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/20/2023]
Abstract
Protein ubiquitination is involved in many cellular processes, such as protein degradation, DNA repair, and signal transduction pathways. Ubiquitin-conjugating (E2) enzymes of the ubiquitination pathway are associated with various cancers, such as leukemia, lung cancer, and gastric cancer. However, to date, detection of E2 activities is not practicable for capturing the pathological conditions of cancers due to complications related to the enzymatic cascade reaction. To overcome this hurdle, we have recently investigated a novel strategy for measuring E2 activities. Artificial RING fingers (ARFs) were developed to conveniently detect E2 activities during the ubiquitination reaction. ARFs were created by grafting the active sites of ubiquitin-ligating (E3) enzymes onto amino acid sequences with 38 residues. The grafting design downsized E3s to small molecules (ARFs). Such an ARF is a multifunctional molecule that possesses specific E2-binding capabilities and ubiquitinates itself without a substrate. In this review, we discuss the major findings from recent investigations on a new molecular design for ARFs and their simplified detection system for E2 activities. The use of the ARF allowed us to monitor E2 activities using acute promyelocytic leukemia (APL)-derived cells following treatment with the anticancer drug bortezomib. The molecular design of ARFs is extremely simple and convenient, and thus, may be a powerful tool for protein engineering. The ARF methodology may reveal a new screening method of E2s that will contribute to diagnostic techniques for cancers.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
18
|
Miyamoto K, Yamashita A, Saito K. Solution structure of the PHD finger from the human KIAA1045 protein. Protein Sci 2018; 27:987-992. [PMID: 29430827 DOI: 10.1002/pro.3389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 11/08/2022]
Abstract
Cross-brace structural motifs are required as a scaffold to design artificial RING fingers (ARFs) that function as ubiquitin ligase (E3) in ubiquitination and have specific ubiquitin-conjugating enzyme (E2)-binding capabilities. The Simple Modular Architecture Research Tool database predicted the amino acid sequence 131-190 (KIAA1045ZF) of the human KIAA1045 protein as an unidentified structural region. Herein, the stoichiometry of zinc ions estimated spectrophotometrically by the metallochromic indicator revealed that the KIAA1045ZF motif binds to two zinc atoms. The structure of the KIAA1045ZF motif bound to the zinc atoms was elucidated at the atomic level by nuclear magnetic resonance. The actual structure of the KIAA1045ZF motif adopts a C4 HC3 -type PHD fold belonging to the cross-brace structural family. Therefore, the utilization of the KIAA1045ZF motif as a scaffold may lead to the creation of a novel ARF.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Ayumi Yamashita
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
19
|
Cabral ACS, Jakovleska J, Deb A, Penner-Hahn JE, Pecoraro VL, Freisinger E. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata. J Biol Inorg Chem 2018; 23:91-107. [PMID: 29218632 PMCID: PMC5756683 DOI: 10.1007/s00775-017-1513-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d 10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding.
Collapse
Affiliation(s)
- Augusto C S Cabral
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jovana Jakovleska
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Eva Freisinger
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Miyamoto K, Nakatani A, Saito K. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure. Protein Sci 2017; 26:2451-2457. [PMID: 28906046 DOI: 10.1002/pro.3301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C4 C4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Arisa Nakatani
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
21
|
Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci U S A 2017. [PMID: 28630323 DOI: 10.1073/pnas.1703105114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The histone acetyl transferases CREB-binding protein (CBP) and its paralog p300 play a critical role in numerous cellular processes. Dysregulation of their catalytic activity is associated with several human diseases. Previous work has elucidated the regulatory mechanisms of p300 acetyltransferase activity, but it is not known whether CBP activity is controlled similarly. Here, we present the crystal structure of the CBP catalytic core encompassing the bromodomain (BRD), CH2 (comprising PHD and RING), HAT, and ZZ domains at 2.4-Å resolution. The BRD, PHD, and HAT domains form an integral structural unit to which the RING and ZZ domains are flexibly attached. The structure of the apo-CBP HAT domain is similar to that of acyl-CoA-bound p300 HAT complexes and shows that the acetyl-CoA binding site is stably formed in the absence of cofactor. The BRD, PHD, and ZZ domains interact with small ubiquitin-like modifier 1 (SUMO-1) and Ubc9, and function as an intramolecular E3 ligase for SUMOylation of the cell cycle regulatory domain 1 (CRD1) of CBP, which is located adjacent to the BRD. In vitro HAT assays suggest that the RING domain, the autoregulatory loop (AL) within the HAT domain, and the ZZ domain do not directly influence catalytic activity, whereas the BRD is essential for histone H3 acetylation in nucleosomal substrates. Several lysine residues in the intrinsically disordered AL are autoacetylated by the HAT domain. Upon autoacetylation, acetyl-K1596 (Ac-K1596) binds intramolecularly to the BRD, competing with histones for binding to the BRD and acting as a negative regulator that inhibits histone H3 acetylation.
