1
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem 2024; 93:289-316. [PMID: 38316136 DOI: 10.1146/annurev-biochem-052521-040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gu X, Zhang Y, Long D. Conserved allosteric perturbation of the GTPase domains by region 1 of Ras hypervariable regions. Biophys J 2024; 123:839-846. [PMID: 38419331 PMCID: PMC10995424 DOI: 10.1016/j.bpj.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Ras proteins are important intracellular signaling hubs that can interact with numerous downstream effectors and upstream regulators through their GTPase domains (G-domains) anchored to plasma membranes by the C-terminal hypervariable regions (HVRs). The biological functions of Ras were proposed to be regulated at multiple levels including the intramolecular G-domain-HVR interactions, of which the exact mechanism and specificity are still controversial. Here, we demonstrate that the HVRs, instead of having direct contacts, can weakly perturb the G-domains via an allosteric interaction that is restricted to a ∼20 Å range and highly conserved in the tested Ras isoforms (HRas and KRas4B) and nucleotide-bound states. The origin of this allosteric perturbation has been localized to a short segment (residues 167-171) coinciding with region 1 of HVRs, which exhibits moderate to weak α-helical propensities. A charge-reversal mutation (E168K) of KRas4B in region 1, previously described in the Catalog of Somatic Mutations in Cancer database, was found to induce similar chemical shift perturbations as truncation of the HVR does. Further membrane paramagnetic relaxation enhancement (mPRE) data show that this region 1 mutation alters the membrane orientations of KRas4B and moderately increases the relative population of the signaling-compatible state.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yalong Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Narayan B, Kiel C, Buchete NV. Classification of GTP-dependent K-Ras4B active and inactive conformational states. J Chem Phys 2023; 158:091104. [PMID: 36889947 DOI: 10.1063/5.0139181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Classifying reliably active and inactive molecular conformations of wildtype (WT) and mutated oncogenic proteins is a key, ongoing challenge in molecular cancer studies. Here, we probe the GTP-bound K-Ras4B conformational dynamics using long-time atomistic molecular dynamics (MD) simulations. We extract and analyze the detailed underlying free energy landscape of WT K-Ras4B. We use two key reaction coordinates, labeled d1 and d2 (i.e., distances coordinating the Pβ atom of the GTP ligand with two key residues, T35 and G60), shown to correlate closely with activities of WT and mutated K-Ras4B. However, our new K-Ras4B conformational kinetics study reveals a more complex network of equilibrium Markovian states. We show that a new reaction coordinate is required to account for the orientation of acidic K-Ras4B sidechains such as D38 with respect to the interface with binding effector RAF1 and rationalize the activation/inactivation propensities and the corresponding molecular binding mechanisms. We use this understanding to unveil how a relatively conservative mutation (i.e., D33E, in the switch I region) can lead to significantly different activation propensities compared with WT K-Ras4B. Our study sheds new light on the ability of residues near the K-Ras4B-RAF1 interface to modulate the network of salt bridges at the binding interface with the RAF1 downstream effector and, thus, to influence the underlying GTP-dependent activation/inactivation mechanism. Altogether, our hybrid MD-docking modeling approach enables the development of new in silico methods for quantitative assessment of activation propensity changes (e.g., due to mutations or local binding environment). It also unveils the underlying molecular mechanisms and facilitates the rational design of new cancer drugs.
Collapse
Affiliation(s)
- Brajesh Narayan
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
5
|
Ravishankar R, Hildebrandt ER, Greenway G, Asad N, Gore S, Dore TM, Schmidt WK. Specific Disruption of Ras2 CAAX Proteolysis Alters Its Localization and Function. Microbiol Spectr 2023; 11:e0269222. [PMID: 36602340 PMCID: PMC9927470 DOI: 10.1128/spectrum.02692-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Many CAAX proteins, such as Ras GTPase, undergo a series of posttranslational modifications at their carboxyl terminus (i.e., cysteine prenylation, endoproteolysis of AAX, and carboxylmethylation). Some CAAX proteins, however, undergo prenylation-only modification, such as Saccharomyces cerevisiae Hsp40 Ydj1. We previously observed that altering the CAAX motif of Ydj1 from prenylation-only to canonical resulted in altered Ydj1 function and localization. Here, we investigated the effects of a reciprocal change that altered the well-characterized canonical CAAX motif of S. cerevisiae Ras2 to prenylation-only. We observed that the type of CAAX motif impacted Ras2 protein levels, localization, and function. Moreover, we observed that using a prenylation-only sequence to stage hyperactive Ras2-G19V as a farnesylated and nonproteolyzed intermediate resulted in a different phenotype relative to staging by a genetic RCE1 deletion strategy that simultaneously affected many CAAX proteins. These findings suggested that a prenylation-only CAAX motif is useful for probing the specific impact of CAAX proteolysis on Ras2 under conditions where other CAAX proteins are normally modified. We propose that our strategy could be easily applied to a wide range of CAAX proteins for examining the specific impact of CAAX proteolysis on their functions. IMPORTANCE CAAX proteins are subject to multiple posttranslational modifications: cysteine prenylation, CAAX proteolysis, and carboxylmethylation. For investigations of CAAX proteolysis, this study took the novel approach of using a proteolysis-resistant CAAX sequence to stage Saccharomyces cerevisiae Ras2 GTPase in a farnesylated and nonproteolyzed state. Our approach specifically limited the effects of disrupting CAAX proteolysis to Ras2. This represented an improvement over previous methods where CAAX proteolysis was inhibited by gene knockout, small interfering RNA knockdown, or biochemical inhibition of the Rce1 CAAX protease, which can lead to pleiotropic and unclear attribution of effects due to the action of Rce1 on multiple CAAX proteins. Our approach yielded results that demonstrated specific impacts of CAAX proteolysis on the function, localization, and other properties of Ras2, highlighting the utility of this approach for investigating the impact of CAAX proteolysis in other protein contexts.
