1
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Betancourt AJ, Wei KHC, Huang Y, Lee YCG. Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective. Annu Rev Genomics Hum Genet 2024; 25:1-25. [PMID: 38603565 DOI: 10.1146/annurev-genom-120822-105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
Collapse
Affiliation(s)
- Andrea J Betancourt
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kevin H-C Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Yuh Chwen G Lee
- Center for Complex Biological Systems, University of California, Irvine, California, USA;
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
3
|
Karkas R, Abdullah KSA, Kaizer L, Ürmös Á, Raya M, Tiszlavicz L, Pankotai T, Nagy I, Mátés L, Sükösd F. LINE-1 ORF1p is a Promising Biomarker in Cervical Intraepithelial Neoplasia Degree Assessment. Int J Gynecol Pathol 2024:00004347-990000000-00166. [PMID: 38920137 DOI: 10.1097/pgp.0000000000001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cervical intraepithelial neoplasia (CIN) represents a spectrum of preinvasive squamous lesions within the cervical epithelium, whose identification is a diagnostic challenge due to subtle histomorphological differences among its categories. This study explores ORF1p, a nucleic acid-binding protein derived from long interspersed nuclear element-1 (LINE-1), as a potential biomarker for enhancing CIN diagnosis. A comprehensive analysis of 143 cervical specimens, encompassing CIN I (n=20), CIN II (n=46), CIN III (n=14), invasive cancer (n=32), and nondysplastic cases (normal cervical epithelia (n=24) and atrophy (n=7) were conducted. ORF1p, Ki67, and p16 expressions were evaluated using immunohistochemistry. ORF1p immunopositivity was detected in the vast majority [110/112 (98.2%)] of dysplastic and neoplastic (CIN and invasive cancer) specimens, whereas 19/24 (79.2%) of normal cervical specimens lacked ORF1p expression. The observed pattern of ORF1p expression showed a progressively increasing extent and intensity with advancing CIN grades. CIN I exhibited mild ORF1p expression in the lower one or two-thirds of the cervical epithelium [14/16 (87.5%)], whereas CIN II demonstrated moderate to strong ORF1p expression spanning the lower two-thirds [29/46 (63.0%)]. Pronounced transepithelial ORF1p immunopositivity characterized CIN III cases [13/14 (92.8%)] and cervical cancer [30/32 (93.8%)]. These findings propose ORF1p as a valuable indicator even for detecting CIN I, effectively discerning them from normal cervical tissue (p < 0.0001). Our findings underscore the potential of ORF1p as an early diagnostic marker for cervical neoplasia.
Collapse
Affiliation(s)
- Réka Karkas
- Laboratory of Cancer Genome Research, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Albert Szent-Györgyi Medical School, Szeged, Hungary
| | - Khaldoon Sadiq Ahmed Abdullah
- Laboratory of Cancer Genome Research, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Albert Szent-Györgyi Medical School, Szeged, Hungary
| | - László Kaizer
- Department of Pathology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Ádám Ürmös
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - May Raya
- Laboratory of Cancer Genome Research, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Albert Szent-Györgyi Medical School, Szeged, Hungary
| | - Lilla Tiszlavicz
- Department of Pediatrics and Pediatric Health Centre, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd, Mórahalom, Hungary
- Sequencing Platform, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Lajos Mátés
- Laboratory of Cancer Genome Research, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Talley MJ, Longworth MS. Retrotransposons in embryogenesis and neurodevelopment. Biochem Soc Trans 2024; 52:1159-1171. [PMID: 38716891 PMCID: PMC11346457 DOI: 10.1042/bst20230757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.
Collapse
Affiliation(s)
- Mary Jo Talley
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
| | - Michelle S. Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, U.S.A
| |
Collapse
|
5
|
Mathavarajah S, Dellaire G. LINE-1: an emerging initiator of cGAS-STING signalling and inflammation that is dysregulated in disease. Biochem Cell Biol 2024; 102:38-46. [PMID: 37643478 DOI: 10.1139/bcb-2023-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The cGAS-STING (cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)) axis integrates DNA damage and cellular stress with type I interferon (IFN) signalling to facilitate transcriptional changes underlying inflammatory stress responses. The cGAS-STING pathway responds to cytosolic DNA in the form of double-stranded DNA, micronuclei, and long interspersed nuclear element 1 (L1) retroelements. L1 retroelements are a class of self-propagating non-long terminal repeat transposons that have remained highly active in mammalian genomes. L1 retroelements are emerging as important inducers of cGAS-STING and IFN signalling, which are often dysregulated in several diseases, including cancer. A key repressor of cGAS-STING and L1 activity is the exonuclease three prime repair exonuclease 1 (TREX1), and loss of TREX1 promotes the accumulation of L1. In addition, L1 dysregulation is a common theme among diseases with chronic induction of type I IFN signalling through cGAS-STING, such as Aicardi-Goutières syndrome, Fanconi anemia, and dermatomyositis. Although TREX1 is highly conserved in tetrapod species, other suppressor proteins exist that inhibit L1 retrotransposition. These suppressor genes when mutated are often associated with diseases characterized by unchecked inflammation that is associated with high cGAS-STING activity and elevated levels of L1 expression. In this review, we discuss these interconnected pathways of L1 suppression and their role in the regulation of cGAS-STING and inflammation in disease.
Collapse
Affiliation(s)
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
7
|
Devine SE. Emerging Opportunities to Study Mobile Element Insertions and Their Source Elements in an Expanding Universe of Sequenced Human Genomes. Genes (Basel) 2023; 14:1923. [PMID: 37895272 PMCID: PMC10606232 DOI: 10.3390/genes14101923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Three mobile element classes, namely Alu, LINE-1 (L1), and SVA elements, remain actively mobile in human genomes and continue to produce new mobile element insertions (MEIs). Historically, MEIs have been discovered and studied using several methods, including: (1) Southern blots, (2) PCR (including PCR display), and (3) the detection of MEI copies from young subfamilies. We are now entering a new phase of MEI discovery where these methods are being replaced by whole genome sequencing and bioinformatics analysis to discover novel MEIs. We expect that the universe of sequenced human genomes will continue to expand rapidly over the next several years, both with short-read and long-read technologies. These resources will provide unprecedented opportunities to discover MEIs and study their impact on human traits and diseases. They also will allow the MEI community to discover and study the source elements that produce these new MEIs, which will facilitate our ability to study source element regulation in various tissue contexts and disease states. This, in turn, will allow us to better understand MEI mutagenesis in humans and the impact of this mutagenesis on human biology.
Collapse
Affiliation(s)
- Scott E Devine
- Institute for Genome Sciences, Department of Medicine, and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
9
|
Vallés-Saiz L, Ávila J, Hernández F. Lamivudine (3TC), a Nucleoside Reverse Transcriptase Inhibitor, Prevents the Neuropathological Alterations Present in Mutant Tau Transgenic Mice. Int J Mol Sci 2023; 24:11144. [PMID: 37446327 DOI: 10.3390/ijms241311144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The dysregulation of transposable elements contributes to neurodegenerative disorders. Previous studies have reported an increase in retrotransposon transcription in Drosophila models as well as in human tauopathies. In this context, we tested the possible protective effects of a reverse transcriptase inhibitor, namely lamivudine (also known as 3TC), in P301S mice, an animal model of Alzheimer's disease based on FTDP-17-tau overexpression. Transgenic P301S mice administered lamivudine through drinking water showed a decrease in the following histopathological marks typical of tauopathies: tau phosphorylation; inflammation; neuronal death; and hippocampal atrophy. Lamivudine treatment attenuated motor deficits (Rotarod test) and improved short-term memory (Y-maze test). To evaluate the role of tau in retrotransposition, we cotransfected HeLa cells with a plasmid containing a complete LINE-1 sequence and a neomycin reporter cassette designed for retrotransposition assays, and a plasmid with the tau sequence. LINE-1 insertion increased considerably in the cotransfection compared to the transfection without tau. In addition, lamivudine inhibited the insertion of LINE-1. Our data suggest that the progression of the tauopathy can be attenuated by the administration of lamivudine upon the first symptoms of neuropathology.
