1
|
Yang D, Xiao P, Qiu B, Yu HF, Teng CB. Copper chaperone antioxidant 1: multiple roles and a potential therapeutic target. J Mol Med (Berl) 2023; 101:527-542. [PMID: 37017692 DOI: 10.1007/s00109-023-02311-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/06/2023]
Abstract
Copper (Cu) was recently demonstrated to play a critical role in cellular physiological and biochemical processes, including energy production and maintenance, antioxidation and enzymatic activity, and signal transduction. Antioxidant 1 (ATOX1), a chaperone of Cu previously named human ATX1 homologue (HAH1), has been found to play an indispensable role in maintaining cellular Cu homeostasis, antioxidative stress, and transcriptional regulation. In the past decade, it has also been found to be involved in a variety of diseases, including numerous neurodegenerative diseases, cancers, and metabolic diseases. Recently, increasing evidence has revealed that ATOX1 is involved in the regulation of cell migration, proliferation, autophagy, DNA damage repair (DDR), and death, as well as in organism development and reproduction. This review summarizes recent advances in the research on the diverse physiological and cytological functions of ATOX1 and the underlying mechanisms of its action in human health and diseases. The potential of ATOX1 as a therapeutic target is also discussed. This review aims to pose unanswered questions related to ATOX1 biology and explore the potential use of ATOX1 as a therapeutic target.
Collapse
Affiliation(s)
- Dian Yang
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Pengyu Xiao
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Botao Qiu
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Hai-Fan Yu
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| | - Chun-Bo Teng
- Animal Development Biology Laboratory, College of Life Science, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
2
|
Mhaske A, Dileep K, Kumar M, Poojary M, Pandhare K, Zhang KY, Scaria V, Binukumar B. ATP7A Clinical Genetics Resource - A comprehensive clinically annotated database and resource for genetic variants in ATP7A gene. Comput Struct Biotechnol J 2020; 18:2347-2356. [PMID: 32994893 PMCID: PMC7501406 DOI: 10.1016/j.csbj.2020.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
ATP7A is a critical copper transporter involved in Menkes Disease, Occipital horn Syndrome and X-linked distal spinal muscular atrophy type 3 which are X linked genetic disorders. These are rare diseases and their genetic epidemiology of the diseases is unknown. A number of genetic variants in the genes have been reported in published literature as well as databases, however, understanding the pathogenicity of variants and genetic epidemiology requires the data to be compiled in a unified format. To this end, we systematically compiled genetic variants from published literature and datasets. Each of the variants were systematically evaluated for evidences with respect to their pathogenicity and classified as per the American College of Medical Genetics and the Association of Molecular Pathologists (ACMG-AMP) guidelines into Pathogenic, Likely Pathogenic, Benign, Likely Benign and Variants of Uncertain Significance. Additional integrative analysis of population genomic datasets provides insights into the genetic epidemiology of the disease through estimation of carrier frequencies in global populations. To deliver a mechanistic explanation for the pathogenicity of selected variants, we also performed molecular modeling studies. Our modeling studies concluded that the small structural distortions observed in the local structures of the protein may lead to the destabilization of the global structure. To the best of our knowledge, ATP7A Clinical Genetics Resource is one of the most comprehensive compendium of variants in the gene providing clinically relevant annotations in gene.
Collapse
Affiliation(s)
- Aditi Mhaske
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
| | - K.V. Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mukesh Kumar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Mukta Poojary
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Kavita Pandhare
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Kam Y.J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
- Corresponding author at: CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, Sukhdev Vihar, New Delhi 110025, India.
| | - B.K. Binukumar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
- Corresponding author at: CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, Sukhdev Vihar, New Delhi 110025, India.
| |
Collapse
|
3
|
Shoshan MS, Dekel N, Goch W, Shalev DE, Danieli T, Lebendiker M, Bal W, Tshuva EY. Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins. J Inorg Biochem 2016; 159:29-36. [PMID: 26901629 DOI: 10.1016/j.jinorgbio.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/17/2023]
Abstract
The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.