Collapse
Affiliation(s)
- Rajani Ravishankar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Grace Greenway
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sangram Gore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy M. Dore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Pálfy G, Menyhárd DK, Ákontz‐Kiss H, Vida I, Batta G, Tőke O, Perczel A. The Importance of Mg 2+ -Free State in Nucleotide Exchange of Oncogenic K-Ras Mutants. Chemistry 2022; 28:e202201449. [PMID: 35781716 PMCID: PMC9804424 DOI: 10.1002/chem.202201449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/05/2023]
Abstract
For efficient targeting of oncogenic K-Ras interaction sites, a mechanistic picture of the Ras-cycle is necessary. Herein, we used NMR relaxation techniques and molecular dynamics simulations to decipher the role of slow dynamics in wild-type and three oncogenic P-loop mutants of K-Ras. Our measurements reveal a dominant two-state conformational exchange on the ms timescale in both GDP- and GTP-bound K-Ras. The identified low-populated higher energy state in GDP-loaded K-Ras has a conformation reminiscent of a nucleotide-bound/Mg2+ -free state characterized by shortened β2/β3-strands and a partially released switch-I region preparing K-Ras for the interaction with the incoming nucleotide exchange factor and subsequent reactivation. By providing insight into mutation-specific differences in K-Ras structural dynamics, our systematic analysis improves our understanding of prolonged K-Ras signaling and may aid the development of allosteric inhibitors targeting nucleotide exchange in K-Ras.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,MTA-ELTE Protein Modeling Research GroupEötvös Loránd Research Network (ELKH)1/a Pázmány Péter stny.Budapest1117Hungary
| | - Dóra K. Menyhárd
- MTA-ELTE Protein Modeling Research GroupEötvös Loránd Research Network (ELKH)1/a Pázmány Péter stny.Budapest1117Hungary
| | - Hanna Ákontz‐Kiss
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,Hevesy György PhD School of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary
| | - István Vida
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,Hevesy György PhD School of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary
| | - Gyula Batta
- Structural Biology Research GroupDepartment of Organic ChemistryUniversity of Debrecen1 Egyetem térDebrecen4032Hungary
| | - Orsolya Tőke
- Laboratory for NMR SpectroscopyResearch Centre for Natural Sciences (RCNS)2 Magyar tudósok körútjaBudapest1117Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,MTA-ELTE Protein Modeling Research GroupEötvös Loránd Research Network (ELKH)1/a Pázmány Péter stny.Budapest1117Hungary
| |
Collapse
|
7
|
Zhang H, Ni D, Fan J, Li M, Zhang J, Hua C, Nussinov R, Lu S. Markov State Models and Molecular Dynamics Simulations Reveal the Conformational Transition of the Intrinsically Disordered Hypervariable Region of K-Ras4B to the Ordered Conformation. J Chem Inf Model 2022; 62:4222-4231. [PMID: 35994329 DOI: 10.1021/acs.jcim.2c00591] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
K-Ras4B, the most frequently mutated Ras isoform in human tumors, plays a vital part in cell growth, differentiation, and survival. Its tail, the C-terminal hypervariable region (HVR), is involved in anchoring K-Ras4B at the cellular plasma membrane and in isoform-specific protein-protein interactions and signaling. In the inactive guanosine diphosphate-bound state, the intrinsically disordered HVR interacts with the catalytic domain at the effector-binding region, rendering K-Ras4B in its autoinhibited state. Activation releases the HVR from the catalytic domain, with its ensemble favoring an ordered α-helical structure. The large-scale conformational transition of the HVR from the intrinsically disordered to the ordered conformation remains poorly understood. Here, we deploy a computational scheme that integrates a transition path-generation algorithm, extensive molecular dynamics simulation, and Markov state model analysis to investigate the conformational landscape of the HVR transition pathway. Our findings reveal a stepwise pathway for the HVR transition and uncover several key conformational substates along the transition pathway. Importantly, key interactions between the HVR and the catalytic domain are unraveled, highlighting the pathogenesis of K-Ras4B mild mutations in several congenital developmental anomaly syndromes. Together, these findings provide a deeper understanding of the HVR transition mechanism and the regulation of K-Ras4B activity at an atomic level.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Minyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
8
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
9
|
Mysore VP, Zhou ZW, Ambrogio C, Li L, Kapp JN, Lu C, Wang Q, Tucker MR, Okoro JJ, Nagy-Davidescu G, Bai X, Plückthun A, Jänne PA, Westover KD, Shan Y, Shaw DE. A structural model of a Ras-Raf signalosome. Nat Struct Mol Biol 2021; 28:847-857. [PMID: 34625747 PMCID: PMC8643099 DOI: 10.1038/s41594-021-00667-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/25/2021] [Indexed: 01/29/2023]
Abstract
The protein K-Ras functions as a molecular switch in signaling pathways regulating cell growth. In the human mitogen-activated protein kinase (MAPK) pathway, which is implicated in many cancers, multiple K-Ras proteins are thought to assemble at the cell membrane with Ras effector proteins from the Raf family. Here we propose an atomistic structural model for such an assembly. Our starting point was an asymmetric guanosine triphosphate-mediated K-Ras dimer model, which we generated using unbiased molecular dynamics simulations and verified with mutagenesis experiments. Adding further K-Ras monomers in a head-to-tail fashion led to a compact helical assembly, a model we validated using electron microscopy and cell-based experiments. This assembly stabilizes K-Ras in its active state and presents composite interfaces to facilitate Raf binding. Guided by existing experimental data, we then positioned C-Raf, the downstream kinase MEK1 and accessory proteins (Galectin-3 and 14-3-3σ) on and around the helical assembly. The resulting Ras-Raf signalosome model offers an explanation for a large body of data on MAPK signaling.
Collapse
Affiliation(s)
| | - Zhi-Wei Zhou
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonas N Kapp
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Chunya Lu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- D. E. Shaw Research, New York, NY, USA
| | | | - Jeffrey J Okoro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Xiaochen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - David E Shaw
- D. E. Shaw Research, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Franz M, Mörchen B, Degenhart C, Gülden D, Shkura O, Wolters D, Koch U, Klebl B, Stoll R, Helfrich I, Scherkenbeck J. Sequence-Selective Covalent CaaX-Box Receptors Prevent Farnesylation of Oncogenic Ras Proteins and Impact MAPK/PI3 K Signaling. ChemMedChem 2021; 16:2504-2514. [PMID: 33899342 PMCID: PMC8453727 DOI: 10.1002/cmdc.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 01/21/2023]
Abstract
Oncogenic Ras proteins are implicated in the most common life-threatening cancers. Despite intense research over the past two decades, the progress towards small-molecule inhibitors has been limited. One reason for this failure is that Ras proteins interact with their effectors only via protein-protein interactions, which are notoriously difficult to address with small organic molecules. Herein we describe an alternative strategy, which prevents farnesylation and subsequent membrane insertion, a prerequisite for the activation of Ras proteins. Our approach is based on sequence-selective supramolecular receptors which bind to the C-terminal farnesyl transferase recognition unit of Ras and Rheb proteins and covalently modify the essential cysteine in the so-called CaaX-box.
Collapse
Affiliation(s)
- Matthias Franz
- Faculty of Mathematics and Natural SciencesUniversity of Wuppertal42119WuppertalGermany
| | - Britta Mörchen
- Vascular Oncology & MetastasisUniversity Hospital Essen45147EssenGermany
| | | | - Daniel Gülden
- Faculty of Mathematics and Natural SciencesUniversity of Wuppertal42119WuppertalGermany
| | - Oleksandr Shkura
- Faculty of Chemistry and BiochemistryRuhr-University Bochum44780BochumGermany
| | - Dirk Wolters
- Faculty of Chemistry and BiochemistryRuhr-University Bochum44780BochumGermany
| | - Uwe Koch
- Lead Discovery Center GmbH44227DortmundGermany
| | - Bert Klebl
- Lead Discovery Center GmbH44227DortmundGermany
| | - Raphael Stoll
- Faculty of Chemistry and BiochemistryRuhr-University Bochum44780BochumGermany
| | - Iris Helfrich
- Vascular Oncology & MetastasisUniversity Hospital Essen45147EssenGermany
| | - Jürgen Scherkenbeck
- Faculty of Mathematics and Natural SciencesUniversity of Wuppertal42119WuppertalGermany
| |
Collapse
|
11
|
Cookis T, Mattos C. Crystal Structure Reveals the Full Ras-Raf Interface and Advances Mechanistic Understanding of Raf Activation. Biomolecules 2021; 11:996. [PMID: 34356620 PMCID: PMC8301913 DOI: 10.3390/biom11070996] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/17/2023] Open
Abstract
Ras and Raf-kinase interact through the Ras-binding (RBD) and cysteine-rich domains (CRD) of Raf to signal through the mitogen-activated protein kinase pathway, yet the molecular mechanism leading to Raf activation has remained elusive. We present the 2.8 Å crystal structure of the HRas-CRaf-RBD_CRD complex showing the Ras-Raf interface as a continuous surface on Ras, as seen in the KRas-CRaf-RBD_CRD structure. In molecular dynamics simulations of a Ras dimer model formed through the α4-α5 interface, the CRD is dynamic and located between the two Ras protomers, poised for direct or allosteric modulation of functionally relevant regions of Ras and Raf. We propose a molecular model in which Ras binding is involved in the release of Raf autoinhibition while the Ras-Raf complex dimerizes to promote a platform for signal amplification, with Raf-CRD centrally located to impact regulation and function.
