1
|
Mostafa HIA. Boolean Logic Gate Operation in Bacteriorhodopsin of Purple Membrane Based on a Molten Globule-like State. Chemphyschem 2024; 25:e202400672. [PMID: 39267598 DOI: 10.1002/cphc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Bacteriorhodopsin (bR) of purple membrane (PM) has increasing technical interests, particularly in photonic devices and bioelectronics. The present work has concerned with monitoring the temperature dependence of passive electric responses in-plane and out-of-plane of the membranes. Based on thermal properties observed orthogonally here for PM, a high-temperature intermediate of bR has been suggested to populate at around 60 °C, which may be ascribed to a molten globule-like state. This intermediate has been found to be enclosed between two reversible thermal transitions for PM. Large-scale turnover in the energy of activation, for these two thermal transitions, occurs steeply at such state at 60 °C, above which does bR reverse the sign of dielectric anisotropy (i. e. crossover) provided the operating frequency should be above the crossover frequency, at which the reversal occurs. No such crossover was found to occur below the crossover frequency, even above the crossover temperature (i. e. 60 °C). Likewise, no such crossover was found to occur below the crossover temperature, even above the crossover frequency. Relying on this reasoning, a logic gate operation may be declared implicating bR for bioelectronics and sense technological relevance. In addition, the results specify "dual frequency" as well as "dual temperature" characteristics to bacteriorhodopsin.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
2
|
Mostafa HIA, Elfiki AA. Bacteriorhodopsin of purple membrane reverses anisotropy outside the pH range of proton pumping based on logic gate realization. Sci Rep 2024; 14:29452. [PMID: 39604500 PMCID: PMC11603030 DOI: 10.1038/s41598-024-80512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The bacteriorhodopsin of purple membrane is the first discovered light-sensing protein among ion transporting microbial rhodopsins, some of which (e.g. Archaerhodopsin 3) could be broadly used as tools in optogenetics having wide potential of medical applications. Since its discovery as early as in 1971, bacteriorhodopsin has attracted wide interests in nano-biotechnology, particularly in optoelectronics devices. Therefore, the present work has been motivated due to two topics; firstly, anisotropy demand became indispensible in bioelectronics; secondly, the stationary level of electric response in bacteriorhodopsin within the pH range of proton pumping (pH 3 - pH 10) implies, in turn, raising here a question about whether the electric anisotropy is implicated for reducing (or switching off) such level beyond such pH range. Noteworthy is that the purple membrane converts to blue form upon acidification, while to reddish purple form upon alkalization. In the present study, the acidic and alkaline forms of bacteriorhodopsin have exhibited most probable state of reversal for the dielectric anisotropy around pH 2.5 and pH 10.5, respectively. This is underscored by proposing a correlation seemingly found between disassembly of the crystalline structure of bacteriorhodopsin and the reversal of dielectric anisotropy, at such acidic and alkaline reversal pH's, in terms of the essence of the crystalline lattice. Most importantly, the results have substantiated dual frequency characteristics and logic gate-based dielectric anisotropy reversal to bacteriorhodopsin, which may implicate it for potential applications in bioelectronics.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Abdo A Elfiki
- Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Nikolaev D, Mironov VN, Metelkina EM, Shtyrov AA, Mereshchenko AS, Demidov NA, Vyazmin SY, Tennikova TB, Moskalenko SE, Bondarev SA, Zhouravleva GA, Vasin AV, Panov MS, Ryazantsev MN. Rational Design of Far-Red Archaerhodopsin-3-Based Fluorescent Genetically Encoded Voltage Indicators: from Elucidation of the Fluorescence Mechanism in Archers to Novel Red-Shifted Variants. ACS PHYSICAL CHEMISTRY AU 2024; 4:347-362. [PMID: 39069984 PMCID: PMC11274289 DOI: 10.1021/acsphyschemau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 07/30/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) have found wide applications as molecular tools for visualization of changes in cell membrane potential. Among others, several classes of archaerhodopsin-3-based GEVIs have been developed and have proved themselves promising in various molecular imaging studies. To expand the application range for this type of GEVIs, new variants with absorption band maxima shifted toward the first biological window and enhanced fluorescence signal are required. Here, we integrate computational and experimental strategies to reveal structural factors that distinguish far-red bright archaerhodopsin-3-based GEVIs, Archers, obtained by directed evolution in a previous study (McIsaac et al., PNAS, 2014) and the wild-type archaerhodopsin-3 with an extremely dim fluorescence signal, aiming to use the obtained information in subsequent rational design. We found that the fluorescence can be enhanced by stabilization of a certain conformation of the protein, which, in turn, can be achieved by tuning the pK a value of two titratable residues. These findings were supported further by introducing mutations into wild-type archeorhodopsin-3 and detecting the enhancement of the fluorescence signal. Finally, we came up with a rational design and proposed previously unknown Archers variants with red-shifted absorption bands (λmax up to 640 nm) and potential-dependent bright fluorescence (quantum yield up to 0.97%).
Collapse
Affiliation(s)
- Dmitrii
M. Nikolaev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Vladimir N. Mironov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Ekaterina M. Metelkina
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey A. Shtyrov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey S. Mereshchenko
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Nikita A. Demidov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Sergey Yu. Vyazmin
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Tatiana B. Tennikova
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Svetlana E. Moskalenko
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Vavilov
Institute of General Genetics, St. Petersburg
Branch, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Stanislav A. Bondarev
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Galina A. Zhouravleva
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Andrey V. Vasin
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Maxim S. Panov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- St.
Petersburg State Chemical Pharmaceutical University, Professor Popov str., 14, lit. A, St. Petersburg 197022, Russia
| | - Mikhail N. Ryazantsev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| |
Collapse
|
4
|
Mostafa HIA. Exploring isotropic tendency for the blue membrane containing wild-type bacteriorhodopsin. Biophys Chem 2023; 300:107059. [PMID: 37343478 DOI: 10.1016/j.bpc.2023.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Bacteriorhodopsin of purple membrane has wide potential applications in bioelectronics and biophotonic nanodevices. Upon acidification, it turns blue and upon further acidification by HCl, it retains its purple color. The acid-induced structural changes might be correlated to its crystalline structure, which might be mediated by lipids of purple membrane. Therefore, the present study aims at revealing the acidic pH dependence of anisotropic properties of bacteriorhodopsin. The electric impedance has been measured for parallel- and perpendicular-oriented purple membrane, in addition to the randomly-oriented one in the acidic pH range. The results have showed that the electric anisotropy is proportional to the color transitions occurred at low pH with consistent pKa values. It has found that the bacteriorhodopsin, upon turning into blue form, tends to be isotropic within narrow pH region around 2.55, whereas it preserves its anisotropy in its purple form. It is noteworthy that several mutants of bacteriorhodopsin that resemble its blue form became attractive in technical applications such as real-time holographic interferometry and optical data storage. Accordingly, such isotropic tendency might implicate bacteriorhodopsin for further potential technical applications.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 11757 Giza, Egypt.