Collapse
|
22
|
Miyamoto K, Uechi A, Saito K. The zinc finger domain of RING finger protein 141 reveals a unique RING fold. Protein Sci 2017; 26:1681-1686. [PMID: 28547869 DOI: 10.1002/pro.3201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/07/2022]
Abstract
Human RING finger protein 141 (RFP141) is a germ cell-specific transcription factor during spermatogenesis. We synthesized a compact construct encoding the C-terminal zinc finger of RFP141 (RFP141C peptide). Herein we determined the solution structure of the RFP141C peptide by nuclear magnetic resonance (NMR). Moreover, NMR data and the chemical modification of cysteine residues demonstrated that the RFP141C peptide binds to two zinc atoms in a cross-brace arrangement. The Simple Modular Architecture Research Tool database predicted the structure of RFP141C as a RING finger. However, the actual structure of the RFP141C peptide adopts an atypical compact C3 HC4 -type RING fold. The position and range of the helical active site of the RFP141C structure were elucidated at the atomic level. Therefore, structural analysis may allow RFP141C to be used for designing an artificial RING finger possessing specific ubiquitin-conjugating enzyme (E2)-binding capabilities.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Airi Uechi
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
23
|
Piai A, Calçada EO, Tarenzi T, Grande AD, Varadi M, Tompa P, Felli IC, Pierattelli R. Just a Flexible Linker? The Structural and Dynamic Properties of CBP-ID4 Revealed by NMR Spectroscopy. Biophys J 2016; 110:372-381. [PMID: 26789760 DOI: 10.1016/j.bpj.2015.11.3516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Here, we present a structural and dynamic description of CBP-ID4 at atomic resolution. ID4 is the fourth intrinsically disordered linker of CREB-binding protein (CBP). In spite of the largely disordered nature of CBP-ID4, NMR chemical shifts and relaxation measurements show a significant degree of α-helix sampling in the protein regions encompassing residues 2-25 and 101-128 (1852-1875 and 1951-1978 in full-length CBP). Proline residues are uniformly distributed along the polypeptide, except for the two α-helical regions, indicating that they play an active role in modulating the structural features of this CBP fragment. The two helical regions are lacking known functional motifs, suggesting that they represent thus-far uncharacterized functional modules of CBP. This work provides insights into the functions of this protein linker that may exploit its plasticity to modulate the relative orientations of neighboring folded domains of CBP and fine-tune its interactions with a multitude of partners.
Collapse
Affiliation(s)
- Alessandro Piai
- Magnetic Resonance Center, University of Florence, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Eduardo O Calçada
- Magnetic Resonance Center, University of Florence, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Thomas Tarenzi
- Magnetic Resonance Center, University of Florence, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Alessandro Del Grande
- Magnetic Resonance Center, University of Florence, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Mihaly Varadi
- VIB Structural Biology Research Center, Vlaams Instituut voor Biotechnologie at Vrije Universiteit Brussel, Brussel, Belgium
| | - Peter Tompa
- VIB Structural Biology Research Center, Vlaams Instituut voor Biotechnologie at Vrije Universiteit Brussel, Brussel, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Isabella C Felli
- Magnetic Resonance Center, University of Florence, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center, University of Florence, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.
| |
Collapse
|
24
|
Dutta R, Tiu B, Sakamoto KM. CBP/p300 acetyltransferase activity in hematologic malignancies. Mol Genet Metab 2016; 119:37-43. [PMID: 27380996 DOI: 10.1016/j.ymgme.2016.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/08/2023]
Abstract
CREB binding protein (CBP) and p300 are critical regulators of hematopoiesis through both their transcriptional coactivator and acetyltransferase activities. Loss or mutation of CBP/p300 results in hematologic deficiencies in proliferation and differentiation as well as disruption of hematopoietic stem cell renewal and the microenvironment. Aberrant lysine acetylation mediated by CBP/p300 has recently been implicated in the genesis of multiple hematologic cancers. Understanding the effects of disrupting the acetyltransferase activity of CBP/p300 could pave the way for new therapeutic approaches to treat patients with these diseases.