Collapse
Affiliation(s)
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
12
|
Rudack T, Teuber C, Scherlo M, Güldenhaupt J, Schartner J, Lübben M, Klare J, Gerwert K, Kötting C. The Ras dimer structure. Chem Sci 2021; 12:8178-8189. [PMID: 34194708 PMCID: PMC8208300 DOI: 10.1039/d1sc00957e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutated Ras is a key player in cancer, but despite intense and expensive approaches its catalytic center seems undruggable. The Ras dimer interface is a possible alternative drug target. Dimerization at the membrane affects cell growth signal transduction. In vivo studies indicate that preventing dimerization of oncogenic mutated Ras inhibits uncontrolled cell growth. Conventional computational drug-screening approaches require a precise atomic dimer model as input to successfully access drug candidates. However, the proposed dimer structural models are controversial. Here, we provide a clear-cut experimentally validated N-Ras dimer structural model. We incorporated unnatural amino acids into Ras to enable the binding of labels at multiple positions via click chemistry. This labeling allowed the determination of multiple distances of the membrane-bound Ras-dimer measured by fluorescence and electron paramagnetic resonance spectroscopy. In combination with protein-protein docking and biomolecular simulations, we identified key residues for dimerization. Site-directed mutations of these residues prevent dimer formation in our experiments, proving our dimer model to be correct. The presented dimer structure enables computational drug-screening studies exploiting the Ras dimer interface as an alternative drug target.
Collapse
Affiliation(s)
- Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Christian Teuber
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Marvin Scherlo
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Jörn Güldenhaupt
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Jonas Schartner
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Mathias Lübben
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Johann Klare
- Department of Physics, Osnabrück University 49074 Osnabrück Germany
| | - Klaus Gerwert
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| | - Carsten Kötting
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum 44801 Bochum Germany
- Department of Biophysics, Ruhr University Bochum 44801 Bochum Germany
| |
Collapse
|
13
|
Rezaei Adariani S, Kazemein Jasemi NS, Bazgir F, Wittich C, Amin E, Seidel CAM, Dvorsky R, Ahmadian MR. A comprehensive analysis of RAS-effector interactions reveals interaction hotspots and new binding partners. J Biol Chem 2021; 296:100626. [PMID: 33930461 PMCID: PMC8163975 DOI: 10.1016/j.jbc.2021.100626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
RAS effectors specifically interact with GTP-bound RAS proteins to link extracellular signals to downstream signaling pathways. These interactions rely on two types of domains, called RAS-binding (RB) and RAS association (RA) domains, which share common structural characteristics. Although the molecular nature of RAS-effector interactions is well-studied for some proteins, most of the RA/RB-domain-containing proteins remain largely uncharacterized. Here, we searched through human proteome databases, extracting 41 RA domains in 39 proteins and 16 RB domains in 14 proteins, each of which can specifically select at least one of the 25 members in the RAS family. We next comprehensively investigated the sequence–structure–function relationship between different representatives of the RAS family, including HRAS, RRAS, RALA, RAP1B, RAP2A, RHEB1, and RIT1, with all members of RA domain family proteins (RASSFs) and the RB-domain-containing CRAF. The binding affinity for RAS-effector interactions, determined using fluorescence polarization, broadly ranged between high (0.3 μM) and very low (500 μM) affinities, raising interesting questions about the consequence of these variable binding affinities in the regulation of signaling events. Sequence and structural alignments pointed to two interaction hotspots in the RA/RB domains, consisting of an average of 19 RAS-binding residues. Moreover, we found novel interactions between RRAS1, RIT1, and RALA and RASSF7, RASSF9, and RASSF1, respectively, which were systematically explored in sequence–structure–property relationship analysis, and validated by mutational analysis. These data provide a set of distinct functional properties and putative biological roles that should now be investigated in the cellular context.
Collapse
Affiliation(s)
- Soheila Rezaei Adariani
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Ehsan Amin
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany; Medical Faculty, Institute of Neural and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Claus A M Seidel
- Chair of Molecular Physical Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Radovan Dvorsky
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
14
|
KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nat Commun 2021; 12:1176. [PMID: 33608534 PMCID: PMC7895934 DOI: 10.1038/s41467-021-21422-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The first step of RAF activation involves binding to active RAS, resulting in the recruitment of RAF to the plasma membrane. To understand the molecular details of RAS-RAF interaction, we present crystal structures of wild-type and oncogenic mutants of KRAS complexed with the RAS-binding domain (RBD) and the membrane-interacting cysteine-rich domain (CRD) from the N-terminal regulatory region of RAF1. Our structures reveal that RBD and CRD interact with each other to form one structural entity in which both RBD and CRD interact extensively with KRAS. Mutations at the KRAS-CRD interface result in a significant reduction in RAF1 activation despite only a modest decrease in binding affinity. Combining our structures and published data, we provide a model of RAS-RAF complexation at the membrane, and molecular insights into RAS-RAF interaction during the process of RAS-mediated RAF activation. The molecular details of the RAS-RAF interaction are still not fully understood. Here, the authors present crystal structures of wild-type and mutant KRAS in complex with the RAS-binding and membrane-interacting cysteine-rich domains of RAF1, and propose a model of the membrane-bound RAS-RAF complex.
Collapse
|
15
|
Pálfy G, Menyhárd DK, Perczel A. Dynamically encoded reactivity of Ras enzymes: opening new frontiers for drug discovery. Cancer Metastasis Rev 2020; 39:1075-1089. [PMID: 32815102 PMCID: PMC7680338 DOI: 10.1007/s10555-020-09917-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Decoding molecular flexibility in order to understand and predict biological processes-applying the principles of dynamic-structure-activity relationships (DSAR)-becomes a necessity when attempting to design selective and specific inhibitors of a protein that has overlapping interaction surfaces with its upstream and downstream partners along its signaling cascade. Ras proteins are molecular switches that meet this definition perfectly. The close-lying P-loop and the highly flexible switch I and switch II regions are the site of nucleotide-, assisting-, and effector-protein binding. Oncogenic mutations that also appear in this region do not cause easily characterized overall structural changes, due partly to the inherent conformational heterogeneity and pliability of these segments. In this review, we present an overview of the results obtained using approaches targeting Ras dynamics, such as nuclear magnetic resonance (NMR) measurements and experiment-based modeling calculations (mostly molecular dynamics (MD) simulations). These methodologies were successfully used to decipher the mutant- and isoform-specific nature of certain transient states, far-lying allosteric sites, and the internal interaction networks, as well as the interconnectivity of the catalytic and membrane-binding regions. This opens new therapeutic potential: the discovered interaction hotspots present hitherto not targeted, selective sites for drug design efforts in diverse locations of the protein matrix.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| |
Collapse
|
16
|
Gasper R, Wittinghofer F. The Ras switch in structural and historical perspective. Biol Chem 2020; 401:143-163. [PMID: 31600136 DOI: 10.1515/hsz-2019-0330] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Since its discovery as an oncogene more than 40 years ago, Ras has been and still is in the focus of many academic and pharmaceutical labs around the world. A huge amount of work has accumulated on its biology. However, many questions about the role of the different Ras isoforms in health and disease still exist and a full understanding will require more intensive work in the future. Here we try to survey some of the structural findings in a historical perspective and how it has influenced our understanding of structure-function and mechanistic relationships of Ras and its interactions. The structures show that Ras is a stable molecular machine that uses the dynamics of its switch regions for the interaction with all regulators and effectors. This conformational flexibility has been used to create small molecule drug candidates against this important oncoprotein.