| |
Collapse
|
5
|
Mostafa HIA. Detection of bacteriorhodopsin trimeric rotation at thermal phase transitions of purple membrane in suspension. Biophys Chem 2023; 300:107074. [PMID: 37421867 DOI: 10.1016/j.bpc.2023.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Bacteriorhodopsin (bR) of purple membrane (PM) is a retinal protein that forms aggregates in the form of trimers constituting, together with archaeal lipids, the crystalline structure of PM. The rotary motion of bR inside PM may be pertinent in understanding the essence of the crystalline lattice. An attempt has been made to determine the rotation of bR trimers which has been found to be detected solely at thermal phase transitions of PM, namely lipid, crystalline lattice and protein melting phase transitions. The temperature dependences of dielectric versus electronic absorption spectra of bR have been determined. The results suggest that the rotation of bR trimers, together with concomitant bending of PM, are most likely brought by structural changes in bR which might be driven by retinal isomerization and mediated by lipid. The rupturing of the lipid-protein contact might consequently lead to rotation of trimers associated with bending, curling or vesicle formation of PM. So the retinal reorientation may underlie the concomitant rotation of trimers. Most importantly, rotation of trimers might play a role, in terms of the essence of the crystalline lattice, in the functional activity of bR and may serve physiological relevance.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 11757 Giza, Egypt.
| |
Collapse
|
6
|
Kouyama T, Ihara K. Existence of two substates in the O intermediate of the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183998. [PMID: 35753392 DOI: 10.1016/j.bbamem.2022.183998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The proton pumping cycle of bacteriorhodopsin (bR) is initiated when the retinal chromophore with the 13-trans configuration is photo-isomerized into the 13-cis configuration. To understand the recovery processes of the initial retinal configuration that occur in the late stage of the photocycle, we have performed a comprehensive analysis of absorption kinetics data collected at various pH levels and at different salt concentrations. The result of analysis revealed the following features of the late stages of the trans photocycle. i) Two substates occur in the O intermediate. ii) The visible absorption band of the first substate (O1) appears at a much shorter wavelength than that of the late substate (O2). iii) O1 is in rapid equilibrium with the preceding state (N), but O1 becomes less stable than N when an ionizable residue (X1) with a pKa value of 6.5 (in 2 M KCl) is deprotonated. iv) At a low pH and at a low salt concentration, the decay time constant of O2 is longer than those of the preceding states, but the relationship between these time constants is altered when the medium pH or the salt concentration is increased. On the basis of the present observations and previous studies on the structure of the chromophore in O, we suspect that the retinal chromophore in O1 takes on a distorted 13-cis configuration and the O1-to-O2 transition is accompanied by cis-to-trans isomerization about C13C14 bond.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
7
|
Besaw JE, Reichenwallner J, De Guzman P, Tucs A, Kuo A, Morizumi T, Tsuda K, Sljoka A, Miller RJD, Ernst OP. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway. Sci Rep 2022; 12:13955. [PMID: 35977989 PMCID: PMC9385722 DOI: 10.1038/s41598-022-17716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Within the microbial rhodopsin family, heliorhodopsins (HeRs) form a phylogenetically distinct group of light-harvesting retinal proteins with largely unknown functions. We have determined the 1.97 Å resolution X-ray crystal structure of Thermoplasmatales archaeon SG8-52-1 heliorhodopsin (TaHeR) in the presence of NaCl under acidic conditions (pH 4.5), which complements the known 2.4 Å TaHeR structure acquired at pH 8.0. The low pH structure revealed that the hydrophilic Schiff base cavity (SBC) accommodates a chloride anion to stabilize the protonated retinal Schiff base when its primary counterion (Glu-108) is neutralized. Comparison of the two structures at different pH revealed conformational changes connecting the SBC and the extracellular loop linking helices A-B. We corroborated this intramolecular signaling transduction pathway with computational studies, which revealed allosteric network changes propagating from the perturbed SBC to the intracellular and extracellular space, suggesting TaHeR may function as a sensory rhodopsin. This intramolecular signaling mechanism may be conserved among HeRs, as similar changes were observed for HeR 48C12 between its pH 8.8 and pH 4.3 structures. We additionally performed DEER experiments, which suggests that TaHeR forms possible dimer-of-dimer associations which may be integral to its putative functionality as a light sensor in binding a transducer protein.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jörg Reichenwallner
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paolo De Guzman
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Anling Kuo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Kouyama T, Ihara K. Two substates in the O intermediate of the light-driven proton pump archaerhodopsin-2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183919. [PMID: 35304864 DOI: 10.1016/j.bbamem.2022.183919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The proton pumping cycle of archaerhodopsin-2 (aR2) was investigated over a wide pH range and at different salt concentrations. We have found that two substates, which are spectroscopically and kinetically distinguishable, occur in the O intermediate. The first O-intermediate (O1) absorbs maximumly at ~580 nm, whereas the late O-intermediate (O2) absorbs maximumly at 605 nm. At neutral pH, O1 is in rapid equilibrium with the N intermediate. When the medium pH is increased, O1 becomes less stable than N and, in proportion to the amount of O1 in the dynamic equilibrium between N and O1, the formation rate of O2 decreases. By contrast, the decay rate of O2 increases ~100 folds when the pH of a low-salt membrane suspension is increased from 5.5 to 7.5 or when the salt concentration is increased to 2 M KCl. Together with our recent study on two substates in the O intermediate of bacteriorhodopsin (bR), the present study suggests that the thermally activated re-isomerization of the retinylidene chromophore into the initial all-trans configuration takes place in the O1-to-O2 transition; that is, O1 contains a distorted 13-cis chromophore. It is also found that the pKa value of the key ionizable residue (Asp101aR2, Asp96bR) in the proton uptake channel is elevated in the O1 state of aR2 as compared to the O1 state of bR. This implies that the structural property of O1 in the aR2 photocycle can be investigated over a wide pH range.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Broser M. Far-Red Absorbing Rhodopsins, Insights From Heterodimeric Rhodopsin-Cyclases. Front Mol Biosci 2022; 8:806922. [PMID: 35127823 PMCID: PMC8815786 DOI: 10.3389/fmolb.2021.806922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The recently discovered Rhodopsin-cyclases from Chytridiomycota fungi show completely unexpected properties for microbial rhodopsins. These photoreceptors function exclusively as heterodimers, with the two subunits that have very different retinal chromophores. Among them is the bimodal photoswitchable Neorhodopsin (NeoR), which exhibits a near-infrared absorbing, highly fluorescent state. These are features that have never been described for any retinal photoreceptor. Here these properties are discussed in the context of color-tuning approaches of retinal chromophores, which have been extensively studied since the discovery of the first microbial rhodopsin, bacteriorhodopsin, in 1971 (Oesterhelt et al., Nature New Biology, 1971, 233 (39), 149-152). Further a brief review about the concept of heterodimerization is given, which is widely present in class III cyclases but is unknown for rhodopsins. NIR-sensitive retinal chromophores have greatly expanded our understanding of the spectral range of natural retinal photoreceptors and provide a novel perspective for the development of optogenetic tools.