Collapse
Affiliation(s)
- Ritika Dutta
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Bruce Tiu
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Menke LA, van Belzen MJ, Alders M, Cristofoli F, Ehmke N, Fergelot P, Foster A, Gerkes EH, Hoffer MJV, Horn D, Kant SG, Lacombe D, Leon E, Maas SM, Melis D, Muto V, Park SM, Peeters H, Peters DJM, Pfundt R, van Ravenswaaij-Arts CMA, Tartaglia M, Hennekam RCM. CREBBP mutations in individuals without Rubinstein-Taybi syndrome phenotype. Am J Med Genet A 2016; 170:2681-93. [PMID: 27311832 DOI: 10.1002/ajmg.a.37800] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 11/08/2022]
Abstract
Mutations in CREBBP cause Rubinstein-Taybi syndrome. By using exome sequencing, and by using Sanger in one patient, CREBBP mutations were detected in 11 patients who did not, or only in a very limited manner, resemble Rubinstein-Taybi syndrome. The combined facial signs typical for Rubinstein-Taybi syndrome were absent, none had broad thumbs, and three had only somewhat broad halluces. All had apparent developmental delay (being the reason for molecular analysis); five had short stature and seven had microcephaly. The facial characteristics were variable; main characteristics were short palpebral fissures, telecanthi, depressed nasal ridge, short nose, anteverted nares, short columella, and long philtrum. Six patients had autistic behavior, and two had self-injurious behavior. Other symptoms were recurrent upper airway infections (n = 5), feeding problems (n = 7) and impaired hearing (n = 7). Major malformations occurred infrequently. All patients had a de novo missense mutation in the last part of exon 30 or beginning of exon 31 of CREBBP, between base pairs 5,128 and 5,614 (codons 1,710 and 1,872). No missense or truncating mutations in this region have been described to be associated with the classical Rubinstein-Taybi syndrome phenotype. No functional studies have (yet) been performed, but we hypothesize that the mutations disturb protein-protein interactions by altering zinc finger function. We conclude that patients with missense mutations in this specific CREBBP region show a phenotype that differs substantially from that in patients with Rubinstein-Taybi syndrome, and may prove to constitute one (or more) separate entities. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonie A Menke
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Martine J van Belzen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Francesca Cristofoli
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Nadja Ehmke
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Fergelot
- Department of Genetics, and INSERM U1211, University Hospital of Bordeaux, Bordeaux, France
| | - Alison Foster
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Clinical Genetics Unit, University of Birmingham, Birmingham, United Kingdom
| | - Erica H Gerkes
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Denise Horn
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Didier Lacombe
- Department of Genetics, and INSERM U1211, University Hospital of Bordeaux, Bordeaux, France
| | - Eyby Leon
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Saskia M Maas
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniela Melis
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Valentina Muto
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Hilde Peeters
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Raoul C M Hennekam
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Diehl C, Akke M, Bekker-Jensen S, Mailand N, Streicher W, Wikström M. Structural Analysis of a Complex between Small Ubiquitin-like Modifier 1 (SUMO1) and the ZZ Domain of CREB-binding Protein (CBP/p300) Reveals a New Interaction Surface on SUMO. J Biol Chem 2016; 291:12658-12672. [PMID: 27129204 PMCID: PMC4933466 DOI: 10.1074/jbc.m115.711325] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
We have recently discovered that the ZZ zinc finger domain represents a novel small ubiquitin-like modifier (SUMO) binding motif. In this study we identify the binding epitopes in the ZZ domain of CBP (CREB-binding protein) and SUMO1 using NMR spectroscopy. The binding site on SUMO1 represents a unique epitope for SUMO interaction spatially opposite to that observed for canonical SUMO interaction motifs (SIMs). HADDOCK docking simulations using chemical shift perturbations and residual dipolar couplings was employed to obtain a structural model for the ZZ domain-SUMO1 complex. Isothermal titration calorimetry experiments support this model by showing that the mutation of key residues in the binding site abolishes binding and that SUMO1 can simultaneously and non-cooperatively bind both the ZZ domain and a canonical SIM motif. The binding dynamics of SUMO1 was further characterized using (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersions, which define the off rates for the ZZ domain and SIM motif and show that the dynamic binding process has different characteristics for the two cases. Furthermore, in the absence of bound ligands SUMO1 transiently samples a high energy conformation, which might be involved in ligand binding.