Collapse
Affiliation(s)
- Michal S Shoshan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Noa Dekel
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Deborah E Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tsafi Danieli
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.
| |
Collapse
|
4
|
Moizard MP, Ronce N, Blesson S, Bieth E, Burglen L, Mignot C, Mortemousque I, Marmin N, Dessay B, Danesino C, Feillet F, Castelnau P, Toutain A, Moraine C, Raynaud M. Twenty-five novel mutations including duplications in the ATP7A gene. Clin Genet 2015; 79:243-53. [PMID: 21208200 DOI: 10.1111/j.1399-0004.2010.01461.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Twenty-five novel mutations including duplications in the ATP7A gene. Menkes disease (MD) and occipital horn syndrome (OHS) are allelic X-linked recessive copper deficiency disorders resulting from ATP7A gene mutations. MD is a severe condition leading to progressive neurological degeneration and death in early childhood, whereas OHS has a milder phenotype with mainly connective tissue abnormalities. Until now, molecular analyses have revealed only deletions and point mutations in both diseases. This study reports new molecular data in a series of 40 patients referred for either MD or OHS. We describe 23 point mutations (9 missense mutations, 7 splice site variants, 4 nonsense mutations, and 3 small insertions or deletions) and 7 intragenic deletions. Of these, 18 point mutations and 3 deletions are novel. Furthermore, our finding of four whole exon duplications enlarges the mutation spectrum in the ATP7A gene. ATP7A alterations were found in 85% of cases. Of these alterations, two thirds were point mutations and the remaining one third consisted of large rearrangements. We found that 66.6% of point mutations resulted in impaired ATP7A transcript splicing, a phenomenon more frequent than expected. This finding enabled us to confirm the pathogenic role of ATP7A mutations, particularly in missense and splice site variants.
Collapse
Affiliation(s)
- M-P Moizard
- CHRU de Tours, Service de Génétique, Tours, F-37044, France INSERM U930, Tours, F-37044, France CHU Hôpital Purpan, Service de Génétique médicale, Toulouse, F-31059, France CHU Hôpital d'Enfants Armand-Trousseau, AP-HP, Service de Génétique et Embryologie médicales, Paris, F-75571, France CHU Hôpital d'Enfants Armand-Trousseau, AP-HP, Service de Neuropédiatrie, Paris, F-75012, France Genetica Medica, Università di Pavia, Fondazione IRCCS S. Matteo, Pavia, I-27100, Italie Centre de Référence des Maladies Héréditaires du Métabolisme, INSERM U954. Hôpital d'Enfants, Vandoeuvre les Nancy, F-54511, France CHRU de Tours, Service de Neuropédiatrie, Tours, F-37044 France; Université François Rabelais Tours, F-37044, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pitts AL, Hall MB. Investigating the Electronic Structure of the Atox1 Copper(I) Transfer Mechanism with Density Functional Theory. Inorg Chem 2013; 52:10387-93. [DOI: 10.1021/ic401106z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amanda L. Pitts
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
6
|
Tümer Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat 2013; 34:417-29. [PMID: 23281160 DOI: 10.1002/humu.22266] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 01/28/2023]
Abstract
Menkes disease (MD) is a lethal multisystemic disorder of copper metabolism. Progressive neurodegeneration and connective tissue disturbances, together with the peculiar "kinky" hair, are the main manifestations. MD is inherited as an X-linked recessive trait, and as expected the vast majority of patients are males. MD occurs because of mutations in the ATP7A gene and the vast majority of ATP7A mutations are intragenic mutations or partial gene deletions. ATP7A is an energy-dependent transmembrane protein, which is involved in the delivery of copper to the secreted copper enzymes and in the export of surplus copper from cells. Severely affected MD patients die usually before the third year of life. A cure for the disease does not exist, but very early copper-histidine treatment may correct some of the neurological symptoms. This study reviews 274 published and 18 novel disease causing mutations identified in 370 unrelated MD patients, nonpathogenic variants of ATP7A, functional studies of the ATP7A mutations, and animal models of MD.