Collapse
Affiliation(s)
- Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Chang C, Kuramochi H, Singh M, Abe‐Yoshizumi R, Tsukuda T, Kandori H, Tahara T. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chun‐Fu Chang
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-Ku Tokyo 113-0033 Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP), RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- PRESTO (Japan) Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Present address: Research Center of Integrative Molecular Systems Institute for Molecular Science 38 Nishigo-Naka Myodaiji Okazaki 444-8585 Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology, Showa-Ku Nagoya Aichi 466-8555 Japan
| | - Rei Abe‐Yoshizumi
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology, Showa-Ku Nagoya Aichi 466-8555 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-Ku Tokyo 113-0033 Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology, Showa-Ku Nagoya Aichi 466-8555 Japan
- OptoBioTechnology Research Center Nagoya Institute of Technology Showa-Ku, Nagoya Aichi 466-8555 Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP), RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
11
|
Chang CF, Kuramochi H, Singh M, Abe-Yoshizumi R, Tsukuda T, Kandori H, Tahara T. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angew Chem Int Ed Engl 2022; 61:e202111930. [PMID: 34670002 DOI: 10.1002/anie.202111930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/08/2022]
Abstract
All-trans to 13-cis photoisomerization of the protonated retinal Schiff base (PRSB) chromophore is the primary step that triggers various biological functions of microbial rhodopsins. While this ultrafast primary process has been extensively studied, it has been recognized that the relevant excited-state relaxation dynamics differ significantly from one rhodopsin to another. To elucidate the origin of the complicated ultrafast dynamics of the primary process in microbial rhodopsins, we studied the excited-state dynamics of proteorhodopsin, its D97N mutant, and bacteriorhodopsin by femtosecond time-resolved absorption (TA) spectroscopy in a wide pH range. The TA data showed that their excited-state relaxation dynamics drastically change when pH approaches the pKa of the counterion residue of the PRSB chromophore in the ground state. This result reveals that the varied excited-state relaxation dynamics in different rhodopsins mainly originate from the difference of the ground-state heterogeneity (i.e., protonation/deprotonation of the PRSB counterion).
Collapse
Affiliation(s)
- Chun-Fu Chang
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- PRESTO (Japan) Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Present address: Research Center of Integrative Molecular Systems, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
12
|
Abstract
Microbial rhodopsins are light-sensitive transmembrane proteins, evolutionary adapted by various organisms like archaea, bacteria, simple eukaryote, and viruses to utilize solar energy for their survival. A complete understanding of functional mechanisms of these proteins is not possible without the knowledge of their high-resolution structures, which can be primarily obtained by X-ray crystallography. This technique, however, requires high-quality crystals, growing of which is a great challenge especially in case of membrane proteins. In this chapter, we summarize methods applied for crystallization of microbial rhodopsins with the emphasis on crystallization in lipidic mesophases, also known as in meso approach. In particular, we describe in detail the methods of crystallization using lipidic cubic phase to grow both large crystals optimized for traditional crystallographic data collection and microcrystals for serial crystallography.
Collapse
Affiliation(s)
- Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Kovalev K, Volkov D, Astashkin R, Alekseev A, Gushchin I, Haro-Moreno JM, Chizhov I, Siletsky S, Mamedov M, Rogachev A, Balandin T, Borshchevskiy V, Popov A, Bourenkov G, Bamberg E, Rodriguez-Valera F, Büldt G, Gordeliy V. High-resolution structural insights into the heliorhodopsin family. Proc Natl Acad Sci U S A 2020; 117:4131-4141. [PMID: 32034096 PMCID: PMC7049168 DOI: 10.1073/pnas.1915888117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodopsins are the most abundant light-harvesting proteins. A new family of rhodopsins, heliorhodopsins (HeRs), has recently been discovered. Unlike in the known rhodopsins, in HeRs the N termini face the cytoplasm. The function of HeRs remains unknown. We present the structures of the bacterial HeR-48C12 in two states at the resolution of 1.5 Å, which highlight its remarkable difference from all known rhodopsins. The interior of HeR's extracellular part is completely hydrophobic, while the cytoplasmic part comprises a cavity (Schiff base cavity [SBC]) surrounded by charged amino acids and containing a cluster of water molecules, presumably being a primary proton acceptor from the Schiff base. At acidic pH, a planar triangular molecule (acetate) is present in the SBC. Structure-based bioinformatic analysis identified 10 subfamilies of HeRs, suggesting their diverse biological functions. The structures and available data suggest an enzymatic activity of HeR-48C12 subfamily and their possible involvement in fundamental redox biological processes.