Collapse
Affiliation(s)
- Laura Vallés-Saiz
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Goodier JL, Wan H, Soares AO, Sanchez L, Selser JM, Pereira GC, Karma S, García-Pérez JL, Kazazian HH, García Cañadas MM. ZCCHC3 is a stress granule zinc knuckle protein that strongly suppresses LINE-1 retrotransposition. PLoS Genet 2023; 19:e1010795. [PMID: 37405998 DOI: 10.1371/journal.pgen.1010795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Retrotransposons have generated about half of the human genome and LINE-1s (L1s) are the only autonomously active retrotransposons. The cell has evolved an arsenal of defense mechanisms to protect against retrotransposition with factors we are only beginning to understand. In this study, we investigate Zinc Finger CCHC-Type Containing 3 (ZCCHC3), a gag-like zinc knuckle protein recently reported to function in the innate immune response to infecting viruses. We show that ZCCHC3 also severely restricts human retrotransposons and associates with the L1 ORF1p ribonucleoprotein particle. We identify ZCCHC3 as a bona fide stress granule protein, and its association with LINE-1 is further supported by colocalization with L1 ORF1 protein in stress granules, dense cytoplasmic aggregations of proteins and RNAs that contain stalled translation pre-initiation complexes and form when the cell is under stress. Our work also draws links between ZCCHC3 and the anti-viral and retrotransposon restriction factors Mov10 RISC Complex RNA Helicase (MOV10) and Zinc Finger CCCH-Type, Antiviral 1 (ZC3HAV1, also called ZAP). Furthermore, collective evidence from subcellular localization, co-immunoprecipitation, and velocity gradient centrifugation connects ZCCHC3 with the RNA exosome, a multi-subunit ribonuclease complex capable of degrading various species of RNA molecules and that has previously been linked with retrotransposon control.
Collapse
Affiliation(s)
- John L Goodier
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Han Wan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alisha O Soares
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Laura Sanchez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - John Michael Selser
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gavin C Pereira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sadik Karma
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jose Luis García-Pérez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Haig H Kazazian
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marta M García Cañadas
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| |
Collapse
|
11
|
Guan Y, Gao H, Leu NA, Vourekas A, Alexiou P, Maragkakis M, Kang Z, Mourelatos Z, Liang G, Wang PJ. The MOV10 RNA helicase is a dosage-dependent host restriction factor for LINE1 retrotransposition in mice. PLoS Genet 2023; 19:e1010566. [PMID: 37126510 PMCID: PMC10174503 DOI: 10.1371/journal.pgen.1010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/11/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
Transposable elements constitute nearly half of the mammalian genome and play important roles in genome evolution. While a multitude of both transcriptional and post-transcriptional mechanisms exist to silence transposable elements, control of transposition in vivo remains poorly understood. MOV10, an RNA helicase, is an inhibitor of mobilization of retrotransposons and retroviruses in cell culture assays. Here we report that MOV10 restricts LINE1 retrotransposition in mice. Although MOV10 is broadly expressed, its loss causes only incomplete penetrance of embryonic lethality, and the surviving MOV10-deficient mice are healthy and fertile. Biochemically, MOV10 forms a complex with UPF1, a key component of the nonsense-mediated mRNA decay pathway, and primarily binds to the 3' UTR of somatically expressed transcripts in testis. Consequently, loss of MOV10 results in an altered transcriptome in testis. Analyses using a LINE1 reporter transgene reveal that loss of MOV10 leads to increased LINE1 retrotransposition in somatic and reproductive tissues from both embryos and adult mice. Moreover, the degree of LINE1 retrotransposition inhibition is dependent on the Mov10 gene dosage. Furthermore, MOV10 deficiency reduces reproductive fitness over successive generations. Our findings demonstrate that MOV10 attenuates LINE1 retrotransposition in a dosage-dependent manner in mice.
Collapse
Affiliation(s)
- Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenlong Kang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Sil S, Keegan S, Ettefa F, Denes LT, Boeke JD, Holt LJ. Condensation of LINE-1 is critical for retrotransposition. eLife 2023; 12:e82991. [PMID: 37114770 PMCID: PMC10202459 DOI: 10.7554/elife.82991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.
Collapse
Affiliation(s)
- Srinjoy Sil
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Sarah Keegan
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Farida Ettefa
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Lance T Denes
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
13
|
Garcia-Cañadas M, Sanchez-Luque FJ, Sanchez L, Rojas J, Garcia Perez JL. LINE-1 Retrotransposition Assays in Embryonic Stem Cells. Methods Mol Biol 2023; 2607:257-309. [PMID: 36449167 DOI: 10.1007/978-1-0716-2883-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.
Collapse
Affiliation(s)
- Marta Garcia-Cañadas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Laura Sanchez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Johana Rojas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Jose L Garcia Perez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC)/University of Edinburgh, Western General Hospital Campus, Edinburgh, UK.
| |
Collapse
|
14
|
Di Stefano LH, Saba LJ, Oghbaie M, Jiang H, McKerrow W, Benitez-Guijarro M, Taylor MS, LaCava J. Affinity-Based Interactome Analysis of Endogenous LINE-1 Macromolecules. Methods Mol Biol 2023; 2607:215-256. [PMID: 36449166 DOI: 10.1007/978-1-0716-2883-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.
Collapse
|
15
|
Cashen BA, Naufer M, Morse M, Jones CE, Williams M, Furano A. The L1-ORF1p coiled coil enables formation of a tightly compacted nucleic acid-bound complex that is associated with retrotransposition. Nucleic Acids Res 2022; 50:8690-8699. [PMID: 35871298 PMCID: PMC9410894 DOI: 10.1093/nar/gkac628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Long interspersed nuclear element 1 (L1) parasitized most vertebrates and constitutes ∼20% of the human genome. It encodes ORF1p and ORF2p which form an L1-ribonucleoprotein (RNP) with their encoding transcript that is copied into genomic DNA (retrotransposition). ORF1p binds single-stranded nucleic acid (ssNA) and exhibits NA chaperone activity. All vertebrate ORF1ps contain a coiled coil (CC) domain and we previously showed that a CC-retrotransposition null mutant prevented formation of stably bound ORF1p complexes on ssNA. Here, we compared CC variants using our recently improved method that measures ORF1p binding to ssDNA at different forces. Bound proteins decrease ssDNA contour length and at low force, retrotransposition-competent ORF1ps (111p and m14p) exhibit two shortening phases: the first is rapid, coincident with ORF1p binding; the second is slower, consistent with formation of tightly compacted complexes by NA-bound ORF1p. In contrast, two retrotransposition-null CC variants (151p and m15p) did not attain the second tightly compacted state. The C-terminal half of the ORF1p trimer (not the CC) contains the residues that mediate NA-binding. Our demonstrating that the CC governs the ability of NA-bound retrotransposition-competent trimers to form tightly compacted complexes reveals the biochemical phenotype of these coiled coil mutants.