Collapse
Affiliation(s)
- Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
7
|
Arumugam K, Crouzy S. Dynamics and Stability of the Metal Binding Domains of the Menkes ATPase and Their Interaction with Metallochaperone HAH1. Biochemistry 2012; 51:8885-906. [DOI: 10.1021/bi300669e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karthik Arumugam
- Commissariat
à l’Energie Atomique/CNRS/Université Joseph Fourier,
CEA, iRTSV, LCBM, 38054 Grenoble, France
| | - Serge Crouzy
- Laboratoire de Chimie et Biologie des Métaux,
CEA, iRTSV, LCBM, Commissariat à l’Energie Atomique/CNRS/Université
Joseph Fourier, UMR 5249, 17 rue des martyrs, 38054 Grenoble Cedex
09, France
| |
Collapse
|
8
|
Dmitriev OY. Mechanism of tumor resistance to cisplatin mediated by the copper transporter ATP7B. Biochem Cell Biol 2011; 89:138-47. [PMID: 21455266 DOI: 10.1139/o10-150] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Wilson disease protein (ATP7B) is a copper-transporting ATPase that is responsible for regulating copper homeostasis in human tissues. ATP7B is associated with cancer resistance to cisplatin, one of the most widely used anticancer drugs. This minireview discusses the possible mechanisms of tumor resistance to cisplatin mediated by ATP7B. Cisplatin binds to the N-terminal cytosolic domain of ATP7B, which contains multiple copper-binding sites. Active platinum efflux catalyzed by ATP7B is unlikely to significantly contribute to cisplatin resistance in vivo. Transient platinum sequestration in the metal-binding domain followed by transfer to an acceptor protein or a low molecular weight compound is proposed as an alternative mechanism of cisplatin detoxification in the cell.
Collapse
Affiliation(s)
- Oleg Y Dmitriev
- Department of Biochemistry, University of Saskatchewan, SK, Canada.
| |
Collapse
|
9
|
Benítez JJ, Keller AM, Huffman DL, Yatsunyk LA, Rosenzweig AC, Chen P. Relating dynamic protein interactions of metallochaperones with metal transfer at the single-molecule level. Faraday Discuss 2011; 148:71-82; discussion 97-108. [PMID: 21322478 DOI: 10.1039/c004913a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metallochaperones undertake specific interactions with their target proteins to deliver metal ions inside cells. Understanding how these protein interactions are coupled with the underlying metal transfer process is important, but challenging because they are weak and dynamic. Here we use a nanovesicle trapping scheme to enable single-molecule FRET measurements of the weak, dynamic interactions between the copper chaperone Hahl and the fourth metal binding domain (MBD4) of WDP. By monitoring the behaviors of single interacting pairs, we visualize their interactions in real time in both the absence and the presence of various equivalents of Cu(1+). Regardless of the proteins' metallation state, we observe multiple, interconverting interaction complexes between Hah1 and MBD4. Within our experimental limit, the overall interaction geometries of these complexes appear invariable, but their stabilities are dependent on the proteins' metallation state. In apo-holo Hah1-MBD4 interactions, the complexes are stabilized relative to that observed in the apo-apo interactions. This stabilization is indiscernible when Hah1's Cu(1+)-binding is eliminated or when both proteins have Cu(1+) loaded. The nature of this Cu(1+)-induced complex stabilization and of the interaction complexes are discussed. These Cu(1+)-induced effects on the Hah1-MBD4 interactions provide a step toward understanding how the dynamic protein interactions of copper chaperones are coupled with their metal transfer function.
Collapse
Affiliation(s)
- Jaime J Benítez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
10
|
Shoshan MS, Tshuva EY. The MXCXXC class of metallochaperone proteins: model studies. Chem Soc Rev 2011; 40:5282-92. [DOI: 10.1039/c1cs15086c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 2010; 67:2563-89. [PMID: 20333435 PMCID: PMC11115773 DOI: 10.1007/s00018-010-0330-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/22/2010] [Indexed: 01/01/2023]
Abstract
Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Ivano Bertini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Cantini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
12
|
Banci L, Bertini I, McGreevy KS, Rosato A. Molecular recognition in copper trafficking. Nat Prod Rep 2010; 27:695-710. [DOI: 10.1039/b906678k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Kouza M, Gowtham S, Seel M, Hansmann UHE. A numerical investigation into possible mechanisms by that the A629P mutant of ATP7A causes Menkes Disease. Phys Chem Chem Phys 2010; 12:11390-7. [DOI: 10.1039/c003568h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
LeShane ES, Shinde U, Walker JM, Barry AN, Blackburn NJ, Ralle M, Lutsenko S. Interactions between copper-binding sites determine the redox status and conformation of the regulatory N-terminal domain of ATP7B. J Biol Chem 2009; 285:6327-36. [PMID: 20032459 DOI: 10.1074/jbc.m109.074633] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper-transporting ATPase ATP7B is essential for human copper homeostasis and normal liver function. ATP7B has six N-terminal metal-binding domains (MBDs) that sense cytosolic copper levels and regulate ATP7B. The mechanism of copper sensing and signal integration from multiple MBDs is poorly understood. We show that MBDs communicate and that this communication determines the oxidation state and conformation of the entire N-terminal domain of ATP7B (N-ATP7B). Mutations of copper-coordinating Cys to Ala in any MBD (2, 3, 4, or 6) change the N-ATP7B conformation and have distinct functional consequences. Mutating MBD2 or MBD3 causes Cys oxidation in other MBDs and loss of copper binding. In contrast, mutation of MBD4 and MBD6 does not alter the redox status and function of other sites. Our results suggest that MBD2 and MBD3 work together to regulate access to other metal-binding sites, whereas MBD4 and MBD6 receive copper independently, downstream of MBD2 and MBD3. Unlike Ala substitutions, the Cys-to-Ser mutation in MBD2 preserves the conformation and reduced state of N-ATP7B, suggesting that hydrogen bonds contribute to interdomain communications. Tight coupling between MBDs suggests a mechanism by which small changes in individual sites (induced by copper binding or mutation) result in stabilization of distinct conformations of the entire N-ATP7B and altered exposure of sites for interactions with regulatory proteins.