Collapse
Affiliation(s)
- K Kovalev
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Institute of Crystallography, University of Aachen (Rheinisch-Westfälische Technische Hochschule Aachen [RWTH]), 52062 Aachen, Germany
| | - D Volkov
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - R Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - A Alekseev
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Institute of Crystallography, University of Aachen (Rheinisch-Westfälische Technische Hochschule Aachen [RWTH]), 52062 Aachen, Germany
| | - I Gushchin
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - J M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03202 San Juan de Alicante, Spain
| | - I Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - S Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A Rogachev
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - T Balandin
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - V Borshchevskiy
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - A Popov
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - G Bourenkov
- Hamburg Unit care of Deutsches Elektronen-Synchrotron (DESY), European Molecular Biology Laboratory, 22607 Hamburg, Germany
| | - E Bamberg
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Biophysical Chemistry, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - F Rodriguez-Valera
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03202 San Juan de Alicante, Spain
| | - G Büldt
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - V Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France;
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| |
Collapse
|
14
|
Geng X, Dai G, Chao L, Wen D, Kikukawa T, Iwasa T. Two Consecutive Polar Amino Acids at the End of Helix E are Important for Fast Turnover of the Archaerhodopsin Photocycle. Photochem Photobiol 2018; 95:980-989. [PMID: 30548616 DOI: 10.1111/php.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/09/2018] [Indexed: 11/27/2022]
Abstract
Archaerhodopsins (ARs) is one of the members of microbial rhodopsins. Threonine 164 (T164) and serine 165 (S165) residues of the AR from Halorubrum sp. ejinoor (HeAR) are fully conserved in ARs, although they are far from the proton transfer channel and the retinal Schiff base, and are likely involved in a hydrogen-bonding network at the end of the Helix E where most microbial rhodopsins assume a "bent structure". In the present work, T164 and/or S165 were replaced with an alanine (A), and the photocycles of the mutants were analyzed with flash photolysis. The amino acid replacements caused profound changes to the photocycle of HeAR including prolonged photocycle, accelerated decay of M intermediate and appearance of additional two intermediates which were evident in T164A- and T164A/S165A-HeAR photocyles. These results suggest that although T164 and S165 are located at the far end of the photoactive center, these two amino acid residues are important for maintaining the fast turnover of the HeAR photocycle. The underlying molecular mechanisms are discussed in relation to hydrogen-bonding networks involving these two amino acids. Present study may arouse our interests to explore the functional role of the well-conserved "bent structure" in different types of microbial rhodopsin.
Collapse
Affiliation(s)
- Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Gang Dai
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, China
| | - Luomeng Chao
- College of Animal Science and Technology, Inner Mongolia University for The Nationalities, Tong Liao, China
| | - Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
15
|
Elghobashi-Meinhardt N, Phatak P, Bondar AN, Elstner M, Smith JC. Catalysis of Ground State cis[Formula: see text] trans Isomerization of Bacteriorhodopsin's Retinal Chromophore by a Hydrogen-Bond Network. J Membr Biol 2018. [PMID: 29516110 DOI: 10.1007/s00232-018-0027-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis-trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis-trans thermal isomerization barrier.
Collapse
Affiliation(s)
- Nadia Elghobashi-Meinhardt
- Department of Physical and Theoretical Chemistry, Theoretical Molecular Biophysics, Institute for Chemistry und Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, Berlin, 14169, Germany.
| | - Prasad Phatak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany.,BASF SE, Carl-Bosch Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Ana-Nicoleta Bondar
- Department of Physics, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institut of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O. Box 2008 MS6309, Oak Ridge, TN, 37831-6309, USA.,Department of Biochemistry and Molecular and Cellular Biology, University of Tennessee, Knoxville, USA
| |
Collapse
|
16
|
Ge X, Gunner MR. Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin. Proteins 2016; 84:639-54. [DOI: 10.1002/prot.25013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Ge
- Physics Department; City College of New York; New York NY 10031
| | - M. R. Gunner
- Physics Department; City College of New York; New York NY 10031
| |
Collapse
|
17
|
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AHJ. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 2015; 290:29567-77. [PMID: 26483542 PMCID: PMC4705956 DOI: 10.1074/jbc.m115.685065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.
Collapse
Affiliation(s)
- Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| | - Hsu-Yuan Fu
- the Department of Biochemical Science and Technology, College of Life Science, Yen Tjing Ling Industrial Research Institute, and
| | - Chun-Jie Cai
- the Department of Biochemical Science and Technology, College of Life Science
| | - Hsiu-Pin Yi
- the Department of Biochemical Science and Technology, College of Life Science
| | - Chii-Shen Yang
- the Department of Biochemical Science and Technology, College of Life Science, Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Andrew H-J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| |
Collapse
|
18
|
Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Hososhima S, Ishizuka T, Hoque MR, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi R, Kogure K, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, Nureki O. Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump. Nature 2015; 521:48-53. [PMID: 25849775 DOI: 10.1038/nature14322] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023]
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na(+) pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na(+) transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na(+) transport. Together with the structure-based engineering of the first light-driven K(+) pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.
Collapse
Affiliation(s)
- Hideaki E Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Keiichi Inoue
- 1] Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan [2] OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan [3] PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Rei Abe-Yoshizumi
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yoshitaka Kato
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hikaru Ono
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Masae Konno
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shoko Hososhima
- 1] Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan [2] CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toru Ishizuka
- 1] Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan [2] CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mohammad Razuanul Hoque
- 1] Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan [2] CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hirofumi Kunitomo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Jumpei Ito
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | | | - Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Reiya Taniguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Andrés D Maturana
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuichi Iino
- 1] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan [2] CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromu Yawo
- 1] Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan [2] CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hideki Kandori
- 1] Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan [2] OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
19
|
Kouyama T, Fujii R, Kanada S, Nakanishi T, Chan SK, Murakami M. Structure of archaerhodopsin-2 at 1.8 Å resolution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2692-701. [PMID: 25286853 PMCID: PMC4188009 DOI: 10.1107/s1399004714017313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022]
Abstract
Archaerhodopsin-2 (aR2), the sole protein found in the claret membrane of Halorubrum sp. Aus-2, functions as a light-driven proton pump. In this study, structural analysis of aR2 was performed using a novel three-dimensional crystal prepared by the successive fusion of claret membranes. The crystal is made up of stacked membranes, in each of which aR2 trimers are arranged on a hexagonal lattice. This lattice structure resembles that found in the purple membrane of H. salinarum, except that lipid molecules trapped within the trimeric structure are not distributed with perfect threefold symmetry. Nonetheless, diffraction data at 1.8 Å resolution provide accurate structural information about functionally important residues. It is shown that two glutamates in the proton-release channel form a paired structure that is maintained by a low-barrier hydrogen bond. Although the structure of the proton-release pathway is highly conserved among proton-pumping archaeal rhodopsins, aR2 possesses the following peculiar structural features: (i) the motional freedom of the tryptophan residue that makes contact with the C13 methyl group of retinal is restricted, affecting the formation/decay kinetics of the L state, and (ii) the N-terminal polypeptide folds into an Ω-loop, which may play a role in organizing the higher-order structure.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, Japan
| | - Ryudo Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Soun Kanada
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taichi Nakanishi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Siu Kit Chan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Chan SK, Kitajima-Ihara T, Fujii R, Gotoh T, Murakami M, Ihara K, Kouyama T. Crystal structure of Cruxrhodopsin-3 from Haloarcula vallismortis. PLoS One 2014; 9:e108362. [PMID: 25268964 PMCID: PMC4182453 DOI: 10.1371/journal.pone.0108362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023] Open
Abstract
Cruxrhodopsin-3 (cR3), a retinylidene protein found in the claret membrane of Haloarcula vallismortis, functions as a light-driven proton pump. In this study, the membrane fusion method was applied to crystallize cR3 into a crystal belonging to space group P321. Diffraction data at 2.1 Å resolution show that cR3 forms a trimeric assembly with bacterioruberin bound to the crevice between neighboring subunits. Although the structure of the proton-release pathway is conserved among proton-pumping archaeal rhodopsins, cR3 possesses the following peculiar structural features: 1) The DE loop is long enough to interact with a neighboring subunit, strengthening the trimeric assembly; 2) Three positive charges are distributed at the cytoplasmic end of helix F, affecting the higher order structure of cR3; 3) The cytoplasmic vicinity of retinal is more rigid in cR3 than in bacteriorhodopsin, affecting the early reaction step in the proton-pumping cycle; 4) the cytoplasmic part of helix E is greatly bent, influencing the proton uptake process. Meanwhile, it was observed that the photobleaching of retinal, which scarcely occurred in the membrane state, became significant when the trimeric assembly of cR3 was dissociated into monomers in the presence of an excess amount of detergent. On the basis of these observations, we discuss structural factors affecting the photostabilities of ion-pumping rhodopsins.