Collapse
Affiliation(s)
- Ben A Cashen
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - M Nabuan Naufer
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - Michael Morse
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - Charles E Jones
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - Anthony V Furano
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Tao J, Wang Q, Mendez-Dorantes C, Burns KH, Chiarle R. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nat Commun 2022; 13:3685. [PMID: 35760782 PMCID: PMC9237045 DOI: 10.1038/s41467-022-31322-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9-based genome editing has revolutionized experimental molecular biology and entered the clinical world for targeted gene therapy. Identifying DNA modifications occurring at CRISPR/Cas9 target sites is critical to determine efficiency and safety of editing tools. Here we show that insertions of LINE-1 (L1) retrotransposons can occur frequently at CRISPR/Cas9 editing sites. Together with PolyA-seq and an improved amplicon sequencing, we characterize more than 2500 de novo L1 insertions at multiple CRISPR/Cas9 editing sites in HEK293T, HeLa and U2OS cells. These L1 retrotransposition events exploit CRISPR/Cas9-induced DSB formation and require L1 RT activity. Importantly, de novo L1 insertions are rare during genome editing by prime editors (PE), cytidine or adenine base editors (CBE or ABE), consistent with their reduced DSB formation. These data demonstrate that insertions of retrotransposons might be a potential outcome of CRISPR/Cas9 genome editing and provide further evidence on the safety of different CRISPR-based editing tools.
Collapse
Affiliation(s)
- Jianli Tao
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Qi Wang
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | - Kathleen H Burns
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy.
| |
Collapse
|
17
|
Campitelli LF, Yellan I, Albu M, Barazandeh M, Patel ZM, Blanchette M, Hughes TR. Reconstruction of full-length LINE-1 progenitors from ancestral genomes. Genetics 2022; 221:6584822. [PMID: 35552404 PMCID: PMC9252281 DOI: 10.1093/genetics/iyac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Sequences derived from the Long INterspersed Element-1 (L1) family of retrotransposons occupy at least 17% of the human genome, with 67 distinct subfamilies representing successive waves of expansion and extinction in mammalian lineages. L1s contribute extensively to gene regulation, but their molecular history is difficult to trace, because most are present only as truncated and highly mutated fossils. Consequently, L1 entries in current databases of repeat sequences are composed mainly of short diagnostic subsequences, rather than full functional progenitor sequences for each subfamily. Here, we have coupled 2 levels of sequence reconstruction (at the level of whole genomes and L1 subfamilies) to reconstruct progenitor sequences for all human L1 subfamilies that are more functionally and phylogenetically plausible than existing models. Most of the reconstructed sequences are at or near the canonical length of L1s and encode uninterrupted ORFs with expected protein domains. We also show that the presence or absence of binding sites for KRAB-C2H2 Zinc Finger Proteins, even in ancient-reconstructed progenitor L1s, mirrors binding observed in human ChIP-exo experiments, thus extending the arms race and domestication model. RepeatMasker searches of the modern human genome suggest that the new models may be able to assign subfamily resolution identities to previously ambiguous L1 instances. The reconstructed L1 sequences will be useful for genome annotation and functional study of both L1 evolution and L1 contributions to host regulatory networks.
Collapse
Affiliation(s)
- Laura F Campitelli
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isaac Yellan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Marjan Barazandeh
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zain M Patel
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mathieu Blanchette
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
18
|
Kong L, Saha K, Hu Y, Tschetter JN, Habben CE, Whitmore LS, Yao C, Ge X, Ye P, Newkirk SJ, An W. Subfamily-specific differential contribution of individual monomers and the tether sequence to mouse L1 promoter activity. Mob DNA 2022; 13:13. [PMID: 35443687 PMCID: PMC9022269 DOI: 10.1186/s13100-022-00269-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The internal promoter in L1 5'UTR is critical for autonomous L1 transcription and initiating retrotransposition. Unlike the human genome, which features one contemporarily active subfamily, four subfamilies (A_I, Gf_I and Tf_I/II) have been amplifying in the mouse genome in the last one million years. Moreover, mouse L1 5'UTRs are organized into tandem repeats called monomers, which are separated from ORF1 by a tether domain. In this study, we aim to compare promoter activities across young mouse L1 subfamilies and investigate the contribution of individual monomers and the tether sequence. RESULTS We observed an inverse relationship between subfamily age and the average number of monomers among evolutionarily young mouse L1 subfamilies. The youngest subgroup (A_I and Tf_I/II) on average carry 3-4 monomers in the 5'UTR. Using a single-vector dual-luciferase reporter assay, we compared promoter activities across six L1 subfamilies (A_I/II, Gf_I and Tf_I/II/III) and established their antisense promoter activities in a mouse embryonic fibroblast cell line and a mouse embryonal carcinoma cell line. Using consensus promoter sequences for three subfamilies (A_I, Gf_I and Tf_I), we dissected the differential roles of individual monomers and the tether domain in L1 promoter activity. We validated that, across multiple subfamilies, the second monomer consistently enhances the overall promoter activity. For individual promoter components, monomer 2 is consistently more active than the corresponding monomer 1 and/or the tether for each subfamily. Importantly, we revealed intricate interactions between monomer 2, monomer 1 and tether domains in a subfamily-specific manner. Furthermore, using three-monomer 5'UTRs, we established a complex nonlinear relationship between the length of the outmost monomer and the overall promoter activity. CONCLUSIONS The laboratory mouse is an important mammalian model system for human diseases as well as L1 biology. Our study extends previous findings and represents an important step toward a better understanding of the molecular mechanism controlling mouse L1 transcription as well as L1's impact on development and disease.
Collapse
Affiliation(s)
- Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Yuchi Hu
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Jada N Tschetter
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Chase E Habben
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Leanne S Whitmore
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Changfeng Yao
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xijin Ge
- Department of Mathematics & Statistics, South Dakota State University, Brookings, SD, 57007, USA
| | - Ping Ye
- Department of Pharmacy Practice, South Dakota State University, Brookings, SD, 57007, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
19
|
Kaur D, Agrahari M, Bhattacharya A, Bhattacharya S. The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology. Mol Genet Genomics 2022; 297:1-18. [PMID: 34999963 DOI: 10.1007/s00438-021-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
Genome sequence analysis of Entamoeba species revealed various classes of transposable elements. While E. histolytica and E. dispar are rich in non-long terminal repeat (LTR) retrotransposons, E. invadens contains predominantly DNA transposons. Non-LTR retrotransposons of E. histolytica constitute three families of long interspersed nuclear elements (LINEs), and their short, nonautonomous partners, SINEs. They occupy ~ 11% of the genome. The EhLINE1/EhSINE1 family is the most abundant and best studied. EhLINE1 is 4.8 kb, with two ORFs that encode functions needed for retrotransposition. ORF1 codes for the nucleic acid-binding protein, and ORF2 has domains for reverse transcriptase (RT) and endonuclease (EN). Most copies of EhLINEs lack complete ORFs. ORF1p is expressed constitutively, but ORF2p is not detected. Retrotransposition could be demonstrated upon ectopic over expression of ORF2p, showing that retrotransposition machinery is functional. The newly retrotransposed sequences showed a high degree of recombination. In transcriptomic analysis, RNA-Seq reads were mapped to individual EhLINE1 copies. Although full-length copies were transcribed, no full-length 4.8 kb transcripts were seen. Rather, sense transcripts mapped to ORF1, RT and EN domains. Intriguingly, there was strong antisense transcription almost exclusively from the RT domain. These unique features of EhLINE1 could serve to attenuate retrotransposition in E. histolytica.