Collapse
Affiliation(s)
- Erik S LeShane
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Barry AN, Shinde U, Lutsenko S. Structural organization of human Cu-transporting ATPases: learning from building blocks. J Biol Inorg Chem 2009; 15:47-59. [PMID: 19851794 DOI: 10.1007/s00775-009-0595-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/28/2009] [Indexed: 12/29/2022]
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B play an essential role in human physiological function. Their primary function is to deliver copper to the secretory pathway and export excess copper from the cell for removal or further utilization. Cells employ Cu-ATPases in numerous physiological processes that include the biosynthesis of copper-dependent enzymes, lactation, and response to hypoxia. Biochemical studies of human Cu-ATPases and their orthologs have demonstrated that Cu-ATPases share many common structural and mechanistic characteristics with other members of the P-type ATPase family. Nevertheless, the Cu-ATPases have a unique coordinate environment for their ligands, copper and ATP, and additional domains that are required for sophisticated regulation of their intracellular localization and activity. Here, we review recent progress that has been made in understanding the structure of Cu-ATPases from the analysis of their individual domains and orthologs from microorganisms, and speculate about the implications of these findings for the function and regulation of human copper pumps.
Collapse
Affiliation(s)
- Amanda N Barry
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Amie K. Boal
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| | - Amy C. Rosenzweig
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
17
|
Copper(I)-mediated protein–protein interactions result from suboptimal interaction surfaces. Biochem J 2009; 422:37-42. [DOI: 10.1042/bj20090422] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The homoeostasis of metal ions in cells is the result of the contribution of several cellular pathways that involve transient, often weak, protein–protein interactions. Metal transfer typically implies the formation of adducts where the metal itself acts as a bridge between proteins, by co-ordinating residues of both interacting partners. In the present study we address the interaction between the human copper(I)-chaperone HAH1 (human ATX1 homologue) and a metal-binding domain in one of its partners, namely the P-type copper-transporting ATPase, ATP7A (ATPase, Cu+ transporting, α polypeptide). The adduct was structurally characterized in solution, in the presence of copper(I), and through X-ray crystallography, upon replacing copper(I) with cadmium(II). Further insight was obtained through molecular modelling techniques and site-directed mutagenesis. It was found that the interaction involves a relatively small interface (less than 1000 Å2, 1 Å=0.1 nm) with a low fraction of non-polar atoms. These observations provide a possible explanation for the low affinity of the two apoproteins. It appears that electrostatics is important in selecting which domain of the ATPase is able to form detectable amounts of the metal-mediated adduct with HAH1.