Collapse
Affiliation(s)
- Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| | - Fred Wittinghofer
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| |
Collapse
|
17
|
Nelson AC, Turbyville TJ, Dharmaiah S, Rigby M, Yang R, Wang TY, Columbus J, Stephens R, Taylor T, Sciacca D, Onsongo G, Sarver A, Subramanian S, Nissley DV, Simanshu DK, Lou E. RAS internal tandem duplication disrupts GTPase-activating protein (GAP) binding to activate oncogenic signaling. J Biol Chem 2020; 295:9335-9348. [PMID: 32393580 PMCID: PMC7363148 DOI: 10.1074/jbc.ra119.011080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.
Collapse
Affiliation(s)
- Andrew C Nelson
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Megan Rigby
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ting-You Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - John Columbus
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Robert Stephens
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy Taylor
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Drew Sciacca
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Getiria Onsongo
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne Sarver
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Dwight V Nissley
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Dudas B, Merzel F, Jang H, Nussinov R, Perahia D, Balog E. Nucleotide-Specific Autoinhibition of Full-Length K-Ras4B Identified by Extensive Conformational Sampling. Front Mol Biosci 2020; 7:145. [PMID: 32754617 PMCID: PMC7366858 DOI: 10.3389/fmolb.2020.00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
K-Ras is one of the most frequently mutated oncogenes in human tumor cells. It consists of a well-conserved globular catalytic domain and a flexible tail-like hypervariable region (HVR) at its C-terminal end. It plays a key role in signaling networks in proliferation, differentiation, and survival, undergoing a conformational switch between the active and inactive states. It is regulated through the GDP-GTP cycle of the inactive GDP-bound and active GTP-bound states. Here, without imposing any prior constraints, we mapped the interaction pattern between the catalytic domain and the HVR using Molecular Dynamics with excited Normal Modes (MDeNM) starting from an initially extended HVR conformation for both states. Our sampling captured similar interaction patterns in both GDP- and GTP-bound states with shifted populations depending on the bound nucleotide. In the GDP-bound state, the conformations where the HVR interacts with the effector lobe are more populated than in the GTP-bound state, forming a buried thus autoinhibited catalytic site; in the GTP-bound state conformations where the HVR interacts with the allosteric lobe are more populated, overlapping the α3/α4 dimerization interface. The interaction of the GTP with Switch I and Switch II is stronger than that of the GDP in line with a decrease in the fluctuation upon GTP binding.
Collapse
Affiliation(s)
- Balint Dudas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Multivalent assembly of KRAS with the RAS-binding and cysteine-rich domains of CRAF on the membrane. Proc Natl Acad Sci U S A 2020; 117:12101-12108. [PMID: 32414921 DOI: 10.1073/pnas.1914076117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane anchoring of farnesylated KRAS is critical for activation of RAF kinases, yet our understanding of how these proteins interact on the membrane is limited to isolated domains. The RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF engage KRAS and the plasma membrane, unleashing the kinase domain from autoinhibition. Due to experimental challenges, structural insight into this tripartite KRAS:RBD-CRD:membrane complex has relied on molecular dynamics simulations. Here, we report NMR studies of the KRAS:CRAF RBD-CRD complex. We found that the nucleotide-dependent KRAS-RBD interaction results in transient electrostatic interactions between KRAS and CRD, and we mapped the membrane interfaces of the CRD, RBD-CRD, and the KRAS:RBD-CRD complex. RBD-CRD exhibits dynamic interactions with the membrane through the canonical CRD lipid-binding site (CRD β7-8), as well as an alternative interface comprising β6 and the C terminus of CRD and β2 of RBD. Upon complex formation with KRAS, two distinct states were observed by NMR: State A was stabilized by membrane association of CRD β7-8 and KRAS α4-α5 while state B involved the C terminus of CRD, β3-5 of RBD, and part of KRAS α5. Notably, α4-α5, which has been proposed to mediate KRAS dimerization, is accessible only in state B. A cancer-associated mutation on the state B membrane interface of CRAF RBD (E125K) stabilized state B and enhanced kinase activity and cellular MAPK signaling. These studies revealed a dynamic picture of the assembly of the KRAS-CRAF complex via multivalent and dynamic interactions between KRAS, CRAF RBD-CRD, and the membrane.
Collapse
|
20
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
21
|
Ghufran M, Rehman AU, Shah M, Ayaz M, Ng HL, Wadood A. In-silico design of peptide inhibitors of K-Ras target in cancer disease. J Biomol Struct Dyn 2019; 38:5488-5499. [DOI: 10.1080/07391102.2019.1704880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mehreen Ghufran
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, South Korea
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Pakistan
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
22
|
Nussinov R, Tsai CJ, Jang H. Does Ras Activate Raf and PI3K Allosterically? Front Oncol 2019; 9:1231. [PMID: 31799192 PMCID: PMC6874141 DOI: 10.3389/fonc.2019.01231] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The mechanism through which oncogenic Ras activates its effectors is vastly important to resolve. If allostery is at play, then targeting allosteric pathways could help in quelling activation of MAPK (Raf/MEK/ERK) and PI3K (PI3K/Akt/mTOR) cell proliferation pathways. On the face of it, allosteric activation is reasonable: Ras binding perturbs the conformational ensembles of its effectors. Here, however, we suggest that at least for Raf, PI3K, and NORE1A (RASSF5), that is unlikely. Raf's long disordered linker dampens effective allosteric activation. Instead, we suggest that the high-affinity Ras–Raf binding relieves Raf's autoinhibition, shifting Raf's ensemble from the inactive to the nanocluster-mediated dimerized active state, as Ras also does for NORE1A. PI3K is recruited and allosterically activated by RTK (e.g., EGFR) at the membrane. Ras restrains PI3K's distribution and active site orientation. It stabilizes and facilitates PIP2 binding at the active site and increases the PI3K residence time at the membrane. Thus, RTKs allosterically activate PI3Kα; however, merging their action with Ras accomplishes full activation. Here we review their activation mechanisms in this light and draw attention to implications for their pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
23
|
Khaled M, Gorfe A, Sayyed-Ahmad A. Conformational and Dynamical Effects of Tyr32 Phosphorylation in K-Ras: Molecular Dynamics Simulation and Markov State Models Analysis. J Phys Chem B 2019; 123:7667-7675. [PMID: 31419909 PMCID: PMC7020251 DOI: 10.1021/acs.jpcb.9b05768] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphorylation of tyrosine 32 in K-Ras has been shown to influence function by disrupting the GTPase cycle. To shed light on the underlying mechanism and atomic basis of this process, we carried out a comparative investigation of the oncogenic G12D K-Ras mutant and its phosphorylated variant (pTyr32) using all-atom molecular dynamics simulations and Markov state models. We show that, despite sharing a number of common features, G12D and pTyr32-G12D K-Ras exhibit some distinct conformational states and fluctuations. In addition to notable differences in conformation and dynamics of residues surrounding the GTP binding site, nonlocal changes were observed at a number of loops. Switch I is more flexible in pTyr32-G12D K-Ras while switch II is more flexible in G12D K-Ras. We also used time-lagged independent component analysis and k-means clustering to identify five metastable states for each system. We utilized transition path theory to calculate the transition probabilities for each state to build a Markov state model for each system. These models and other close inspections suggest that the phosphorylation of Tyr32 strongly affects protein dynamics and the active site conformation, especially with regards to the canonical switch conformations and dynamics.