Collapse
Affiliation(s)
- Carl Diehl
- From the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark,; SARomics Biostructures, SE-22363 Lund, Sweden
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| | - Simon Bekker-Jensen
- From the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- From the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Werner Streicher
- From the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark,; Novozymes A/S, DK-2880 Bagsvaerd, Denmark, and
| | - Mats Wikström
- From the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark,; Amgen Inc., Thousand Oaks, California 91320.
| |
Collapse
|
27
|
Dyson HJ, Wright PE. Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem 2016; 291:6714-22. [PMID: 26851278 DOI: 10.1074/jbc.r115.692020] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcriptional coactivators CREB-binding protein (CBP) and p300 undergo a particularly rich set of interactions with disordered and partly ordered partners, as a part of their ubiquitous role in facilitating transcription of genes. CBP and p300 contain a number of small structured domains that provide scaffolds for the interaction of disordered transactivation domains from a wide variety of partners, including p53, hypoxia-inducible factor 1α (HIF-1α), NF-κB, and STAT proteins, and are the targets for the interactions of disordered viral proteins that compete with cellular factors to disrupt signaling and subvert the cell cycle. The functional diversity of the CBP/p300 interactome provides an excellent example of the power of intrinsic disorder to facilitate the complexity of living systems.
Collapse
Affiliation(s)
- H Jane Dyson
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| | - Peter E Wright
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| |
Collapse
|
28
|
DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations. PLoS One 2015; 10:e0135189. [PMID: 26284620 PMCID: PMC4540588 DOI: 10.1371/journal.pone.0135189] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.
Collapse
|
29
|
Abstract
Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor-acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium-carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis.
Collapse
|
30
|
Kaur G, Subramanian S. The UBR-box and its relationship to binuclear RING-like treble clef zinc fingers. Biol Direct 2015; 10:36. [PMID: 26185100 PMCID: PMC4506424 DOI: 10.1186/s13062-015-0066-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Background The N-end rule pathway is a part of the ubiquitin–dependent proteolytic system wherein N-recognin proteins recognize the amino terminal degradation signals (N-degrons) of the substrate. The type 1 N-degron recognizing UBR-box domain of the eukaryotic Arg/N-end rule pathway is known to possess a novel three-zinc-stabilized heart-shaped fold. Results Using sequence and structure analysis we argue that the UBR-box fold emerged from a binuclear RING-like treble clef zinc finger. The RING-like core is preserved in the UBR-box and the metal-chelating motifs display significant sequence and structural similarity to B-box and ZZ domains. UBR-box domains retrieved in our analysis co-occur with a variety of other protein domains, suggestive of its involvement in diverse biological roles. The UBR-box is a unique family of RING-like treble clefs as it displays a distinct circular permutation at the zinc-knuckle of the first zinc-binding site unlike other documented permutations of the RING-like domains which occur at the second zinc-binding site. The circular permutation of the RING-like treble clef scaffold has possibly aided the gain of a novel and relatively deep cleft suited for binding N-degrons. The N- and C-terminal extensions to the circularly permuted RING-like region bind a third zinc ion, which likely provides additional stability to the domain by keeping the two halves of the permuted zinc-knuckle together. Conclusions Structural modifications and extensions to the RING-like core have resulted in a novel UBR-box fold, which can recognize and target the type 1 N-degron containing proteins for ubiquitin-mediated proteolysis. The UBR-box appears to have emerged during the expansion of ubiquitin system pathway-related functions in eukaryotes, but is also likely to have other non-N-recognin functions as well. Reviewers This article was reviewed by Eugene Koonin, Balaji Santhanam, Kira S. Makarova. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0066-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| | - Srikrishna Subramanian
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
31
|
Huang Y, Chen D, Liu C, Shen W, Ruan Y. Evolution and conservation of JmjC domain proteins in the green lineage. Mol Genet Genomics 2015; 291:33-49. [PMID: 26152513 DOI: 10.1007/s00438-015-1089-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/29/2015] [Indexed: 10/25/2022]
Abstract
Histone modification regulates plant development events by epigenetically silencing or activating gene expression, and histone methylation is regulated by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The JmjC domain proteins, an important KDM family, erase methyl marks (CH3-) from histones and play key roles in maintaining homeostasis of histone methylation in vivo. Here, we analyzed 169 JmjC domain proteins from whole genomes of plants ranging from green alga to higher plants together with 36 from two animals (fruit fly and human). The plant JmjC domain proteins were divided into seven groups. Group-I KDM4/JHDM3 and Group-V JMJD6 were found in all the plant species and the other groups were detected mainly in vascular or seed plants. Group-I KDM4/JHDM3 was potentially associated with demethylation of H3K9me2/3, H3K27me2/3, and H3K36me1/2/3, Group-II KDM5A with H3K4me1/2/3, Group-III KDM5B with H3K4me1/2/3 and H3K9me1/2/3, Group-V JMJD6 with H3R2, H4R3, and hydroxylation of H4, and Group-VII KDM3/JHDM2 with H3K9me1/2/3. Group-IV/Group-VI JmjC domain-only A/B proteins were involved in hydroxylation and demethylation of unknown substrate sites. The binding sites for the cofactors Fe(II) and α-ketoglutarate in the JmjC domains also were analyzed. In the α-ketoglutarate binding sites, Thr/Phe/Ser and Lys were conserved and in the Fe(II) binding sites, two His and Glu/Asp were conserved. The results show that JmjC domain proteins are a conserved family in which domain organization and cofactor binding sites have been modified in some species. Our results provide insights into KDM evolution and lay a foundation for functional characterization of KDMs.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China. .,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China.