Collapse
|
18
|
Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P. Conformational Dynamics of Metal-Binding Domains in Wilson Disease Protein: Molecular Insights into Selective Copper Transfer. Biochemistry 2009; 48:5849-63. [DOI: 10.1021/bi900235g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Alejandro Crespo
- Department of Bioengineering, Rice University, Houston, 77005 Texas
| | - Pernilla Wittung-Stafshede
- Department of Biochemistry and Cell Biology, Rice University, Houston, 77251 Texas
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
19
|
Banci L, Bertini I, Cantini F, Massagni C, Migliardi M, Rosato A. An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1. J Biol Chem 2009; 284:9354-60. [PMID: 19181666 PMCID: PMC2666587 DOI: 10.1074/jbc.m805981200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/30/2009] [Indexed: 12/17/2022] Open
Abstract
ATP7B is a human P(1B)-type ATPase that has a crucial role in maintaining copper(I) homeostasis. Mutations in the corresponding gene are the cause of Wilson disease. Among its various distinguishing features is a long ( approximately 630 amino acids) N-terminal cytosolic tail containing six domains that are individually folded and capable of binding one copper(I) ion each. We expressed the entire tail as a single construct in Escherichia coli and investigated its interaction with its copper chaperone (i.e. HAH1) by solution NMR spectroscopy. We observed that all six of the metal-binding domains were metallated by Cu(I)-HAH1, with the first, the second, and the fourth domains forming an adduct with it. This behavior is different from that of the highly similar human ATPase ATP7A, in which only two domains form such an adduct. The distinct behaviors of the different domains were analyzed in terms of the energetics of Cu(I) transfer, hinting at a specific role of the interaction with copper(I)-HAH1 in the overall functional process.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Korotkov KV, Pardon E, Steyaert J, Hol WG. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 2009; 17:255-65. [PMID: 19217396 PMCID: PMC2662362 DOI: 10.1016/j.str.2008.11.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/24/2008] [Accepted: 11/24/2008] [Indexed: 01/07/2023]
Abstract
Secretins are among the largest bacterial outer membrane proteins known. Here we report the crystal structure of the periplasmic N-terminal domain of GspD (peri-GspD) from the type 2 secretion system (T2SS) secretin in complex with a nanobody, the VHH domain of a heavy-chain camelid antibody. Two different crystal forms contained the same compact peri-GspD:nanobody heterotetramer. The nanobody contacts peri-GspD mainly via CDR3 and framework residues. The peri-GspD structure reveals three subdomains, with the second and third subdomains exhibiting the KH fold which also occurs in ring-forming proteins of the type 3 secretion system. The first subdomain of GspD is related to domains in phage tail proteins and outer membrane TonB-dependent receptors. A dodecameric peri-GspD model is proposed in which a solvent-accessible beta strand of the first subdomain interacts with secreted proteins and/or T2SS partner proteins by beta strand complementation.
Collapse
Affiliation(s)
- Konstantin V. Korotkov
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA
| | - Els Pardon
- Department of Molecular and Cellular Interactions, VIB, B-1050 Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Department of Molecular and Cellular Interactions, VIB, B-1050 Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Wim G.J. Hol
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Banci L, Bertini I, Cantini F, Rosenzweig AC, Yatsunyk LA. Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1. Biochemistry 2008; 47:7423-9. [PMID: 18558714 DOI: 10.1021/bi8004736] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Wilson disease protein or ATP7B is a P 1B-type ATPase involved in human copper homeostasis. The extended N-terminus of ATP7B protrudes into the cytosol and contains six Cu(I) binding domains. This report presents the NMR structure of the polypeptide consisting of soluble Cu(I) binding domains 3 and 4. The two domains exhibit ferredoxin-like folds, are linked by a flexible loop, and act independently of one another. Domains 3 and 4 tend to aggregate in a concentration-dependent manner involving nonspecific intermolecular interactions. Both domains can be loaded with Cu(I) when provided as an acetonitrile complex or by the chaperone HAH1. HAH1 forms a 70% complex with domain 4 that is in fast exchange with the free protein in solution. The ability of HAH1 to form a complex only with some domains of ATP7B is an interesting property of this class of proteins and may have a signaling role in the function of the ATPases.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | |
Collapse
|
22
|
Saccenti E, Rosato A. The war of tools: how can NMR spectroscopists detect errors in their structures? JOURNAL OF BIOMOLECULAR NMR 2008; 40:251-261. [PMID: 18320330 DOI: 10.1007/s10858-008-9228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 02/08/2008] [Accepted: 02/13/2008] [Indexed: 05/26/2023]
Abstract
Protein structure determination by NMR methods has started in the mid-eighties and has been growing steadily since then. Ca. 14% of the protein structures deposited in the PDB have been solved by NMR. The evaluation of the quality of NMR structures however is still lacking a well-established practice. In this work, we examined various tools for the assessment of structural quality to ascertain the extent to which these tools could be applied to detect flaws in NMR structures. In particular, we investigated the variation in the scores assigned by these programs as a function of the deviation of the structures induced by errors in assignments or in the upper distance limits used. These perturbations did not distort radically the protein fold, but resulted in backbone RMS deviations up to 3 A, which is in line with errors highlighted in the available literature. We found that it is quite difficult to discriminate the structures perturbed because of misassignments from the original ones, also because the spread in score over the conformers of the original bundle is relatively large. varphi-psi distributions and normality scores related to the backbone conformation and to the distribution of side-chain dihedral angles are the most sensitive indicators of flaws.