Collapse
Affiliation(s)
- Mohammed Khaled
- Department of Physics, Birzeit University, PO Box 14, Birzeit, Palestine
| | - Alemayehu Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | | |
Collapse
|
24
|
Mclaurin JD, Weiner OD. Multiple sources of signal amplification within the B-cell Ras/MAPK pathway. Mol Biol Cell 2019; 30:1610-1620. [PMID: 31042097 PMCID: PMC6727637 DOI: 10.1091/mbc.e18-09-0560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ras-Map kinase (MAPK) cascade underlies functional decisions in a wide range of cell types and organisms. In B-cells, positive feedback-driven Ras activation is the proposed source of the digital (all or none) MAPK responses following antigen stimulation. However, an inability to measure endogenous Ras activity in living cells has hampered our ability to test this model directly. Here we leverage biosensors of endogenous Ras and ERK activity to revisit this question. We find that B-cell receptor (BCR) ligation drives switch-like Ras activation and that lower BCR signaling output is required for the maintenance versus the initiation of Ras activation. Surprisingly, digital ERK responses persist in the absence of positive feedback-mediated Ras activation, and digital ERK is observed at a threshold level of Ras activation. These data suggest an independent analogue-to-digital switch downstream of Ras activation and reveal that multiple sources of signal amplification exist within the Ras-ERK module of the BCR pathway.
Collapse
Affiliation(s)
- Justin D Mclaurin
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
25
|
Structural snapshots of RAF kinase interactions. Biochem Soc Trans 2018; 46:1393-1406. [PMID: 30381334 DOI: 10.1042/bst20170528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
RAF (rapidly accelerated fibrosarcoma) Ser/Thr kinases (ARAF, BRAF, and CRAF) link the RAS (rat sarcoma) protein family with the MAPK (mitogen-activated protein kinase) pathway and control cell growth, differentiation, development, aging, and tumorigenesis. Their activity is specifically modulated by protein-protein interactions, post-translational modifications, and conformational changes in specific spatiotemporal patterns via various upstream regulators, including the kinases, phosphatase, GTPases, and scaffold and modulator proteins. Dephosphorylation of Ser-259 (CRAF numbering) and dissociation of 14-3-3 release the RAF regulatory domains RAS-binding domain and cysteine-rich domain for interaction with RAS-GTP and membrane lipids. This, in turn, results in RAF phosphorylation at Ser-621 and 14-3-3 reassociation, followed by its dimerization and ultimately substrate binding and phosphorylation. This review focuses on structural understanding of how distinct binding partners trigger a cascade of molecular events that induces RAF kinase activation.
Collapse
|
26
|
O'Bryan JP. Pharmacological targeting of RAS: Recent success with direct inhibitors. Pharmacol Res 2018; 139:503-511. [PMID: 30366101 DOI: 10.1016/j.phrs.2018.10.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
RAS has long been viewed as undruggable due to its lack of deep pockets for binding of small molecule inhibitors. However, recent successes in the development of direct RAS inhibitors suggest that the goal of pharmacological inhibition of RAS in patients may soon be realized. This review will discuss the role of RAS in cancer, the approaches used to develop direct RAS inhibitors, and highlight recent successes in the development of novel RAS inhibitory compounds that target different aspects of RAS biochemistry. In particular, this review will discuss the different properties of RAS that have been targeted by various inhibitors including membrane localization, the different activation states of RAS, effector binding, and nucleotide exchange. In addition, this review will highlight the recent success with mutation-specific inhibitors that exploit the unique biochemistry of the RAS(G12C) mutant. Although this mutation in KRAS accounts for 11% of all KRAS mutations in cancer, it is the most prominent KRAS mutant in lung cancer suggesting that G12C-specific inhibitors may provide a new approach for treating the subset of lung cancer patients harboring this mutant allele. Finally, this review will discuss the involvement of dimerization in RAS function and highlight new approaches to inhibit RAS by specifically interfering with RAS:RAS interaction.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, United States.
| |
Collapse
|
27
|
Biancucci M, Minasov G, Banerjee A, Herrera A, Woida PJ, Kieffer MB, Bindu L, Abreu-Blanco M, Anderson WF, Gaponenko V, Stephen AG, Holderfield M, Satchell KJF. The bacterial Ras/Rap1 site-specific endopeptidase RRSP cleaves Ras through an atypical mechanism to disrupt Ras-ERK signaling. Sci Signal 2018; 11:eaat8335. [PMID: 30279169 PMCID: PMC6309442 DOI: 10.1126/scisignal.aat8335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Ras-extracellular signal-regulated kinase pathway is critical for controlling cell proliferation, and its aberrant activation drives the growth of various cancers. Because many pathogens produce toxins that inhibit Ras activity, efforts to develop effective Ras inhibitors to treat cancer could be informed by studies of Ras inhibition by pathogens. Vibrio vulnificus causes fatal infections in a manner that depends on multifunctional autoprocessing repeats-in-toxin, a toxin that releases bacterial effector domains into host cells. One such domain is the Ras/Rap1-specific endopeptidase (RRSP), which site-specifically cleaves the Switch I domain of the small GTPases Ras and Rap1. We solved the crystal structure of RRSP and found that its backbone shares a structural fold with the EreA/ChaN-like superfamily of enzymes. Unlike other proteases in this family, RRSP is not a metalloprotease. Through nuclear magnetic resonance analysis and nucleotide exchange assays, we determined that the processing of KRAS by RRSP did not release any fragments or cause KRAS to dissociate from its bound nucleotide but instead only locally affected its structure. However, this structural alteration of KRAS was sufficient to disable guanine nucleotide exchange factor-mediated nucleotide exchange and prevent KRAS from binding to RAF. Thus, RRSP is a bacterial effector that represents a previously unrecognized class of protease that disconnects Ras from its signaling network while inducing limited structural disturbance in its target.