Collapse
Affiliation(s)
- Siu Kit Chan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Ryudoh Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiaki Gotoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- RIKEN Harima Institute/SPring-8, Mikazuki, Sayo, Hyogo, Japan
- * E-mail:
| |
Collapse
|
21
|
Yokoyama Y, Yamada K, Higashi Y, Ozaki S, Wang H, Koito N, Watanabe N, Sonoyama M, Mitaku S. Dependence of Purple Membrane Bump Curvature on pH and Ionic Strength Analyzed Using Atomic Force Microscopy Combined with Solvent Exchange. J Phys Chem B 2014; 118:9322-8. [DOI: 10.1021/jp5036234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasunori Yokoyama
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kosuke Yamada
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yosuke Higashi
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Satoshi Ozaki
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Haorang Wang
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Naoki Koito
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | | | - Masashi Sonoyama
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shigeki Mitaku
- Department
of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
22
|
Wickstrand C, Dods R, Royant A, Neutze R. Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim Biophys Acta Gen Subj 2014; 1850:536-53. [PMID: 24918316 DOI: 10.1016/j.bbagen.2014.05.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Antoine Royant
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France; European Synchrotron Radiation Facility, F-38043 Grenoble, France.
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
23
|
Ranaghan MJ, Greco JA, Wagner NL, Grewal R, Rangarajan R, Koscielecki JF, Wise KJ, Birge RR. Photochromic bacteriorhodopsin mutant with high holographic efficiency and enhanced stability via a putative self-repair mechanism. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2799-2808. [PMID: 24498928 PMCID: PMC3985900 DOI: 10.1021/am405363z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
The Q photoproduct of bacteriorhodopsin (BR) is the basis of several biophotonic technologies that employ BR as the photoactive element. Several blue BR (bBR) mutants, generated by using directed evolution, were investigated with respect to the photochemical formation of the Q state. We report here a new bBR mutant, D85E/D96Q, which is capable of efficiently converting the entire sample to and from the Q photoproduct. At pH 8.5, where Q formation is optimal, the Q photoproduct requires 65 kJ mol(-1) of amber light irradiation (590 nm) for formation and 5 kJ mol(-1) of blue light (450 nm) for reversion, respectively. The melting temperature of the resting state and Q photoproduct, measured via differential scanning calorimetry, is observed at 100 °C and 89 °C at pH 8.5 or 91 °C and 82 °C at pH 9.5, respectively. We hypothesize that the protein stability of D85E/D96Q compared to other blue mutants is associated with a rapid equilibrium between the blue form E85(H) and the purple form E85(-) of the protein, the latter providing enhanced structural stability. Additionally, the protein is shown to be stable and functional when suspended in an acrylamide matrix at alkaline pH. Real-time photoconversion to and from the Q state is also demonstrated with the immobilized protein. Finally, the holographic efficiency of an ideal thin film using the Q state of D85E/D96Q is calculated to be 16.7%, which is significantly better than that provided by native BR (6-8%) and presents the highest efficiency of any BR mutant to date.
Collapse
Affiliation(s)
- Matthew J. Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jordan A. Greco
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Nicole L. Wagner
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Rickinder Grewal
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Rekha Rangarajan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jeremy F. Koscielecki
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kevin J. Wise
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Robert R. Birge
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
24
|
Lazarova T, Mlynarczyk K, Filipek S, Kolinski M, Wassenaar TA, Querol E, Renugopalakrishnan V, Viswanathan S, Padrós E. The effect of triple glutamic mutations E9Q/E194Q/E204Q on the structural stability of bacteriorhodopsin. FEBS J 2013; 281:1181-95. [PMID: 24341610 DOI: 10.1111/febs.12694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/21/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
In the present study, we report on the structural features of the bacteriorhodopsin triple mutant E9Q/E194Q/E204Q (3Glu) of bacteriorhodopsin by combining experimental and molecular dynamics (MD) approaches. In 3Glu mutant, Glu9, Glu194 and Glu204 residues located at the extracellular side of the protein were mutated altogether to glutamines. UV-visible and differential scanning calorimetry experiments served as diagnostic tools for monitoring the resistance against thermal stress of the active site and the tertiary structures of the 3Glu. The analyses of the UV-visible thermal difference spectra demonstrate that the spectral forms at room temperature and the thermal unfolding path differ in the wild-type bacteriorhodopsin and the 3Glu. Even with these spectral differences, the thermal unfolding of the active site occurs at rather similar melting temperatures in both proteins. A noteworthy consequence of the mutations is the altered two-dimensional packing revealed by the lack of the pre-transition peak in differential scanning calorimetry traces of 3Glu mutant, as previously detected in wild-type and the corresponding single mutants. The infrared spectroscopy data agree with the loss of paracrystalinity, illustrating a substantial conversion of αII to αI helical conformation in the 3Glu mutant. Molecular dynamics simulations show higher dynamics flexibility of most of the extracellular regions of 3Glu, which may account for the somewhat lower tertiary structural stability of the mutated protein. Finally, hydrogen bond analysis reveals that the mutated Glu194 and Glu204 residues create ~ 50% less hydrogen bonds with water molecules compared to wild-type bacteriorhodopsin. These results exemplify the role of the water hydrogen-bonding network for structural integrity and conformational flexibility of bacteriorhodopsin.