Collapse
|
20
|
Ramirez P, Zuniga G, Sun W, Beckmann A, Ochoa E, DeVos SL, Hyman B, Chiu G, Roy ER, Cao W, Orr M, Buggia-Prevot V, Ray WJ, Frost B. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog Neurobiol 2022; 208:102181. [PMID: 34670118 PMCID: PMC8712387 DOI: 10.1016/j.pneurobio.2021.102181] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Transposable elements comprise almost half of the mammalian genome. A growing body of evidence suggests that transposable element dysregulation accompanies brain aging and neurodegenerative disorders, and that transposable element activation is neurotoxic. Recent studies have identified links between pathogenic forms of tau, a protein that accumulates in Alzheimer's disease and related "tauopathies," and transposable element-induced neurotoxicity. Starting with transcriptomic analyses, we find that age- and tau-induced transposable element activation occurs in the mouse brain. Among transposable elements that are activated at the RNA level in the context of brain aging and tauopathy, we find that the endogenous retrovirus (ERV) class of retrotransposons is particularly enriched. We show that protein encoded by Intracisternal A-particle, a highly active mouse ERV, is elevated in brains of tau transgenic mice. Using two complementary approaches, we find that brains of tau transgenic mice contain increased DNA copy number of transposable elements, raising the possibility that these elements actively retrotranspose in the context of tauopathy. Taken together, our study lays the groundwork for future mechanistic studies focused on transposable element regulation in the aging mouse brain and in mouse models of tauopathy and provides support for ongoing therapeutic efforts targeting transposable element activation in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Wenyan Sun
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Adrian Beckmann
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Elizabeth Ochoa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Sarah L. DeVos
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Bradley Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Gabriel Chiu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Ethan R. Roy
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Wei Cao
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Miranda Orr
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC,WG Hefner VA Medical Center, Salisbury, NC
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas,Corresponding Author and Lead Contact: Bess Frost, Ph.D., Associate Professor, 4939 Charles Katz, Barshop Institute, rm 1041, University of Texas Health San Antonio, San Antonio, TX 78229, Phone: 210-562-5037,
| |
Collapse
|
21
|
Chuang NT, Gardner EJ, Terry DM, Crabtree J, Mahurkar AA, Rivell GL, Hong CC, Perry JA, Devine SE. Mutagenesis of human genomes by endogenous mobile elements on a population scale. Genome Res 2021; 31:2225-2235. [PMID: 34772701 PMCID: PMC8647825 DOI: 10.1101/gr.275323.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Several large-scale Illumina whole-genome sequencing (WGS) and whole-exome sequencing (WES) projects have emerged recently that have provided exceptional opportunities to discover mobile element insertions (MEIs) and study the impact of these MEIs on human genomes. However, these projects also have presented major challenges with respect to the scalability and computational costs associated with performing MEI discovery on tens or even hundreds of thousands of samples. To meet these challenges, we have developed a more efficient and scalable version of our mobile element locator tool (MELT) called CloudMELT. We then used MELT and CloudMELT to perform MEI discovery in 57,919 human genomes and exomes, leading to the discovery of 104,350 nonredundant MEIs. We leveraged this collection (1) to examine potentially active L1 source elements that drive the mobilization of new Alu, L1, and SVA MEIs in humans; (2) to examine the population distributions and subfamilies of these MEIs; and (3) to examine the mutagenesis of GENCODE genes, ENCODE-annotated features, and disease genes by these MEIs. Our study provides new insights on the L1 source elements that drive MEI mutagenesis and brings forth a better understanding of how this mutagenesis impacts human genomes.
Collapse
Affiliation(s)
- Nelson T Chuang
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Eugene J Gardner
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Diane M Terry
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Anup A Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Guillermo L Rivell
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Scott E Devine
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
22
|
Ramos KS, Bojang P, Bowers E. Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood) 2021; 246:2082-2097. [PMID: 34304633 PMCID: PMC8524765 DOI: 10.1177/15353702211031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
LINE-1 retrotransposon, the most active mobile element of the human genome, is subject to tight regulatory control. Stressful environments and disease modify the recruitment of regulatory proteins leading to unregulated activation of LINE-1. The activation of LINE-1 influences genome dynamics through altered chromatin landscapes, insertion mutations, deletions, and modulation of cellular plasticity. To date, LINE-1 retrotransposition has been linked to various cancer types and may in fact underwrite the genetic basis of various other forms of chronic human illness. The occurrence of LINE-1 polymorphisms in the human population may define inter-individual differences in susceptibility to disease. This review is written in honor of Dr Peter Stambrook, a friend and colleague who carried out highly impactful cancer research over many years of professional practice. Dr Stambrook devoted considerable energy to helping others live up to their full potential and to navigate the complexities of professional life. He was an inspirational leader, a strong advocate, a kind mentor, a vocal supporter and cheerleader, and yes, a hard critic and tough friend when needed. His passionate stand on issues, his witty sense of humor, and his love for humanity have left a huge mark in our lives. We hope that that the knowledge summarized here will advance our understanding of the role of LINE-1 in cancer biology and expedite the development of innovative cancer diagnostics and treatments in the ways that Dr Stambrook himself had so passionately envisioned.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| | - Pasano Bojang
- University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Emma Bowers
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
23
|
Pinter TBJ, Ruckthong L, Stuckey JA, Deb A, Penner-Hahn JE, Pecoraro VL. Open Reading Frame 1 Protein of the Human Long Interspersed Nuclear Element 1 Retrotransposon Binds Multiple Equivalents of Lead. J Am Chem Soc 2021; 143:15271-15278. [PMID: 34494819 PMCID: PMC11069406 DOI: 10.1021/jacs.1c06461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human long interspersed nuclear element 1 (LINE1) has been implicated in numerous diseases and has been suggested to play a significant role in genetic evolution. Open reading frame 1 protein (ORF1p) is one of the two proteins encoded in this self-replicating mobile genetic element, both of which are essential for retrotransposition. The structure of the three-stranded coiled-coil domain of ORF1p was recently solved and showed the presence of tris-cysteine layers in the interior of the coiled-coil that could function as metal binding sites. Here, we demonstrate that ORF1p binds Pb(II). We designed a model peptide, GRCSL16CL23C, to mimic two of the ORF1p Cys3 layers and crystallized the peptide both as the apo-form and in the presence of Pb(II). Structural comparison of the ORF1p with apo-(GRCSL16CL23C)3 shows very similar Cys3 layers, preorganized for Pb(II) binding. We propose that exposure to heavy metals, such as lead, could influence directly the structural parameters of ORF1p and thus impact the overall LINE1 retrotransposition frequency, directly relating heavy metal exposure to genetic modification.
Collapse
Affiliation(s)
- Tyler B. J. Pinter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Leela Ruckthong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Jeanne A. Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, 48109, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - James E. Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
24
|
Frassinelli L, Orecchini E, Al-Wardat S, Tripodi M, Mancone C, Doria M, Galardi S, Ciafrè SA, Michienzi A. The RNA editing enzyme ADAR2 restricts L1 mobility. RNA Biol 2021; 18:75-87. [PMID: 34224323 PMCID: PMC8677026 DOI: 10.1080/15476286.2021.1940020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosines to inosines in double-stranded RNAs (RNA editing A-to-I). ADAR1 and ADAR2 were previously reported as HIV-1 proviral factors. The aim of this study was to investigate the composition of the ADAR2 ribonucleoprotein complex during HIV-1 expression. By using a dual-tag affinity purification procedure in cells expressing HIV-1 followed by mass spectrometry analysis, we identified 10 non-ribosomal ADAR2-interacting factors. A significant fraction of these proteins was previously found associated to the Long INterspersed Element 1 (LINE1 or L1) ribonucleoparticles and to regulate the life cycle of L1 retrotransposons. Considering that we previously demonstrated that ADAR1 is an inhibitor of LINE-1 retrotransposon activity, we investigated whether also ADAR2 played a similar function. To reach this goal, we performed specific cell culture retrotransposition assays in cells overexpressing or ablated for ADAR2. These experiments unveil a novel function of ADAR2 as suppressor of L1 retrotransposition. Furthermore, we showed that ADAR2 binds the basal L1 RNP complex. Overall, these data support the role of ADAR2 as regulator of L1 life cycle.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Sofian Al-Wardat
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Margherita Doria
- Unit of Primary Immunodeficiency, Bambino Gesu` Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
25
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
26
|
Burns KH. Our Conflict with Transposable Elements and Its Implications for Human Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:51-70. [PMID: 31977294 DOI: 10.1146/annurev-pathmechdis-012419-032633] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our genome is a historic record of successive invasions of mobile genetic elements. Like other eukaryotes, we have evolved mechanisms to limit their propagation and minimize the functional impact of new insertions. Although these mechanisms are vitally important, they are imperfect, and a handful of retroelement families remain active in modern humans. This review introduces the intrinsic functions of transposons, the tactics employed in their restraint, and the relevance of this conflict to human pathology. The most straightforward examples of disease-causing transposable elements are germline insertions that disrupt a gene and result in a monogenic disease allele. More enigmatic are the abnormal patterns of transposable element expression in disease states. Changes in transposon regulation and cellular responses to their expression have implicated these sequences in diseases as diverse as cancer, autoimmunity, and neurodegeneration. Distinguishing their epiphenomenal from their pathogenic effects may provide wholly new perspectives on our understanding of disease.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
27
|
|
28
|
Saleh A, Macia A, Muotri AR. Transposable Elements, Inflammation, and Neurological Disease. Front Neurol 2019; 10:894. [PMID: 31481926 PMCID: PMC6710400 DOI: 10.3389/fneur.2019.00894] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transposable Elements (TE) are mobile DNA elements that can replicate and insert themselves into different locations within the host genome. Their propensity to self-propagate has a myriad of consequences and yet their biological significance is not well-understood. Indeed, retrotransposons have evaded evolutionary attempts at repression and may contribute to somatic mosaicism. Retrotransposons are emerging as potent regulatory elements within the human genome. In the diseased state, there is mounting evidence that endogenous retroelements play a role in etiopathogenesis of inflammatory diseases, with a disposition for both autoimmune and neurological disorders. We postulate that active mobile genetic elements contribute more to human disease pathogenesis than previously thought.