Collapse
Affiliation(s)
- Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Minasov
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alfa Herrera
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick J Woida
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew B Kieffer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lakshman Bindu
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Maria Abreu-Blanco
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew G Stephen
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Matthew Holderfield
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|
29
|
Travers T, López CA, Van QN, Neale C, Tonelli M, Stephen AG, Gnanakaran S. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 2018; 8:8461. [PMID: 29855542 PMCID: PMC5981303 DOI: 10.1038/s41598-018-26832-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/18/2018] [Indexed: 01/14/2023] Open
Abstract
Activation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex. First, simulations of the CRD revealed that it anchors to the membrane via insertion of its two hydrophobic loops, which is consistent with our NMR measurements of CRD bound to nanodiscs. Simulations of the CRD in the context of membrane-anchored RAS/RBD then show how CRD association with either RAS or RBD could play an unexpected role in guiding the membrane orientations of RAS/RBD. This finding has implications for the formation of RAS-RAS dimers, as different membrane orientations of RAS expose distinct putative dimerization interfaces.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Que N Van
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, United States
| | - Chris Neale
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Marco Tonelli
- National Magnetic Resource Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, United States
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States.
| |
Collapse
|
30
|
Li S, Jang H, Zhang J, Nussinov R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018; 26:513-525.e2. [PMID: 29429878 PMCID: PMC8183739 DOI: 10.1016/j.str.2018.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
K-Ras4B preferentially activates Raf-1. The high-affinity interaction of Ras-binding domain (RBD) of Raf with Ras was solved, but the relative position of Raf's cysteine-rich domain (CRD) in the Ras/Raf complex at the membrane and key question of exactly how it affects Raf signaling are daunting. We show that CRD stably binds anionic membranes inserting a positively charged loop into the amphipathic interface. Importantly, when in complex with Ras/RBD, covalently connected CRD presents the same membrane interaction mechanism, with CRD locating at the space between the RBD and membrane. To date, CRD's role was viewed in terms of stabilizing Raf-membrane interaction. Our observations argue for a key role in reducing Ras/RBD fluctuations at the membrane, thereby increasing Ras/RBD affinity. Even without K-Ras, via CRD, Raf-1 can recruit to the membrane; however, by reducing the Ras/RBD fluctuations and enhancing Ras/RBD affinity at the membrane, CRD promotes Raf's activation and MAPK signaling over other pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
31
|
Li ZL, Prakash P, Buck M. A "Tug of War" Maintains a Dynamic Protein-Membrane Complex: Molecular Dynamics Simulations of C-Raf RBD-CRD Bound to K-Ras4B at an Anionic Membrane. ACS CENTRAL SCIENCE 2018; 4:298-305. [PMID: 29532030 PMCID: PMC5832993 DOI: 10.1021/acscentsci.7b00593] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 06/11/2023]
Abstract
Association of Raf kinase with activated Ras triggers downstream signaling cascades toward regulating transcription in the cells' nucleus. Dysregulation of Ras-Raf signaling stimulates cancers. We investigate the C-Raf RBD and CRD regions when bound to oncogenic K-Ras4B at the membrane. All-atom molecular dynamics simulations suggest that the membrane plays an integral role in regulating the configurational ensemble of the complex. Remarkably, the complex samples a few states dynamically, reflecting a competition between C-Raf CRD- and K-Ras4B- membrane interactions. This competition arises because the interaction between the RBD and K-Ras is strong while the linker between the RBD and CRD is short. Such a mechanism maintains a modest binding for the overall complex at the membrane and is expected to facilitate fast signaling processes. Competition of protein-membrane contacts is likely a common mechanism for other multiprotein complexes, if not multidomain proteins at membranes.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics, Department of Neurosciences, Department of Pharmacology, Case Comprehensive
Cancer Center and Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Priyanka Prakash
- Department
of Integrative Biology and Pharmacology, University of Texas Health Science at Houston, Houston, Texas 77225, United States
| | - Matthias Buck
- Department of Physiology and Biophysics, Department of Neurosciences, Department of Pharmacology, Case Comprehensive
Cancer Center and Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
32
|
Spencer-Smith R, Li L, Prasad S, Koide A, Koide S, O'Bryan JP. Targeting the α4-α5 interface of RAS results in multiple levels of inhibition. Small GTPases 2017; 10:378-387. [PMID: 28692342 DOI: 10.1080/21541248.2017.1333188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Generation of RAS-targeted therapeutics has long been considered a "holy grail" in cancer research. However, a lack of binding pockets on the surface of RAS and its picomolar affinity for guanine nucleotides have made isolation of inhibitors particularly challenging. We recently described a monobody, termed NS1, that blocks RAS signaling and oncogenic transformation. NS1 binds to the α4-β6-α5 interface of H-RAS and K-RAS thus preventing RAS dimerization and nanoclustering, which in turn prevents RAS-stimulated dimerization and activation of RAF. Interestingly, NS1 reduces interaction of oncogenic K-RAS, but not H-RAS, with RAF and reduces K-RAS plasma membrane localization. Here, we show that these isoform specific effects of NS1 on RAS:RAF are due to the distinct hypervariable regions of RAS isoforms. NS1 inhibited wild type RAS function by reducing RAS GTP levels. These findings reveal that NS1 disrupts RAS signaling through a mechanism that is more complex than simply inhibiting RAS dimerization and nanoclustering.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Lie Li
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Sheela Prasad
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA
| | - Akiko Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,f Department of Medicine, New York University School of Medicine , New York , NY , USA
| | - Shohei Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,g Department of Biochemistry and Molecular Pharmacology, New York University School , New York , NY , USA
| | - John P O'Bryan
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| |
Collapse
|
33
|
Gentile DR, Rathinaswamy MK, Jenkins ML, Moss SM, Siempelkamp BD, Renslo AR, Burke JE, Shokat KM. Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chem Biol 2017; 24:1455-1466.e14. [PMID: 29033317 PMCID: PMC5915340 DOI: 10.1016/j.chembiol.2017.08.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
Covalent inhibitors of K-Ras(G12C) have been reported that exclusively recognize the GDP state. Here, we utilize disulfide tethering of a non-natural cysteine (K-Ras(M72C)) to identify a new switch-II pocket (S-IIP) binding ligand (2C07) that engages the active GTP state. Co-crystal structures of 2C07 bound to H-Ras(M72C) reveal binding in a cryptic groove we term S-IIG. In the GppNHp state, 2C07 binding to a modified S-IIP pushes switch I away from the nucleotide, breaking the network of polar contacts essential for adopting the canonical GTP state. Biochemical studies show that 2C07 alters nucleotide preference and inhibits SOS binding and catalyzed nucleotide exchange. 2C07 was converted to irreversible covalent analogs, which target both nucleotide states, inhibit PI3K activation in vitro, and function as occupancy probes to detect reversible engagement in competition assays. Targeting both nucleotide states opens the possibility of inhibiting oncogenic mutants of Ras, which exist predominantly in the GTP state in cells.
Collapse
Affiliation(s)
- Daniel R Gentile
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Steven M Moss
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Braden D Siempelkamp
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Adam R Renslo
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Spencer-Smith R, O'Bryan JP. Direct inhibition of RAS: Quest for the Holy Grail? Semin Cancer Biol 2017; 54:138-148. [PMID: 29248537 DOI: 10.1016/j.semcancer.2017.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
Abstract
RAS GTPases (H-, K-, and N-RAS) are the most frequently mutated oncoprotein family in human cancer. However, the relatively smooth surface architecture of RAS and its picomolar affinity for nucleotide have given rise to the assumption that RAS is an "undruggable" target. Recent advancements in drug screening, molecular modeling, and a greater understanding of RAS function have led to a resurgence in efforts to pharmacologically target this challenging foe. This review focuses on the state of the art of RAS inhibition, the approaches taken to achieve this goal, and the challenges of translating these discoveries into viable therapeutics.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
35
|
Nussinov R, Jang H, Tsai CJ, Liao TJ, Li S, Fushman D, Zhang J. Intrinsic protein disorder in oncogenic KRAS signaling. Cell Mol Life Sci 2017; 74:3245-3261. [PMID: 28597297 PMCID: PMC11107717 DOI: 10.1007/s00018-017-2564-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Tsung-Jen Liao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| |
Collapse
|
36
|
Johnson CW, Reid D, Parker JA, Salter S, Knihtila R, Kuzmic P, Mattos C. The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem 2017; 292:12981-12993. [PMID: 28630043 PMCID: PMC5546037 DOI: 10.1074/jbc.m117.778886] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/09/2017] [Indexed: 11/06/2022] Open
Abstract
H-Ras, K-Ras, and N-Ras are small GTPases that are important in the control of cell proliferation, differentiation, and survival, and their mutants occur frequently in human cancers. The G-domain, which catalyzes GTP hydrolysis and mediates downstream signaling, is 95% conserved between the Ras isoforms. Because of their very high sequence identity, biochemical studies done on H-Ras have been considered representative of all three Ras proteins. We show here that this is not a valid assumption. Using enzyme kinetic assays under identical conditions, we observed clear differences between the three isoforms in intrinsic catalysis of GTP by Ras in the absence and presence of the Ras-binding domain (RBD) of the c-Raf kinase protein (Raf-RBD). Given their identical active sites, isoform G-domain differences must be allosteric in origin, due to remote isoform-specific residues that affect conformational states. We present the crystal structure of N-Ras bound to a GTP analogue and interpret the kinetic data in terms of structural features specific for H-, K-, and N-Ras.