| | - Donghong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, 410128, Changsha, China
| | - Wenhui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China. .,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China. .,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
32
|
Jansma AL, Martinez-Yamout MA, Liao R, Sun P, Dyson HJ, Wright PE. The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb. J Mol Biol 2014; 426:4030-4048. [PMID: 25451029 DOI: 10.1016/j.jmb.2014.10.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022]
Abstract
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.
Collapse
Affiliation(s)
- Ariane L Jansma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rong Liao
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peiqing Sun
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics Chromatin 2014; 7:14. [PMID: 25097667 PMCID: PMC4115480 DOI: 10.1186/1756-8935-7-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. Results Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method. Conclusions Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity.
Collapse
|
34
|
Tang L, Qiu R, Tang Y, Wang S. Cadmium–zinc exchange and their binary relationship in the structure of Zn-related proteins: a mini review. Metallomics 2014; 6:1313-23. [DOI: 10.1039/c4mt00080c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we give an overview of ongoing work on discovering the structural mechanisms of Cd–Zn exchange and the potentially diverse roles of Cd at Zn functional sites in proteins.
Collapse
Affiliation(s)
- Lu Tang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Yetao Tang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| |
Collapse
|
35
|
Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70:3989-4008. [PMID: 23307074 PMCID: PMC11113169 DOI: 10.1007/s00018-012-1254-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
- Present Address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Christopher B. Marshall
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
36
|
Martínez-Lumbreras S, Santiveri C, Mirassou Y, Zorrilla S, Pérez-Cañadillas J. Two Singular Types of CCCH Tandem Zinc Finger in Nab2p Contribute to Polyadenosine RNA Recognition. Structure 2013; 21:1800-11. [DOI: 10.1016/j.str.2013.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/09/2023]
|
37
|
Merkel DJ, Wells SB, Hilburn BC, Elazzouzi F, Pérez-Alvarado GC, Lee BM. The C-Terminal Region of Cytoplasmic Polyadenylation Element Binding Protein Is a ZZ Domain with Potential for Protein–Protein Interactions. J Mol Biol 2013; 425:2015-2026. [DOI: 10.1016/j.jmb.2013.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 01/07/2023]
|
38
|
The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner. Int J Neuropsychopharmacol 2013; 16:189-98. [PMID: 22226089 DOI: 10.1017/s146114571100188x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperforin is one of the main bioactive compounds that underlie the antidepressant actions of the medicinal plant Hypericum perforatum (St. John's wort). However, the effects of a chronic hyperforin treatment on brain cells remains to be fully addressed. The following study was undertaken to further advance our understanding of the biological effects of this plant extract on neurons. Special attention was given to its impact on the brain-derived neurotrophic factor (BDNF) receptor TrkB and on adult hippocampal neurogenesis since they appear central to the mechanisms of action of antidepressants. The consequences of a chronic hyperforin treatment were investigated on cortical neurons in culture and on the brain of adult mice treated for 4 wk with a daily injection (i.p.) of hyperforin (4 mg/kg). Its effects on the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phospho-CREB (p-CREB), TrkB and phospho-TrkB (p-TrkB) were analysed by Western blot experiments and its impact on adult hippocampal neurogenesis was also investigated. Hyperforin stimulated the expression of TRPC6 channels and TrkB via SKF-96365-sensitive channels controlling a downstream signalling cascade involving Ca(2+), protein kinase A, CREB and p-CREB. In vivo, hyperforin augmented the expression of TrkB in the cortex but not in the hippocampus where hippocampal neurogenesis remained unchanged. In conclusion, this plant extract acts on the cortical BDNF/TrkB pathway leaving adult hippocampal neurogenesis unaffected. This study provides new insights on the neuronal responses controlled by hyperforin. We propose that the cortex is an important brain structure targeted by hyperforin.