Collapse
Affiliation(s)
- Aurian Saleh
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Angela Macia
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Alysson R Muotri
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Roberson PA, Romero MA, Osburn SC, Mumford PW, Vann CG, Fox CD, McCullough DJ, Brown MD, Roberts MD. Skeletal muscle LINE-1 ORF1 mRNA is higher in older humans but decreases with endurance exercise and is negatively associated with higher physical activity. J Appl Physiol (1985) 2019; 127:895-904. [PMID: 31369326 DOI: 10.1152/japplphysiol.00352.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The long interspersed nuclear element-1 (L1) is a retrotransposon that constitutes 17% of the human genome and is associated with various diseases and aging. Estimates suggest that ~100 L1 copies are capable of copying and pasting into other regions of the genome. Herein, we examined if skeletal muscle L1 markers are affected by aging or an acute bout of cycling exercise in humans. Apparently healthy younger (23 ± 3 y, n = 15) and older participants (58 ± 8 y, n = 15) donated a vastus lateralis biopsy before 1 h of cycling exercise (PRE) at ~70% of heart rate reserve. Second (2 h) and third (8 h) postexercise muscle biopsies were also obtained. L1 DNA and mRNA expression were quantified using three primer sets [5' untranslated region (UTR), L1.3, and ORF1]. 5'UTR and L1.3 DNA methylation as well as ORF1 protein expression were also quantified. PRE 5'UTR, ORF1, or L1.3 DNA were not different between age groups (P > 0.05). ORF1 mRNA was greater in older versus younger participants (P = 0.014), and cycling lowered this marker at 2 h versus PRE (P = 0.027). 5'UTR and L1.3 DNA methylation were higher in younger versus older participants (P < 0.05). Accelerometry data collected during a 2-wk period before the exercise bout indicated higher moderate-to-vigorous physical activity (MVPA) levels per day was associated with lower PRE ORF1 mRNA in all participants (r = -0.398, P = 0.032). In summary, skeletal muscle ORF1 mRNA is higher in older apparently healthy humans, which may be related to lower DNA methylation patterns. ORF1 mRNA is also reduced with endurance exercise and is negatively associated with higher daily MVPA levels.NEW & NOTEWORTHY The long interspersed nuclear element-1 (L1) gene is highly abundant in the genome and encodes for an autonomous retrotransposon, which is capable of copying and pasting itself into other portions of the genome. This is the first study in humans to demonstrate that certain aspects of skeletal muscle L1 activity are altered with aging. Additionally, this is the first study in humans to demonstrate that L1 ORF1 mRNA levels decrease after a bout of endurance exercise, regardless of age.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Danielle J McCullough
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| |
Collapse
|
30
|
Freeman BT, Sokolowski M, Roy-Engel AM, Smither ME, Belancio VP. Identification of charged amino acids required for nuclear localization of human L1 ORF1 protein. Mob DNA 2019; 10:20. [PMID: 31080522 PMCID: PMC6501352 DOI: 10.1186/s13100-019-0159-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Background Long Interspersed Element 1 (LINE-1) is a retrotransposon that is present in 500,000 copies in the human genome. Along with Alu and SVA elements, these three retrotransposons account for more than a third of the human genome sequence. These mobile elements are able to copy themselves within the genome via an RNA intermediate, a process that can promote genome instability. LINE-1 encodes two proteins, ORF1p and ORF2p. Association of ORF1p, ORF2p and a full-length L1 mRNA in a ribonucleoprotein (RNP) particle, L1 RNP, is required for L1 retrotransposition. Previous studies have suggested that fusion of a tag to L1 proteins can interfere with L1 retrotransposition. Results Using antibodies detecting untagged human ORF1p, western blot analysis and manipulation of ORF1 sequence and length, we have identified a set of charged amino acids in the C-terminal region of ORF1p that are important in determining its subcellular localization. Mutation of 7 non-identical lysine residues is sufficient to make the resulting ORF1p to be predominantly cytoplasmic, demonstrating intrinsic redundancy of this requirement. These residues are also necessary for ORF1p to retain its association with KPNA2 nuclear pore protein. We demonstrate that this interaction is significantly reduced by RNase treatment. Using co-IP, we have also determined that human ORF1p associates with all members of the KPNA subfamily. Conclusions The prediction of NLS sequences suggested that specific sequences within ORF1p could be responsible for its subcellular localization by interacting with nuclear binding proteins. We have found that multiple charged amino acids in the C-terminus of ORF1p are involved in ORF1 subcellular localization and interaction with KPNA2 nuclear pore protein. Our data demonstrate that different amino acids can be mutated to have the same phenotypic effect on ORF1p subcellular localization, demonstrating that the net number of charged residues or protein structure, rather than their specific location, is important for the ORF1p nuclear localization. We also identified that human ORF1p interacts with all members of the KPNA family of proteins and that multiple KPNA family genes are expressed in human cell lines. Electronic supplementary material The online version of this article (10.1186/s13100-019-0159-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B T Freeman
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - M Sokolowski
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - A M Roy-Engel
- 2Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, Tulane University, New Orleans, Louisiana 70112 USA
| | - M E Smither
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - V P Belancio
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
31
|
Transposable Elements: Classification, Identification, and Their Use As a Tool For Comparative Genomics. Methods Mol Biol 2019; 1910:177-207. [PMID: 31278665 DOI: 10.1007/978-1-4939-9074-0_6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most genomes are populated by hundreds of thousands of sequences originated from mobile elements. On the one hand, these sequences present a real challenge in the process of genome analysis and annotation. On the other hand, they are very interesting biological subjects involved in many cellular processes. Here we present an overview of transposable elements biodiversity, and we discuss different approaches to transposable elements detection and analyses.