Collapse
Affiliation(s)
- Christian W Johnson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Derion Reid
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Jillian A Parker
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Shores Salter
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Ryan Knihtila
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | | | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115.
| |
Collapse
|
37
|
Ke H, Matsumoto S, Murashima Y, Taniguchi-Tamura H, Miyamoto R, Yoshikawa Y, Tsuda C, Kumasaka T, Mizohata E, Edamatsu H, Kataoka T. Structural basis for intramolecular interaction of post-translationally modified H-Ras•GTP prepared by protein ligation. FEBS Lett 2017; 591:2470-2481. [PMID: 28730604 DOI: 10.1002/1873-3468.12759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023]
Abstract
Ras undergoes post-translational modifications including farnesylation, proteolysis, and carboxymethylation at the C terminus, which are necessary for membrane recruitment and effector recognition. Full activation of c-Raf-1 requires cooperative interaction of the farnesylated C terminus and the activator region of Ras with its cysteine-rich domain (CRD). However, the molecular basis for this interaction remains unclear because of difficulties in preparing modified Ras in amounts sufficient for structural studies. Here, we use Sortase A-catalyzed protein ligation to prepare modified Ras in sufficient amounts for NMR and X-ray crystallographic analyses. The results show that the farnesylated C terminus establishes an intramolecular interaction with the catalytic domain and brings the farnesyl moiety to the proximity of the activator region, which may be responsible for their cooperative recognition of c-Raf-1-CRD.
Collapse
Affiliation(s)
- Haoliang Ke
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Shigeyuki Matsumoto
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yosuke Murashima
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Haruka Taniguchi-Tamura
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ryo Miyamoto
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Chiemi Tsuda
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hironori Edamatsu
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
38
|
Jansen JM, Wartchow C, Jahnke W, Fong S, Tsang T, Pfister K, Zavorotinskaya T, Bussiere D, Cheng JM, Crawford K, Dai Y, Dove J, Fang E, Feng Y, Florent JM, Fuller J, Gossert AD, Hekmat-Nejad M, Henry C, Klopp J, Lenahan WP, Lingel A, Ma S, Meyer A, Mishina Y, Narberes J, Pardee G, Ramurthy S, Rieffel S, Stuart D, Subramanian S, Tandeske L, Widger S, Widmer A, Winterhalter A, Zaror I, Hardy S. Inhibition of prenylated KRAS in a lipid environment. PLoS One 2017; 12:e0174706. [PMID: 28384226 PMCID: PMC5383040 DOI: 10.1371/journal.pone.0174706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.
Collapse
Affiliation(s)
- Johanna M. Jansen
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
- * E-mail:
| | - Charles Wartchow
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Wolfgang Jahnke
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Susan Fong
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Tiffany Tsang
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Keith Pfister
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Tatiana Zavorotinskaya
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Dirksen Bussiere
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Jan Marie Cheng
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Kenneth Crawford
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yumin Dai
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Jeffrey Dove
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Eric Fang
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yun Feng
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jean-Michel Florent
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - John Fuller
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Alvar D. Gossert
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mohammad Hekmat-Nejad
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Chrystèle Henry
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Julia Klopp
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - William P. Lenahan
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Andreas Lingel
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Sylvia Ma
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Arndt Meyer
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yuji Mishina
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jamie Narberes
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Gwynn Pardee
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Savithri Ramurthy
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Sebastien Rieffel
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Darrin Stuart
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Sharadha Subramanian
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Laura Tandeske
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Stephania Widger
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Armin Widmer
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Aurelie Winterhalter
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabel Zaror
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Stephen Hardy
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| |
Collapse
|
39
|
Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. The RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions. PLoS One 2016; 11:e0167145. [PMID: 27936046 PMCID: PMC5147862 DOI: 10.1371/journal.pone.0167145] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
RAS effectors specifically interact with the GTP-bound form of RAS in response to extracellular signals and link them to downstream signaling pathways. The molecular nature of effector interaction by RAS is well-studied but yet still incompletely understood in a comprehensive and systematic way. Here, structure-function relationships in the interaction between different RAS proteins and various effectors were investigated in detail by combining our in vitro data with in silico data. Equilibrium dissociation constants were determined for the binding of HRAS, KRAS, NRAS, RRAS1 and RRAS2 to both the RAS binding (RB) domain of CRAF and PI3Kα, and the RAS association (RA) domain of RASSF5, RALGDS and PLCε, respectively, using fluorescence polarization. An interaction matrix, constructed on the basis of available crystal structures, allowed identification of hotspots as critical determinants for RAS-effector interaction. New insights provided by this study are the dissection of the identified hotspots in five distinct regions (R1 to R5) in spite of high sequence variability not only between, but also within, RB/RA domain-containing effectors proteins. Finally, we propose that intermolecular β-sheet interaction in R1 is a central recognition region while R3 may determine specific contacts of RAS versus RRAS isoforms with effectors.
Collapse
Affiliation(s)
- Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Ehsan Amin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
40
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Thukral L, Sengupta D, Ramkumar A, Murthy D, Agrawal N, Gokhale RS. The Molecular Mechanism Underlying Recruitment and Insertion of Lipid-Anchored LC3 Protein into Membranes. Biophys J 2016; 109:2067-78. [PMID: 26588566 DOI: 10.1016/j.bpj.2015.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
Lipid modification of cytoplasmic proteins initiates membrane engagement that triggers diverse cellular processes. Despite the abundance of lipidated proteins in the human proteome, the key determinants underlying membrane recognition and insertion are poorly understood. Here, we define the course of spontaneous membrane insertion of LC3 protein modified with phosphatidylethanolamine using multiple coarse-grain simulations. The partitioning of the lipid anchor chains proceeds through a concerted process, with its two acyl chains inserting one after the other. Concurrently, a conformational rearrangement involving the α-helix III of LC3, especially in the three basic residues Lys65, Arg68, and Arg69, ensures stable insertion of the phosphatidylethanolamine anchor into membranes. Mutational studies validate the crucial role of these residues, and further live-cell imaging analysis shows a substantial reduction in the formation of autophagic vesicles for the mutant proteins. Our study captures the process of water-favored LC3 protein recruitment to the membrane and thus opens, to our knowledge, new avenues to explore the cellular dynamics underlying vesicular trafficking.