Collapse
Affiliation(s)
- Tzvetana Lazarova
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain; Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang T, Facciotti MT, Duan Y. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin. PLoS One 2013; 8:e69882. [PMID: 23922839 PMCID: PMC3726731 DOI: 10.1371/journal.pone.0069882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB) are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti) configuration to an extracellular facing (13-cis, 15-syn) configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal’s C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.
Collapse
Affiliation(s)
- Ting Wang
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Marc T. Facciotti
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| | - Yong Duan
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MF); (YD)
| |
Collapse
|
26
|
Zhang J, Mizuno K, Murata Y, Koide H, Murakami M, Ihara K, Kouyama T. Crystal structure of deltarhodopsin-3 from Haloterrigena thermotolerans. Proteins 2013; 81:1585-92. [DOI: 10.1002/prot.24316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Zhang
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Katsuhide Mizuno
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Yuki Murata
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Hideaki Koide
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Midori Murakami
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Kunio Ihara
- Center for Gene Research; Nagoya University; Nagoya Japan
| | - Tsutomu Kouyama
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
- RIKEN Harima Institute/SPring-8, 1-1-1; Kouto Mikazuki, Sayo, Hyogo Japan
| |
Collapse
|
27
|
Watanabe HC, Welke K, Sindhikara DJ, Hegemann P, Elstner M. Towards an Understanding of Channelrhodopsin Function: Simulations Lead to Novel Insights of the Channel Mechanism. J Mol Biol 2013; 425:1795-814. [DOI: 10.1016/j.jmb.2013.01.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 01/25/2023]
|
28
|
Zhang J, Yamazaki Y, Hikake M, Murakami M, Ihara K, Kouyama T. Crystal structure of the O intermediate of the Leu93→Ala mutant of bacteriorhodopsin. Proteins 2012; 80:2384-96. [DOI: 10.1002/prot.24124] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/05/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022]
|
29
|
Murakami M, Kouyama T. Crystallographic Analysis of the Primary Photochemical Reaction of Squid Rhodopsin. J Mol Biol 2011; 413:615-27. [DOI: 10.1016/j.jmb.2011.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
30
|
Kanada S, Takeguchi Y, Murakami M, Ihara K, Kouyama T. Crystal structures of an O-like blue form and an anion-free yellow form of pharaonis halorhodopsin. J Mol Biol 2011; 413:162-76. [PMID: 21871461 DOI: 10.1016/j.jmb.2011.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) was previously crystallized into a monoclinic space group C2, and the structure of the chloride-bound purple form was determined. Here, we report the crystal structures of two chloride-free forms of pHR, that is, an O-like blue form and an M-like yellow form. When the C2 crystal was soaked in a chloride-free alkaline solution, the protein packing was largely altered and the yellow form containing all-trans retinal was generated. Upon neutralization, this yellow form was converted into the blue form. From structural comparison of the different forms of pHR, it was shown that the removal of a chloride ion from the primary binding site (site I), which is located between the retinal Schiff base and Thr126, is accompanied by such a deformation of helix C that the side chain of Thr126 moves toward helix G, leading to a significant shrinkage of site I. A large structural change is also induced in the chloride uptake pathway, where a flip motion of the side chain of Glu234 is accompanied by large movements of the surrounding aromatic residues. Irrespective of different charge distributions at the active site, there was no large difference in the structures of the yellow form and the blue form. It is shown that the yellow-to-purple transition is initiated by the entrance of one water and one HCl to the active site, where the proton and the chloride ion in HCl are transferred to the Schiff base and site I, respectively.
Collapse
Affiliation(s)
- Soun Kanada
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
31
|
Clemens M, Phatak P, Cui Q, Bondar AN, Elstner M. Role of Arg82 in the early steps of the bacteriorhodopsin proton-pumping cycle. J Phys Chem B 2011; 115:7129-35. [PMID: 21561116 DOI: 10.1021/jp201865k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton-transfer reactions in the bacteriorhodopsin light-driven proton pump are coupled with structural rearrangements of protein amino acids and internal water molecules. It is generally thought that the first proton-transfer step from retinal Schiff base to the nearby Asp85 is coupled with movement of the Arg82 side chain away from Asp85 and toward the extracellular proton release group. This movement of Arg82 likely triggers the release of the proton from the proton release group to the extracellular bulk. The exact timing of the movement of Arg82 and how this movement is coupled with proton transfer are still not understood in molecular detail. Here, we address these questions by computing the free energy for the movement of the Arg82 side chain. The calculations indicate that protonation of Asp85 leads to a fast reorientation of the Arg82 side chain toward the extracellular proton release group.
Collapse
Affiliation(s)
- Maike Clemens
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
32
|
Baumann RP, Eussner J, Hampp N. pH-dependent bending in and out of purple membranes comprising BR-D85T. Phys Chem Chem Phys 2011; 13:21375-82. [DOI: 10.1039/c1cp22098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Rajput J, Rahbek D, Andersen L, Hirshfeld A, Sheves M, Altoè P, Orlandi G, Garavelli M. Probing and Modeling the Absorption of Retinal Protein Chromophores in Vacuo. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Rajput J, Rahbek D, Andersen L, Hirshfeld A, Sheves M, Altoè P, Orlandi G, Garavelli M. Probing and Modeling the Absorption of Retinal Protein Chromophores in Vacuo. Angew Chem Int Ed Engl 2010; 49:1790-3. [DOI: 10.1002/anie.200905061] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Baumann RP, Schranz M, Hampp N. Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy. Phys Chem Chem Phys 2010; 12:4329-35. [DOI: 10.1039/b919729j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Zhang Y, Su T, Hu KS. Melittin-regenerated purple membrane. BIOCHEMISTRY (MOSCOW) 2009; 74:1375-81. [PMID: 19961420 DOI: 10.1134/s0006297909120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the character of melittin-regenerated purple membrane. Adding melittin to blue membrane causes the color transition and partial regeneration of the photocycle and the proton pump. The reconstitution of bacteriorhodopsin by melittin is proved to be charge-dependent. In studying the location of melittin binding on the blue membrane, we suggest that melittin anchors on the membrane through both hydrophobic and electrostatic interactions. The electrostatic interaction is dominant. The binding sites for the electrostatic interaction should be on the surface of the membrane.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Biophysics, Academia Sinica, Beijing, 100101, PR China
| | | | | |
Collapse
|
37
|
Pan Y, Brown L, Konermann L. Mapping the Structure of an Integral Membrane Protein under Semi-Denaturing Conditions by Laser-Induced Oxidative Labeling and Mass Spectrometry. J Mol Biol 2009; 394:968-81. [DOI: 10.1016/j.jmb.2009.09.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 12/23/2022]
|
38
|
Sasaki T, Aizawa T, Kamiya M, Kikukawa T, Kawano K, Kamo N, Demura M. Effect of Chloride Binding on the Thermal Trimer−Monomer Conversion of Halorhodopsin in the Solubilized System. Biochemistry 2009; 48:12089-95. [DOI: 10.1021/bi901380c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Sasaki
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Tomoyasu Aizawa
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakatsu Kamiya
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiichi Kawano
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Makoto Demura
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
39
|
Yamamoto M, Hayakawa N, Murakami M, Kouyama T. Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels. J Mol Biol 2009; 393:559-73. [PMID: 19712684 DOI: 10.1016/j.jmb.2009.08.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 11/16/2022]
Abstract
The hexagonal P622 crystal of bacteriorhodopsin, which is made up of stacked membranes, is stable provided that the precipitant concentration in the soaking solution is higher than a critical value (i.e., 1.5 M ammonium sulfate). Diffraction data showed that the crystal lattice shrank linearly with increasing precipitant concentration, due primarily to narrowing of intermembrane spaces. Although the crystal shrinkage did not affect the rate of formation of the photoreaction M intermediate, its lifetime increased exponentially with the precipitant concentration. It was suggested that the energetic barrier of the M-to-N transition becomes higher when the motional freedom of the EF loop is reduced by crystal lattice force. As a result of this property, the M state accumulated predominantly when the crystal that was soaked at a high precipitant concentration was illuminated at room temperature. Structural data obtained at various pH levels showed that the overall structure of M is not strongly dependent on pH, except that Glu194 and Glu204 in the proton release complex are more separated at pH 7 than at pH 4.4. This result suggests that light-induced disruption of the paired structure of Glu194 and Glu204 is incomplete when external pH is lower than the pK(a) value of the proton release group in the M state.