Collapse
|
32
|
Pereira GC, Sanchez L, Schaughency PM, Rubio-Roldán A, Choi JA, Planet E, Batra R, Turelli P, Trono D, Ostrow LW, Ravits J, Kazazian HH, Wheelan SJ, Heras SR, Mayer J, García-Pérez JL, Goodier JL. Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 2018; 9:35. [PMID: 30564290 PMCID: PMC6295051 DOI: 10.1186/s13100-018-0138-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving loss of motor neurons and having no known cure and uncertain etiology. Several studies have drawn connections between altered retrotransposon expression and ALS. Certain features of the LINE-1 (L1) retrotransposon-encoded ORF1 protein (ORF1p) are analogous to those of neurodegeneration-associated RNA-binding proteins, including formation of cytoplasmic aggregates. In this study we explore these features and consider possible links between L1 expression and ALS. RESULTS We first considered factors that modulate aggregation and subcellular distribution of LINE-1 ORF1p, including nuclear localization. Changes to some ORF1p amino acid residues alter both retrotransposition efficiency and protein aggregation dynamics, and we found that one such polymorphism is present in endogenous L1s abundant in the human genome. We failed, however, to identify CRM1-mediated nuclear export signals in ORF1p nor strict involvement of cell cycle in endogenous ORF1p nuclear localization in human 2102Ep germline teratocarcinoma cells. Some proteins linked with ALS bind and colocalize with L1 ORF1p ribonucleoprotein particles in cytoplasmic RNA granules. Increased expression of several ALS-associated proteins, including TAR DNA Binding Protein (TDP-43), strongly limits cell culture retrotransposition, while some disease-related mutations modify these effects. Using quantitative reverse transcription PCR (RT-qPCR) of ALS tissues and reanalysis of publicly available RNA-Seq datasets, we asked if changes in expression of retrotransposons are associated with ALS. We found minimal altered expression in sporadic ALS tissues but confirmed a previous report of differential expression of many repeat subfamilies in C9orf72 gene-mutated ALS patients. CONCLUSIONS Here we extended understanding of the subcellular localization dynamics of the aggregation-prone LINE-1 ORF1p RNA-binding protein. However, we failed to find compelling evidence for misregulation of LINE-1 retrotransposons in sporadic ALS nor a clear effect of ALS-associated TDP-43 protein on L1 expression. In sum, our study reveals that the interplay of active retrotransposons and the molecular features of ALS are more complex than anticipated. Thus, the potential consequences of altered retrotransposon activity for ALS and other neurodegenerative disorders are worthy of continued investigation.
Collapse
Affiliation(s)
- Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Paul M. Schaughency
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Alejandro Rubio-Roldán
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Jungbin A. Choi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ranjan Batra
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyle W. Ostrow
- Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Haig H. Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sarah J. Wheelan
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sara R. Heras
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jens Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
33
|
Transposons, p53 and Genome Security. Trends Genet 2018; 34:846-855. [PMID: 30195581 DOI: 10.1016/j.tig.2018.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
p53, the most commonly mutated tumor suppressor, is a transcription factor known to regulate proliferation, senescence, and apoptosis. Compelling studies have found that p53 may prevent oncogenesis through effectors that are unrelated to these canonical processes and recent findings have uncovered ancient roles for p53 in the containment of mobile elements. Together, these developments raise the possibility that some p53-driven cancers could result from unrestrained transposons. Here, we explore evidence linking conserved features of p53 biology to the control of transposons. We also show how p53-deficient cells can be exploited to probe the behavior of transposons and illustrate how unrestrained transposons incited by p53 loss might contribute to human malignancies.
Collapse
|
34
|
Rajagopalan M, Balasubramanian S, Ramaswamy A. Insights into the RNA binding mechanism of human L1-ORF1p: a molecular dynamics study. MOLECULAR BIOSYSTEMS 2018; 13:1728-1743. [PMID: 28714502 DOI: 10.1039/c7mb00358g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recognition and binding of nucleic acids by ORF1p, an L1 retrotransposon protein, have not yet been clearly understood due to the lack of structural knowledge. The present study attempts to identify the probable single-stranded RNA binding pathway of trimeric ORF1p using computational methods like ligand mapping methodology combined with molecular dynamics simulations. Using the ligand mapping methodology, the possible RNA interacting sites on the surface of the trimeric ORF1p were identified. The crystal structure of the ORF1p timer and an RNA molecule of 29 nucleotide bases in length were used to generate the structure of the ORF1p complex based on information on predicted binding sites as well as the functional states of the CTD. The various complexes of ORF1p-RNA were generated using polyU, polyA and L1RNA sequences and were simulated for a period of 75 ns. The observed stable interaction pattern was used to propose the possible binding pathway. Based on the binding free energy for complex formation, both polyU and L1RNA complexes were identified as stable complexes, while the complex formed with polyA was the least stable one. Furthermore, the importance of the residues in the CC domain (Lys137 and Arg141), the RRM loop (Arg206, Arg210 and Arg211) and the CTD (Arg 261 and Arg262) of all three chains in stabilizing the wrapped RNA has been highlighted in this study. The presence of several electrostatic interactions including H-bond interactions increases the affinity towards RNA and hence plays a vital role in retaining the wrapped position of RNA around ORF1p. Altogether, this study presents one of the possible RNA binding pathways of ORF1p and clearly highlights the functional state of ORF1p visited during RNA binding.
Collapse
Affiliation(s)
- Muthukumaran Rajagopalan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | | | | |
Collapse
|
35
|
Naufer MN, Furano AV, Williams MC. Protein-nucleic acid interactions of LINE-1 ORF1p. Semin Cell Dev Biol 2018; 86:140-149. [PMID: 29596909 PMCID: PMC6428221 DOI: 10.1016/j.semcdb.2018.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 11/03/2022]
Abstract
Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Anthony V Furano
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Spliced integrated retrotransposed element (SpIRE) formation in the human genome. PLoS Biol 2018; 16:e2003067. [PMID: 29505568 PMCID: PMC5860796 DOI: 10.1371/journal.pbio.2003067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 03/20/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5′ untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5′UTR or 5′UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5′UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5′UTR and 5′UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5′UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5′UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary “dead-ends” in the L1 retrotransposition process, mutations within the L1 5′UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation. Long interspersed element-1 (L1) sequences comprise about 17% of the human genome reference sequence. The average human genome contains about 100 active L1s that mobilize throughout the genome by a “copy and paste” process termed retrotransposition. Active L1s encode two proteins (ORF1p and ORF2p). ORF1p and ORF2p preferentially bind to their encoding RNA, forming a ribonucleoprotein particle (RNP). During retrotransposition, the L1 RNP translocates to the nucleus, where the ORF2p endonuclease makes a single-strand nick in target site DNA that exposes a 3′ hydroxyl group in genomic DNA. The 3′ hydroxyl group then is used as a primer by the ORF2p reverse transcriptase to copy the L1 RNA into cDNA, leading to the integration of an L1 copy at a new genomic location. The evolutionary success of L1 requires the faithful retrotransposition of full-length L1 mRNAs; thus, it was surprising to find that a small number of L1 retrotransposition events are derived from spliced L1 mRNAs. By using genetic, biochemical, and computational approaches, we demonstrate that spliced L1 mRNAs can undergo an initial round of retrotransposition, leading to the generation of spliced integrated retrotransposed elements (SpIREs). SpIREs represent about 2% of previously annotated full-length primate-specific L1s in the human genome reference sequence. However, because splicing leads to intra-L1 deletions that remove critical sequences required for L1 expression, SpIREs generally cannot undergo subsequent rounds of retrotransposition and can be considered “dead on arrival” insertions. Our data further highlight how genetic conflict between L1 and its host has influenced L1 expression, L1 retrotransposition, and L1 splicing dynamics over evolutionary time.
Collapse
|
37
|
MacLennan M, García-Cañadas M, Reichmann J, Khazina E, Wagner G, Playfoot CJ, Salvador-Palomeque C, Mann AR, Peressini P, Sanchez L, Dobie K, Read D, Hung CC, Eskeland R, Meehan RR, Weichenrieder O, García-Pérez JL, Adams IR. Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. eLife 2017; 6:e26152. [PMID: 28806172 PMCID: PMC5570191 DOI: 10.7554/elife.26152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.