Collapse
|
39
|
Comparative Analysis of SWIRM Domain-Containing Proteins in Plants. Comp Funct Genomics 2012; 2012:310402. [PMID: 22924025 PMCID: PMC3424641 DOI: 10.1155/2012/310402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/16/2012] [Accepted: 06/24/2012] [Indexed: 12/16/2022] Open
Abstract
Chromatin-remodeling complexes affect gene expression by using the energy of ATP hydrolysis to locally disrupt or alter the association of histones with DNA. SWIRM (Swi3p, Rsc8p, and Moira) domain is an alpha-helical domain of about 85 residues in chromosomal proteins. SWIRM domain-containing proteins make up large multisubunit complexes by interacting with other chromatin modification factors and may have an important function in plants. However, little is known about SWIRM domain-containing proteins in plants. In this study, 67 SWIRM domain-containing proteins from 6 plant species were identified and analyzed. Plant SWIRM domain proteins can be divided into three distinct types: Swi-type, LSD1-type, and Ada2-type. Generally, the SWIRM domain forms a helix-turn-helix motif commonly found in DNA-binding proteins. The genes encoding SWIRM domain proteins in Oryza sativa are widely expressed, especially in pistils. In addition, OsCHB701 and OsHDMA701 were downregulated by cold stress, whereas OsHDMA701 and OsHDMA702 were significantly induced by heat stress. These observations indicate that SWIRM domain proteins may play an essential role in plant development and plant responses to environmental stress.
Collapse
|
40
|
Danielsen JR, Povlsen LK, Villumsen BH, Streicher W, Nilsson J, Wikström M, Bekker-Jensen S, Mailand N. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. ACTA ACUST UNITED AC 2012; 197:179-87. [PMID: 22508508 PMCID: PMC3328386 DOI: 10.1083/jcb.201106152] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SUMOylation of the ubiquitin ligase HERC2 promotes efficient chromatin licensing in the vicinity of DNA double-strand breaks. Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid (DNA) double-strand breaks (DSBs) by the RNF8/RNF168/HERC2 ubiquitin ligases facilitates restoration of genome integrity by licensing chromatin to concentrate genome caretaker proteins near the lesions. In parallel, SUMOylation of so-far elusive upstream DSB regulators is also required for execution of this ubiquitin-dependent chromatin response. We show that HERC2 and RNF168 are novel DNA damage–dependent SUMOylation targets in human cells. In response to DSBs, both HERC2 and RNF168 were specifically modified with SUMO1 at DSB sites in a manner dependent on the SUMO E3 ligase PIAS4. SUMOylation of HERC2 was required for its DSB-induced association with RNF8 and for stabilizing the RNF8–Ubc13 complex. We also demonstrate that the ZZ Zinc finger in HERC2 defined a novel SUMO-specific binding module, which together with its concomitant SUMOylation and T4827 phosphorylation promoted binding to RNF8. Our findings provide novel insight into the regulatory complexity of how ubiquitylation and SUMOylation cooperate to orchestrate protein interactions with DSB repair foci.
Collapse
Affiliation(s)
- Jannie Rendtlew Danielsen
- Ubiquitin Signaling Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Barraud P, Schubert M, Allain FHT. A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins. JOURNAL OF BIOMOLECULAR NMR 2012; 53:93-101. [PMID: 22528293 DOI: 10.1007/s10858-012-9625-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/30/2012] [Indexed: 05/31/2023]
Abstract
Zinc is the second most abundant metal ion incorporated in proteins, and is in many cases a crucial component of protein three-dimensional structures. Zinc ions are frequently coordinated by cysteine and histidine residues. Whereas cysteines bind to zinc via their unique S(γ) atom, histidines can coordinate zinc with two different coordination modes, either N(δ1) or N(ε2) is coordinating the zinc ion. The determination of this coordination mode is crucial for the accurate structure determination of a histidine-containing zinc-binding site by NMR. NMR chemical shifts contain a vast amount of information on local electronic and structural environments and surprisingly their utilization for the determination of the coordination mode of zinc-ligated histidines has been limited so far to (15)N nuclei. In the present report, we observed that the (13)C chemical shifts of aromatic carbons in zinc-ligated histidines represent a reliable signature of their coordination mode. Using a statistical analysis of (13)C chemical shifts, we show that (13)C(δ2) chemical shift is sensitive to the histidine coordination mode and that the chemical shift difference δ{(13)C(ε1)} - δ{(13)C(δ2)} provides a reference-independent marker of this coordination mode. The present approach allows the direct determination of the coordination mode of zinc-ligated histidines even with non-isotopically enriched protein samples and without any prior structural information.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
42
|