Collapse
Affiliation(s)
- Masataka Yamamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
40
|
Hirai T, Subramaniam S, Lanyi JK. Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 2009; 19:433-9. [PMID: 19643594 DOI: 10.1016/j.sbi.2009.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 11/28/2022]
Abstract
Recent advances in crystallizing integral membrane proteins have led to atomic models for the structures of several seven-helix membrane proteins, including those in the G-protein-coupled receptor family. Further steps toward exploring structure-function relationships will undoubtedly involve determination of the structural changes that occur during the various stages of receptor activation and deactivation. We expect that these efforts will bear many parallels to the studies of conformational changes in bacteriorhodopsin, which still remains the best-studied seven-helix membrane protein. Here, we provide a brief review of some of the lessons learned, the challenges faced, and the controversies over the last decade with determining conformational changes in bacteriorhodopsin. Our hope is that this analysis will be instructive for similar structural studies, especially of other seven-helix membrane proteins, in the coming decade.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| | | | | |
Collapse
|
41
|
Chen D, Lanyi JK. Structural changes in the N and N' states of the bacteriorhodopsin photocycle. Biophys J 2009; 96:2779-88. [PMID: 19348761 DOI: 10.1016/j.bpj.2008.12.3935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 10/20/2022] Open
Abstract
The bacteriorhodopsin transport cycle includes protonation of the retinal Schiff base by Asp96 (M-->N reaction) and reprotonation of Asp96 from the cytoplasmic surface (N-->N' reaction). We measured distance changes between pairs of spin-labeled structural elements of interest, and in general observed larger overall structural changes in the N state compared with the N' state. The distance between the C-D loop and E-F interhelical loops in A103R1/M163R1 increased approximately 6 A in the N state and approximately 3 A in the N' state. The opposite trend of distance changes in V101R1/A168R1 and L100R1/T170R1 supports counterclockwise rotation of helix F in the N but not the N' state. Small distance increases were observed in S169R1/S226R1, but little change was seen in G106R1/G155R1. Taking earlier published EPR data into account, we suggest that structural changes of the E-F loop occur first, and then helices F and G begin to move together in the late M state. These motions then reach their maximum amplitude in the N state, evidently to facilitate the release of a proton from Asp96 and the formation of a proton-conduction pathway from Asp96 to the Schiff base. The structural changes reverse their directions and decay in the N' state.
Collapse
Affiliation(s)
- Deliang Chen
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | | |
Collapse
|
42
|
Hirai T, Subramaniam S. Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses. PLoS One 2009; 4:e5769. [PMID: 19488399 PMCID: PMC2685002 DOI: 10.1371/journal.pone.0005769] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/06/2009] [Indexed: 11/18/2022] Open
Abstract
Light-driven conformational changes in the membrane protein bacteriorhodopsin have been studied extensively using X-ray and electron crystallography, resulting in the deposition of >30 sets of coordinates describing structural changes at various stages of proton transport. Using projection difference Fourier maps, we show that coordinates reported by different groups for the same photocycle intermediates vary considerably in the extent and nature of conformational changes. The different structures reported for the same intermediate cannot be reconciled in terms of differing extents of change on a single conformational trajectory. New measurements of image phases obtained by cryo-electron microscopy of the D96G/F171C/F219L triple mutant provide independent validation for the description of the large protein conformational change derived at 3.2 A resolution by electron crystallography of 2D crystals, but do not support atomic models for light-driven conformational changes derived using X-ray crystallography of 3D crystals. Our findings suggest that independent determination of phase information from 2D crystals can be an important tool for testing the accuracy of atomic models for membrane protein conformational changes.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (TH); (SS)
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (TH); (SS)
| |
Collapse
|
43
|
Phatak P, Frähmcke JS, Wanko M, Hoffmann M, Strodel P, Smith J, Suhai S, Bondar AN, Elstner M. Long-distance proton transfer with a break in the bacteriorhodopsin active site. J Am Chem Soc 2009; 131:7064-78. [PMID: 19405533 PMCID: PMC2746972 DOI: 10.1021/ja809767v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin is a proton-pumping membrane protein found in the plasma membrane of the archaeon Halobacterium salinarium. Light-induced isomerization of the retinal chromophore from all-trans to 13-cis leads to a sequence of five conformation-coupled proton transfer steps and the net transport of one proton from the cytoplasmic to the extracellular side of the membrane. The mechanism of the long-distance proton transfer from the primary acceptor Asp85 to the extracellular proton release group during the O --> bR is poorly understood. Experiments suggest that this long-distance transfer could involve a transient state [O] in which the proton resides on the intermediate carrier Asp212. To assess whether the transient protonation of Asp212 participates in the deprotonation of Asp85, we performed hybrid Quantum Mechanics/Molecular Mechanics proton transfer calculations using different protein structures and with different retinal geometries and active site water molecules. The structural models were assessed by computing UV-vis excitation energies and C=O vibrational frequencies. The results indicate that a transient [O] conformer with protonated Asp212 could indeed be sampled during the long-distance proton transfer to the proton release group. Our calculations suggest that, in the starting proton transfer state O, the retinal is strongly twisted and at least three water molecules are present in the active site.