Collapse
Affiliation(s)
- Marie MacLennan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Marta García-Cañadas
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Judith Reichmann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Elena Khazina
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Gabriele Wagner
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Christopher J Playfoot
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Carmen Salvador-Palomeque
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Abigail R Mann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Paula Peressini
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Laura Sanchez
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Karen Dobie
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - David Read
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Chao-Chun Hung
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Ragnhild Eskeland
- Department of
Biosciences, University of Oslo,
Oslo,
Norway
- Norwegian Center for
Stem Cell Research, Department of Immunology, Oslo
University Hospital, Oslo, Norway
| | - Richard R Meehan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Oliver Weichenrieder
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Jose Luis García-Pérez
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Ian R Adams
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| |
Collapse
|
38
|
Chen S, Yu M, Chu X, Li W, Yin X, Chen L. Cold-induced retrotransposition of fish LINEs. J Genet Genomics 2017; 44:385-394. [PMID: 28869113 DOI: 10.1016/j.jgg.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
Abstract
Classes of retrotransposons constitute a large portion of metazoan genome. There have been cases reported that genomic abundance of retrotransposons is correlated with the severity of low environmental temperatures. However, the molecular mechanisms underlying such correlation are unknown. We show here by cell transfection assays that retrotransposition (RTP) of a long interspersed nuclear element (LINE) from an Antarctic notothenioid fish Dissostichus mawsoni (dmL1) could be activated by low temperature exposure, causing increased dmL1 copies in the host cell genome. The cold-induced dmL1 propagation was demonstrated to be mediated by the mitogen-activated protein kinases (MAPK)/p38 signaling pathway, which is activated by accumulation of reactive oxygen species (ROS) in cold-stressed conditions. Surprisingly, dmL1 transfected cells showed an increase in the number of viable cells after prolonged cold exposures than non-transfected cells. Features of cold inducibility of dmL1 were recapitulated in LINEs of zebrafish origin both in cultured cell lines and tissues, suggesting existence of a common cold-induced LINE amplification in fishes. The findings reveal an important function of LINEs in temperature adaptation and provid insights into the MAPK/p38 stress responsive pathway that shapes LINE composition in fishes facing cold stresses.
Collapse
Affiliation(s)
- Shue Chen
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengchao Yu
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xu Chu
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Wenhao Li
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xiujuan Yin
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
39
|
Horn AV, Celic I, Dong C, Martirosyan I, Han JS. A conserved role for the ESCRT membrane budding complex in LINE retrotransposition. PLoS Genet 2017; 13:e1006837. [PMID: 28586350 PMCID: PMC5478143 DOI: 10.1371/journal.pgen.1006837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/20/2017] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Long interspersed nuclear element-1s (LINE-1s, or L1s) are an active family of retrotransposable elements that continue to mutate mammalian genomes. Despite the large contribution of L1 to mammalian genome evolution, we do not know where active L1 particles (particles in the process of retrotransposition) are located in the cell, or how they move towards the nucleus, the site of L1 reverse transcription. Using a yeast model of LINE retrotransposition, we identified ESCRT (endosomal sorting complex required for transport) as a critical complex for LINE retrotransposition, and verified that this interaction is conserved for human L1. ESCRT interacts with L1 via a late domain motif, and this interaction facilitates L1 replication. Loss of the L1/ESCRT interaction does not impair RNP formation or enzymatic activity, but leads to loss of retrotransposition and reduced L1 endonuclease activity in the nucleus. This study highlights the importance of the ESCRT complex in the L1 life cycle and suggests an unusual mode for L1 RNP trafficking. Long interspersed nuclear elements (LINEs) are a class of retrotransposable elements that mutate mammalian genomes. LINEs have been highly successful in the human genome, multiplying to over 800,000 copies. The LINE-encoded replication machinery is also used by other retrotransposons, and in total, has been responsible for the generation of over 1/3 of human DNA sequence. To replicate, a LINE mRNA forms a ribonucleoprotein particle (RNP) with its proteins. This RNP eventually enters the nucleus to integrate a cDNA copy of itself into chromosomes. The events between RNP formation and successful integration are difficult to study and largely unknown. Here we show that the ESCRT complex plays a conserved role in LINE retrotransposition in both yeast and humans. ESCRT is a membrane budding complex involved in cellular trafficking and membrane budding/fusion. Our results imply that membranes play an integral part of LINE replication, and ESCRT may be required for RNP trafficking towards the nucleus.
Collapse
Affiliation(s)
- Axel V. Horn
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States of America
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States of America
| | - Ivana Celic
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Chun Dong
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States of America
| | - Irena Martirosyan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States of America
| | - Jeffrey S. Han
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States of America
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
40
|
Ardeljan D, Taylor MS, Ting DT, Burns KH. The Human Long Interspersed Element-1 Retrotransposon: An Emerging Biomarker of Neoplasia. Clin Chem 2017; 63:816-822. [PMID: 28188229 DOI: 10.1373/clinchem.2016.257444] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND A large portion of intronic and intergenic space in our genome consists of repeated sequences. One of the most prevalent is the long interspersed element-1 (LINE-1, L1) mobile DNA. LINE-1 is rightly receiving increasing interest as a cancer biomarker. CONTENT Intact LINE-1 elements are self-propagating. They code for RNA and proteins that function to make more copies of the genomic element. Our current understanding is that this process is repressed in most normal cells, but that LINE-1 expression is a hallmark of many types of malignancy. Here, we will consider features of cancer cells when cellular defense mechanisms repressing LINE-1 go awry. We will review evidence that genomic LINE-1 methylation, LINE-1-encoded RNAs, and LINE-1 ORF1p (open reading frame 1 protein) may be useful in cancer diagnosis. SUMMARY The repetitive and variable nature of LINE-1 DNA sequences poses unique challenges to studying them, but recent advances in reagents and next generation sequencing present opportunities to characterize LINE-1 expression and activity in cancers and to identify clinical applications.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick-Nathans Institute of Genetic Medicine (IGM) and.,Medical Scientist Training Program (MSTP), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - David T Ting
- Department of Medicine and the Massachusetts General Hospital Cancer Center, Boston, MA
| | - Kathleen H Burns
- McKusick-Nathans Institute of Genetic Medicine (IGM) and .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
41
|
Involvement of Conserved Amino Acids in the C-Terminal Region of LINE-1 ORF2p in Retrotransposition. Genetics 2017; 205:1139-1149. [PMID: 28100588 DOI: 10.1534/genetics.116.191403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/10/2016] [Indexed: 01/09/2023] Open
Abstract
Long interspersed element 1 (L1) is the only currently active autonomous retroelement in the human genome. Along with the parasitic SVA and short interspersed element Alu, L1 is the source of DNA damage induced by retrotransposition: a copy-and-paste process that has the potential to disrupt gene function and cause human disease. The retrotransposition process is dependent upon the ORF2 protein (ORF2p). However, it is unknown whether most of the protein is important for retrotransposition. In particular, other than the Cys motif, the C terminus of the protein has not been intensely examined in the context of retrotransposition. Using evolutionary analysis and the Alu retrotransposition assay, we sought to identify additional amino acids in the C terminus important for retrotransposition. Here, we demonstrate that Gal4-tagged and untagged C-terminally truncated ORF2p fragments possess residual potential to drive Alu retrotransposition. Using sight-directed mutagenesis we identify that while the Y1180 amino acid is important for ORF2p- and L1-driven Alu retrotransposition, a mutation at this position improves L1 retrotransposition. Even though the mechanism of the contribution of Y1180 to Alu and L1 mobilization remains unknown, experimental evidence rules out its direct involvement in the ability of the ORF2p reverse transcriptase to generate complementary DNA. Additionally, our data support that ORF2p amino acids 1180 and 1250-1262 may be involved in the reported ORF1p-mediated increase in ORF2p-driven Alu retrotransposition.