Wurm T, Wright DG, Polakowski N, Mesnard JM, Lemasson I. The HTLV-1-encoded protein HBZ directly inhibits the acetyl transferase activity of p300/CBP. Nucleic Acids Res 2012; 40:5910-25. [PMID: 22434882 PMCID: PMC3401433 DOI: 10.1093/nar/gks244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The homologous cellular coactivators p300 and CBP contain intrinsic lysine acetyl transferase (termed HAT) activity. This activity is responsible for acetylation of several sites on the histones as well as modification of transcription factors. In a previous study, we found that HBZ, encoded by the Human T-cell Leukemia Virus type 1 (HTLV-1), binds to multiple domains of p300/CBP, including the HAT domain. In this study, we found that HBZ inhibits the HAT activity of p300/CBP through the bZIP domain of the viral protein. This effect correlated with a reduction of H3K18 acetylation, a specific target of p300/CBP, in cells expressing HBZ. Interestingly, lower levels of H3K18 acetylation were detected in HTLV-1 infected cells compared to non-infected cells. The inhibitory effect of HBZ was not limited to histones, as HBZ also inhibited acetylation of the NF-κB subunit, p65, and the tumor suppressor, p53. Recent studies reported that mutations in the HAT domain of p300/CBP that cause a defect in acetylation are found in certain types of leukemia. These observations suggest that inhibition of the HAT activity by HBZ is important for the development of adult T-cell leukemia associated with HTLV-1 infection.
Collapse
Affiliation(s)
- Torsten Wurm
- East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|
43
|
Kanda G, Ochiai H, Harashima H, Kamiya H. CREB-binding protein transcription activation domain for enhanced transgene expression by a positive feedback system. J Biotechnol 2012; 157:7-11. [DOI: 10.1016/j.jbiotec.2011.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 01/28/2023]
|
44
|
Furdas SD, Carlino L, Sippl W, Jung M. Inhibition of bromodomain-mediated protein–protein interactions as a novel therapeutic strategy. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00201e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule inhibitors of acetyl lysine–bromodomain interactions emerge as novel epigenetic tools with potential for therapeutic approaches.
Collapse
Affiliation(s)
- Silviya D. Furdas
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-University of Freiburg
- Freiburg
- Germany
| | - Luca Carlino
- Department of Pharmaceutical Chemistry
- Martin-Luther University of Halle-Wittenberg
- Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry
- Martin-Luther University of Halle-Wittenberg
- Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-University of Freiburg
- Freiburg
- Germany
| |
Collapse
|
45
|
Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat Struct Mol Biol 2011; 19:84-9. [PMID: 22157959 DOI: 10.1038/nsmb.2202] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/10/2011] [Indexed: 12/11/2022]
Abstract
Lin28 inhibits the biogenesis of let-7 miRNAs through a direct interaction with the terminal loop of pre-let-7. This interaction requires the zinc-knuckle domains of Lin28. We show that the zinc knuckle domains of Lin28 are sufficient to provide binding selectivity for pre-let-7 miRNAs and present the NMR structure of human Lin28 zinc knuckles bound to the short sequence 5'-AGGAGAU-3'. The structure reveals that each zinc knuckle recognizes an AG dinucleotide separated by a single nucleotide spacer. This defines a new 5'-NGNNG-3' consensus motif that explains how Lin28 selectively recognizes pre-let-7 family members. Binding assays in cell lysates and functional assays in cultured cells demonstrate that the interactions observed in the solution structure also occur between the full-length protein and members of the pre-let-7 family. The consensus sequence explains several seemingly disparate previously published observations on the binding properties of Lin28.
Collapse
|
46
|
Miyamoto K. Ubiquitination of an artificial RING finger without a substrate and a tag. J Pept Sci 2011; 18:135-9. [PMID: 22113972 DOI: 10.1002/psc.1426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/11/2011] [Accepted: 09/14/2011] [Indexed: 11/09/2022]
Abstract
Alpha-helical region substitution was applied to the SIAH1 and EL5 RING fingers. The Williams-Beuren syndrome transcription factor (WSTF) PHD_SIAH1 and WSTF PHD_EL5 RING fingers were created as the artificial ubiquitin-ligating enzyme (E3). These fingers possess E3 activities of mono-ubiquitination and poly-ubiquitination, respectively, with ubiquitin-conjugating enzyme (E2)-binding capabilities. Artificial E3s bind two zinc atoms and adopt a zinc-dependent ordered structure and ubiquitinate upon themselves without a substrate and a tag. Ubiquitination experiments using biotinylated ubiquitin showed that the WSTF PHD_EL5 RING finger is poly-ubiquitinated via residue Lys(63) of ubiquitin. Substitution of alpha-helical region might be applicable to various RING fingers with mono-ubiquitination or poly-ubiquitination.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Himeji Dokkyo University, Himeji, Hyogo, Japan.