Collapse
Affiliation(s)
- Prasad Phatak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Jan S. Frähmcke
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Marius Wanko
- BCCMS, Universität Bremen, D-28334 Bremen, Germany
| | | | - Paul Strodel
- Accelrys Ltd., Cambridge CB4 0WN, United Kingdom
| | - Jeremy Smith
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120, Heidelberg, Germany
- Center for Molecular Biophysics, Oak Ridge National Laboratory, PO BOX 2008 MS6164, Oak Ridge, Tennessee 37831, USA
- Department of Biochemistry and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Ave, Knoxville Tennessee 37996, USA
| | - Sándor Suhai
- Molecular Biophysics Department, German Cancer Research Institute, Im Neuheimer Feld 280, D-69120, Heidelberg, Germany
| | - Ana-Nicoleta Bondar
- Molecular Biophysics Department, German Cancer Research Institute, Im Neuheimer Feld 280, D-69120, Heidelberg, Germany
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120, Heidelberg, Germany
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Med. Sci. I, D-347, Irvine, CA 92697, USA
| | - Marcus Elstner
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Molecular Biophysics Department, German Cancer Research Institute, Im Neuheimer Feld 280, D-69120, Heidelberg, Germany
| |
Collapse
|
44
|
|
45
|
Kubo M, Kikukawa T, Miyauchi S, Seki A, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Arg123 in Light-driven Anion Pump Mechanisms ofpharaonisHalorhodopsin. Photochem Photobiol 2009; 85:547-55. [DOI: 10.1111/j.1751-1097.2009.00538.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Hayakawa N, Kasahara T, Hasegawa D, Yoshimura K, Murakami M, Kouyama T. Effect of Xenon Binding to a Hydrophobic Cavity on the Proton Pumping Cycle in Bacteriorhodopsin. J Mol Biol 2008; 384:812-23. [PMID: 18930734 DOI: 10.1016/j.jmb.2008.09.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/21/2008] [Accepted: 09/25/2008] [Indexed: 11/25/2022]
|
47
|
Watanabe HC, Ishikura T, Yamato T. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin. Proteins 2008; 75:53-61. [DOI: 10.1002/prot.22221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Rhinow D, Hampp NA. Light- and pH-Dependent Conformational Changes in Protein Structure Induce Strong Bending of Purple Membranes—Active Membranes Studied by Cryo-SEM. J Phys Chem B 2008; 112:13116-20. [DOI: 10.1021/jp803510t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Rhinow
- Department of Chemistry, University of Marburg, and Material Sciences Center, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | - Norbert A. Hampp
- Department of Chemistry, University of Marburg, and Material Sciences Center, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| |
Collapse
|
49
|
Braun-Sand S, Sharma PK, Chu ZT, Pisliakov AV, Warshel A. The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:441-52. [PMID: 18387356 PMCID: PMC2443747 DOI: 10.1016/j.bbabio.2008.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 11/26/2022]
Abstract
The light-induced proton transport in bacteriorhodopsin has been considered as a model for other light-induced proton pumps. However, the exact nature of this process is still unclear. For example, it is not entirely clear what the driving force of the initial proton transfer is and, in particular, whether it reflects electrostatic forces or other effects. The present work simulates the primary proton transfer (PT) by a specialized combination of the EVB and the QCFF/PI methods. This combination allows us to obtain sufficient sampling and a quantitative free energy profile for the PT at different protein configurations. The calculated profiles provide new insight about energetics of the primary PT and its coupling to the protein conformational changes. Our finding confirms the tentative analysis of an earlier work (A. Warshel, Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium, Photochem. Photobiol. 30 (1979) 285-290) and determines that the overall PT process is driven by the energetics of the charge separation between the Schiff base and its counterion Asp85. Apparently, the light-induced relaxation of the steric energy of the chromophore leads to an increase in the ion-pair distance, and this drives the PT process. Our use of the linear response approximation allows us to estimate the change in the protein conformational energy and provides the first computational description of the coupling between the protein structural changes and the PT process. It is also found that the PT is not driven by twist-modulated changes of the Schiff base's pKa, changes in the hydrogen bond directionality, or other non-electrostatic effects. Overall, based on a consistent use of structural information as the starting point for converging free energy calculations, we conclude that the primary event should be described as a light-induced formation of an unstable ground state, whose relaxation leads to charge separation and to the destabilization of the ion-pair state. This provides the driving force for the subsequent PT steps.
Collapse
Affiliation(s)
- Sonja Braun-Sand
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
- Department of Chemistry, University of Colorado at Colorado Springs (UCCS), Colorado Springs, CO 80918
| | - Pankaz K. Sharma
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Zhen T. Chu
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Andrei V. Pisliakov
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| |
Collapse
|
50
|
Rhinow D, Hampp NA. Sugar-induced blue membrane: release of divalent cations during phase transition of purple membranes observed in sugar-derived glasses. J Phys Chem B 2008; 112:4613-9. [PMID: 18358028 DOI: 10.1021/jp710694s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of blue membrane from purple membranes (PM) has been observed in glassy films made from PM and various sugars. The phase transition of PM at about 70 degrees C causes the complexation of divalent cations to be weakened. The vicinal diol structures in sugars are capable to complex divalent cations and delocalize them throughout the matrix as long as its glass transition temperature is lower than the phase transition temperature of PM. The loss of divalent cations from bacteriorhodopsin (BR), the only protein in PM, causes the formation of blue membrane (BM), which is accompanied by a loss of beta-sheet structure observable in the infrared spectrum. Glassy sugars are particular useful to observe this transition, as sugar entrapment does not restrict conformational changes of BR but rather retards them. The material obtained was named sugar-induced blue membrane (SIBM). The formation of SIBM is inhibited by the addition of divalent cations. Furthermore, SIBM is reverted immediately to PM by addition of water. A characteristic time dependence of the thermal reversion of SIBM to PM proves that the phase transition of PM triggers the release and uptake of divalent cations and the corresponding color change.
Collapse
Affiliation(s)
- Daniel Rhinow
- Department of Chemistry, and Material Sciences Center, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|