Collapse
|
42
|
Functionally conserved RNA-binding and protein-protein interaction properties of LINE-ORF1p in an ancient clade of non-LTR retrotransposons of Entamoeba histolytica. Mol Biochem Parasitol 2017; 211:84-93. [DOI: 10.1016/j.molbiopara.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 11/23/2022]
|
43
|
Farré D, Engel P, Angulo A. Novel Role of 3'UTR-Embedded Alu Elements as Facilitators of Processed Pseudogene Genesis and Host Gene Capture by Viral Genomes. PLoS One 2016; 11:e0169196. [PMID: 28033411 PMCID: PMC5199112 DOI: 10.1371/journal.pone.0169196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- * E-mail:
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
44
|
Muthukumaran R, Sangeetha B, Amutha R. Conformational analysis on the wild type and mutated forms of human ORF1p: a molecular dynamics study. MOLECULAR BIOSYSTEMS 2016; 11:1987-99. [PMID: 25953691 DOI: 10.1039/c5mb00194c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protein ORF1p, encoded by the LINE-1 retrotransposon, is responsible for the packaging and transposition of its RNA transcript and is reported to be involved in various genetic disorders. The three domains of ORF1p co-ordinate together to facilitate the transposition, and the mechanism of nucleic acid binding is not yet clear. The C-terminal domain of ORF1p adopts a lifted, twisted or rested state, which is regulated by several inter- and intra-domain interactions that are explored in this study. The residues, Glu147, Asp151, Lys154, Arg261 and Tyr282, are majorly involved in mediating the functional dynamics of ORF1p by forming H-bonds and π-interactions. The importance of these residues was elucidated by performing molecular dynamics simulations on both native as well as mutated ORF1p. The Q147A-D151A-K154A mutant expressed unique dynamics featuring the lifting motion of the CTD core alone, while the R261A mutant resulted in the oscillatory motion of CTD. In both cases, the CTDs were held in place by Tyr282 and in its absence, the structural stability of CTDs in the trimeric unit was significantly affected. Additional interactions responsible for stabilizing the trimeric ORF1p to express its native dynamics were extracted in this study. The central role of Tyr282 in maintaining the functional state of ORF1p to facilitate nucleic acid binding and formation of ribonucleoprotein complex is well highlighted. The knowledge gained from this study forms the basis for understanding the nucleic acid binding mechanism of ORF1p, which could further provide additional support in exploring various genetic disorders.
Collapse
Affiliation(s)
- Rajagopalan Muthukumaran
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry-605014, India. /
| | | | | |
Collapse
|
45
|
Yang F, Wang PJ. Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 2016; 59:118-125. [PMID: 26957474 DOI: 10.1016/j.semcdb.2016.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023]
Abstract
Retrotransposons play an important role in genome evolution but pose acute challenges to host genome integrity, particularly in early stage germ cells where epigenetic control is relaxed to permit genome-wide reprogramming. In most species, the inability to silence retrotransposons in the germline is usually associated with sterility. LINE1 is the most abundant retrotransposon type in the mammalian genome. Mammalian germ cells employ multiple mechanisms to suppress retrotransposon activity, including small non-coding piRNAs, DNA methylation, and repressive histone modifications. Novel factors contributing to the epigenetic silencing of retrotransposons in the germline continue to be identified. Recent studies have provided insight into how epigenetic changes associated with retrotransposon activation impact on fertility.
Collapse
Affiliation(s)
- Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Lötsch J, Ultsch A. A computational functional genomics based self-limiting self-concentration mechanism of cell specialization as a biological role of jumping genes. Integr Biol (Camb) 2016; 8:91-103. [DOI: 10.1039/c5ib00203f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LINE-1 retrotransposition may result in silencing of genes. This is more likely with genes not carrying active LINE-1 as those are about 10 times more frequent in the given set of genes. Over time this leads to self-specialization of the cell toward processes associated with gene carrying active LINE-1, which then functionally prevail in the chronified situation.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology
- Goethe-University
- Theodor-Stern-Kai 7
- 60590 Frankfurt am Main
- Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg
- Hans-Meerwein-Straβe
- D-35032 Marburg
- Germany
| |
Collapse
|
47
|
Abstract
The LINE-1 retrotransposon (L1) encodes two proteins, ORF1p and ORF2p, which bind to the L1 RNA in cis, forming a ribonucleoprotein (RNP) complex that is critical for retrotransposition. Interactions with both permissive and repressive host factors pervade every step of the L1 life cycle. Until recently, limitations in detection and production precluded in-depth characterization of L1 RNPs. Inducible expression and recombinant engineering of epitope tags have made detection of both L1 ORFs routine. Here, we describe large-scale production of L1-expressing HEK-293T cells in suspension cell culture, cryomilling and affinity capture of L1 RNP complexes, sample preparation for analysis by mass spectrometry, and assay using the L1 element amplification protocol (LEAP) and qRT-PCR.
Collapse
|
48
|
Sharma R, Rodić N, Burns KH, Taylor MS. Immunodetection of Human LINE-1 Expression in Cultured Cells and Human Tissues. Methods Mol Biol 2016; 1400:261-80. [PMID: 26895059 DOI: 10.1007/978-1-4939-3372-3_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Long interspersed element-1 (LINE-1) is the only active protein-coding retrotransposon in humans. It is not expressed in somatic tissue but is aberrantly expressed in a wide variety of human cancers. ORF1p protein is the most robust indicator of LINE-1 expression; the protein accumulates in large quantities in cellular cytoplasm. Recently, monoclonal antibodies have allowed more complete characterizations of ORF1p expression and indicated potential for developing ORF1p as a clinical biomarker. Here, we describe a mouse monoclonal antibody specific for human LINE-1 ORF1p and its application in immunofluorescence and immunohistochemistry of both cells and human tissues. We also describe detection of tagged LINE-1 ORF2p via immunofluorescence. These general methods may be readily adapted to use with many other proteins and antibodies.
Collapse
Affiliation(s)
- Reema Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, MRB 469, Baltimore, MD, 21205, USA
| | - Nemanja Rodić
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, MRB 469, Baltimore, MD, 21205, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, MRB 469, Baltimore, MD, 21205, USA.
| | - Martin S Taylor
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, MRB 469, Baltimore, MD, 21205, USA. .,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
49
|
Lin S, Zhang L, Luo W, Zhang X. Characteristics of Antisense Transcript Promoters and the Regulation of Their Activity. Int J Mol Sci 2015; 17:E9. [PMID: 26703594 PMCID: PMC4730256 DOI: 10.3390/ijms17010009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of studies on natural antisense transcripts have been reported, especially regarding their classification, temporal and spatial expression patterns, regulatory functions and mechanisms. It is well established that natural antisense transcripts are produced from the strand opposite to the strand encoding a protein. Despite the pivotal roles of natural antisense transcripts in regulating the expression of target genes, the transcriptional mechanisms initiated by antisense promoters (ASPs) remain unknown. To date, nearly all of the studies conducted on this topic have focused on the ASP of a single gene of interest, whereas no study has systematically analyzed the locations of ASPs in the genome, ASP activity, or factors influencing this activity. This review focuses on elaborating on and summarizing the characteristics of ASPs to extend our knowledge about the mechanisms of antisense transcript initiation.
Collapse
Affiliation(s)
- Shudai Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
50
|
Kemp JR, Longworth MS. Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer. Front Chem 2015; 3:68. [PMID: 26734601 PMCID: PMC4679865 DOI: 10.3389/fchem.2015.00068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.
Collapse
Affiliation(s)
- Jacqueline R Kemp
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| | - Michelle S Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| |
Collapse
|