| |
Collapse
|
47
|
An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO J 2011; 30:4223-35. [PMID: 21847092 PMCID: PMC3199388 DOI: 10.1038/emboj.2011.300] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/22/2011] [Indexed: 01/06/2023] Open
Abstract
The Dicer ribonuclease Dcr1 plays an important role in the biogenesis of small regulatory RNAs. Surprisingly, RNA binding by the double-stranded RNA binding domain (dsRBD) is dispensable for Dcr1 function, while zinc coordination of the extended dsRBD is required for its nuclear localization and RNA silencing. Dicer proteins function in RNA interference (RNAi) pathways by generating small RNAs (sRNAs). Here, we report the solution structure of the C-terminal domain of Schizosaccharomyces pombe Dicer (Dcr1). The structure reveals an unusual double-stranded RNA binding domain (dsRBD) fold embedding a novel zinc-binding motif that is conserved among dicers in yeast. Although the C-terminal domain of Dcr1 still binds nucleic acids, this property is dispensable for proper functioning of Dcr1. In contrast, disruption of zinc coordination renders Dcr1 mainly cytoplasmic and leads to remarkable changes in gene expression and loss of heterochromatin assembly. In summary, our results reveal novel insights into the mechanism of nuclear retention of Dcr1 and raise the possibility that this new class of dsRBDs might generally function in nucleocytoplasmic trafficking and not substrate binding. The C-terminal domain of Dcr1 constitutes a novel regulatory module that might represent a potential target for therapeutic intervention with fungal diseases.
Collapse
|
48
|
Burroughs AM, Iyer LM, Aravind L. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. MOLECULAR BIOSYSTEMS 2011; 7:2261-77. [PMID: 21547297 PMCID: PMC5938088 DOI: 10.1039/c1mb05061c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present contextual evidence to support their role in functions unrelated to the Ub-system in prokaryotes. In particular, we show that bacterial ZF-UBP domains are part of a novel cyclic nucleotide-dependent redox signaling system, whereas prokaryotic B-box, AN1 and LIM domains have related functions as partners of diverse membrane-associated peptidases in processing proteins. This information, in conjunction with structural analysis, suggests that these treble clef domains might have been independently recruited to the eukaryotic Ub-system due to an ancient conserved mode of interaction with peptides.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, 230-0045 Kanagawa, Japan
| | | | | |
Collapse
|
49
|
Han X, Du H, Massiah MA. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein. J Mol Biol 2011; 407:505-20. [PMID: 21296087 DOI: 10.1016/j.jmb.2011.01.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/24/2010] [Accepted: 01/24/2011] [Indexed: 12/13/2022]
Abstract
Human MID1 (midline-1) is a microtubule-associated protein that is postulated to target the catalytic subunit of protein phosphatase 2A for degradation. It binds alpha4 that then recruits the catalytic subunit of protein phosphatase 2A. As a member of the TRIM (tripartite motif) family, MID1 has three consecutive zinc-binding domains-RING (really interesting new gene), Bbox1, and Bbox2-that have similar ββα-folds. Here, we describe the in vitro characterization of these domains individually and in tandem. We observed that the RING domain exhibited greater ubiquitin (Ub) E3 ligase activity compared to the Bbox domains. The amount of autopolyubiquitinated products with RING-Bbox1 and RING-Bbox1-Bbox2 domains in tandem was significantly greater than those of the individual domains. However, no polyubiquitinated products were observed for the Bbox1-Bbox domains in tandem. Using mutants of Ub, we observed that these MID1 domain constructs facilitate Ub chain elongation via Lys63 of Ub. In addition, we observed that the high-molecular-weight protein products were primarily due to polyubiquitination at one site (Lys154) on the Bbox1 domain of the RING-Bbox1 and RING-Bbox1-Bbox2 constructs. We observed that MID1 E3 domains could interact with multiple E2-conjugating enzymes. Lastly, a 45-amino-acid peptide derived from the C-terminus of alpha4 that binds tightly to Bbox1 was observed to be monoubiquitinated in the assay and appears to down-regulate the amount of polyubiquitinated products formed. These studies shed light on MID1 E3 ligase activity and show how its three zinc-binding domains can contribute to MID1's overall function.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
50
|
|