Collapse
Affiliation(s)
- Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| | | | - Amrita Ramkumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Divya Murthy
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Nikhil Agrawal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| |
Collapse
|
42
|
Affiliation(s)
- Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
43
|
Vo U, Vajpai N, Embrey KJ, Golovanov AP. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution. Sci Rep 2016; 6:29706. [PMID: 27412770 PMCID: PMC4944212 DOI: 10.1038/srep29706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022] Open
Abstract
The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (SosCat) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of SosCat, while SosCat also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos.
Collapse
Affiliation(s)
- Uybach Vo
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Navratna Vajpai
- AstraZeneca, Discovery Sciences, Mereside, Alderley Park, Cheshire, SK10 4TF, UK
| | - Kevin J Embrey
- AstraZeneca, Discovery Sciences, Mereside, Alderley Park, Cheshire, SK10 4TF, UK
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
44
|
Kovrigina EA, Galiakhmetov AR, Kovrigin EL. The Ras G Domain Lacks the Intrinsic Propensity to Form Dimers. Biophys J 2016; 109:1000-8. [PMID: 26331257 DOI: 10.1016/j.bpj.2015.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022] Open
Abstract
Ras GTPase is a molecular switch controlling a number of cellular pathways including growth, proliferation, differentiation, and apoptosis. Recent reports indicated that Ras undergoes dimerization at the membrane surface through protein-protein interactions. If firmly established this property of Ras would require profound reassessment of a large amount of published data and modification of the Ras signaling paradigm. One proposed mechanism of dimerization involves formation of salt bridges between the two GTPase domains (G domains) leading to formation of a compact dimer as observed in Ras crystal structures. In this work, we interrogated the intrinsic ability of Ras to self-associate in solution by creating conditions of high local concentration through irreversibly tethering the two G domains together at their unstructured C-terminal tails. We evaluated possible self-association in this inverted tandem conjugate via analysis of the time-domain fluorescence anisotropy and NMR chemical shift perturbations. We did not observe the increased rotational correlation time expected for the G domain dimer. Variation of the ionic strength (to modulate stability of the salt bridges) did not affect the rotational correlation time in the tandem further supporting independent rotational diffusion of two G domains. In a parallel line of experiments to detect and map weak self-association of the G domains, we analyzed NMR chemical shifts perturbations at a number of sites near the crystallographic dimer interface. The nearly complete lack of chemical shift perturbations in the tandem construct supported a simple model with the independent G domains repelled from each other by their overall negative charge. These results lead us to the conclusion that self-association of the G domains cannot be responsible for homodimerization of Ras reported in the literature.
Collapse
|
45
|
Chakrabarti M, Jang H, Nussinov R. Comparison of the Conformations of KRAS Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences. J Phys Chem B 2016; 120:667-79. [PMID: 26761128 PMCID: PMC7815164 DOI: 10.1021/acs.jpcb.5b11110] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human HRAS, KRAS, and NRAS genes encode four isoforms of Ras, a p21 GTPase. Mutations in KRAS account for the majority of RAS-driven cancers. The KRAS has two splice variants, K-Ras4A and K-Ras4B. Due to their reversible palmitoylation, K-Ras4A and N-Ras have bimodal signaling states. K-Ras4A and K-Ras4B differ in four catalytic domain residues (G151R/D153E/K165Q/H166Y) and in their disordered C-terminal hypervariable region (HVR). In K-Ras4A, the HVR is not as strongly positively charged as in K-Ras4B (+6e vs +9e). Here, we performed all-atom molecular dynamics simulations to elucidate isoform-specific differences between the two splice variants. We observe that the catalytic domain of GDP-bound K-Ras4A has a more exposed nucleotide binding pocket than K-Ras4B, and the dynamic fluctuations in switch I and II regions also differ; both factors may influence guanine-nucleotide exchange. We further observe that like K-Kas4B, full-length K-Ras4A exhibits nucleotide-dependent HVR fluctuations; however, these fluctuations differ between the GDP-bound forms of K-Ras4A and K-Ras4B. Unlike K-Ras4B where the HVR tends to cover the effector binding region, in K-Ras4A, autoinhibited states are unstable. With lesser charge, the K-Ras4A HVR collapses on itself, making it less available for binding the catalytic domain. Since the HVRs of N- and H-Ras are weakly charged (+1e and +2e, respectively), autoinhibition may be a unique feature of K-Ras4B.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Banerjee A, Jang H, Nussinov R, Gaponenko V. The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding. Curr Opin Struct Biol 2016; 36:10-7. [PMID: 26709496 PMCID: PMC4785042 DOI: 10.1016/j.sbi.2015.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
The C-terminal hypervariable region (HVR) of the splice variant KRAS4B is disordered. Classically, the role of the post-translationally-modified HVR is to navigate Ras in the cell and to anchor it in localized plasma membrane regions. Here, we propose additional regulatory roles, including auto-inhibition by shielding the effector binding site in the GDP-bound state and release upon GTP binding and in the presence of certain oncogenic mutations. The released HVR can interact with calmodulin. We show that oncogenic mutations (G12V/G12D) modulate the HVR-phospholipid binding specificity, resulting in preferential interactions with phosphatidic acid. The shifts in the conformational preferences and binding specificity in the disordered state exemplify the critical role of the unstructured tail of K-Ras4B in cancer.
Collapse
Affiliation(s)
- Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
47
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
48
|
Marcus K, Mattos C. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects. Clin Cancer Res 2016; 21:1810-8. [PMID: 25878362 DOI: 10.1158/1078-0432.ccr-14-2148] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The crystal structure of RAS was first solved 25 years ago. In spite of tremendous and sustained efforts, there are still no drugs in the clinic that directly target this major driver of human cancers. Recent success in the discovery of compounds that bind RAS and inhibit signaling has fueled renewed enthusiasm, and in-depth understanding of the structure and function of RAS has opened new avenues for direct targeting. To succeed, we must focus on the molecular details of the RAS structure and understand at a high-resolution level how the oncogenic mutants impair function. Structural networks of intramolecular communication between the RAS active site and membrane-interacting regions on the G-domain are disrupted in oncogenic mutants. Although conserved across the isoforms, these networks are near hot spots of protein-ligand interactions with amino acid composition that varies among RAS proteins. These differences could have an effect on stabilization of conformational states of interest in attenuating signaling through RAS. The development of strategies to target these novel sites will add a fresh direction in the quest to conquer RAS-driven cancers. Clin Cancer Res; 21(8); 1810-8. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers."
Collapse
Affiliation(s)
- Kendra Marcus
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
49
|
Chavan TS, Jang H, Khavrutskii L, Abraham SJ, Banerjee A, Freed BC, Johannessen L, Tarasov SG, Gaponenko V, Nussinov R, Tarasova NI. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site. Biophys J 2015; 109:2602-2613. [PMID: 26682817 PMCID: PMC4699860 DOI: 10.1016/j.bpj.2015.09.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Medicinal Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunbum Jang
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Lyuba Khavrutskii
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sherwin J Abraham
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Avik Banerjee
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Benjamin C Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Liv Johannessen
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sergey G Tarasov
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland.
| |
Collapse
|
50
|
Lu S, Banerjee A, Jang H, Zhang J, Gaponenko V, Nussinov R. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site. J Biol Chem 2015; 290:28887-900. [PMID: 26453300 PMCID: PMC4661403 DOI: 10.1074/jbc.m115.664755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.
Collapse
Affiliation(s)
- Shaoyong Lu
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China, Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | | | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jian Zhang
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China,
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, and
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|