Collapse
Affiliation(s)
- Edoardo Saccenti
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | |
Collapse
|
23
|
Interaction of the two soluble metal-binding domains of yeast Ccc2 with copper(I)–Atx1. Biochem Biophys Res Commun 2007; 364:645-9. [DOI: 10.1016/j.bbrc.2007.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 10/10/2007] [Indexed: 11/18/2022]
|
24
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 569] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
25
|
Lutsenko S, LeShane ES, Shinde U. Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys 2007; 463:134-48. [PMID: 17562324 PMCID: PMC2025638 DOI: 10.1016/j.abb.2007.04.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/10/2007] [Accepted: 04/13/2007] [Indexed: 12/11/2022]
Abstract
Copper is essential for cell metabolism as a cofactor of key metabolic enzymes. The biosynthetic incorporation of copper into secreted and plasma membrane-bound proteins requires activity of the copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B. The Cu-ATPases also export excess copper from the cell and thus critically contribute to the homeostatic control of copper. The trafficking of Cu-ATPases from the trans-Golgi network to endocytic vesicles in response to various signals allows for the balance between the biosynthetic and copper exporting functions of these transporters. Although significant progress has been made towards understanding the biochemical characteristics of human Cu-ATPase, the mechanisms that control their function and intracellular localization remain poorly understood. In this review, we summarize current information on structural features and functional properties of ATP7A and ATP7B. We also describe sequence motifs unique for each Cu-ATPase and speculate about their role in regulating ATP7A and ATP7B activity and trafficking.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
26
|
Banci L, Bertini I, Cantini F, Della-Malva N, Migliardi M, Rosato A. The different intermolecular interactions of the soluble copper-binding domains of the menkes protein, ATP7A. J Biol Chem 2007; 282:23140-6. [PMID: 17545667 DOI: 10.1074/jbc.m700695200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP7A is a P-type ATPase involved in copper(I) homeostasis in humans. It possesses a long N-terminal cytosolic tail containing six domains that are individually folded and capable of binding one copper(I) ion each. We investigated the entire N-terminal tail (MNK1-6) in solution by NMR spectroscopy and addressed its interaction with copper(I) and with copper(I)-HAH1, the physiological partner of ATP7A. At copper(I)-HAH1:MNK1-6 ratios of up to 3:1, thus encompassing the range of protein ratios in vivo, both the first and fourth domain of the tail formed a metal-mediated adduct with HAH1 whereas the sixth domain was simultaneously able to partly remove copper(I) from HAH1. These processes are not dependent on one another. In particular, formation of the adducts is not necessary for copper(I) transfer from HAH1 to the sixth domain. The present data, together with available in vivo studies, suggest that the localization of ATP7A between the trans-Golgi network and the plasma membrane may be regulated by the accumulation of the adducts with HAH1, whereas the main role of domains 5 and 6 is to assist copper(I) translocation.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center, Via L. Sacconi 6, and Department of Chemistry, Via della Lastruccia 3, University of Florence, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Banci L, Bertini I, Cantini F, DellaMalva N, Herrmann T, Rosato A, Wüthrich K. Solution structure and intermolecular interactions of the third metal-binding domain of ATP7A, the Menkes disease protein. J Biol Chem 2006; 281:29141-7. [PMID: 16873374 DOI: 10.1074/jbc.m603176200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The third metal-binding domain of the human Menkes protein (MNK3), a copper(I)-transporting ATPase, has been expressed in Escherichia coli and characterized in solution. The solution structure of MNK3, its copper(I)-binding properties, and its interaction with the physiological partner, HAH1, have been studied. MNK3 is the domain most dissimilar in structure from the other domains of the Menkes protein. This is reflected in a significant rearrangement of the last strand of the four-stranded beta-sheet when compared with the other known homologous proteins or protein domains. MNK3 is also peculiar with respect to its interaction with the copper(I) ion, as it was found to be a comparatively weak binder. Copper(I) transfer from metal-loaded HAH1 was observed experimentally, but the metal distribution was shifted toward binding by HAH1. This is at variance with what is observed for the other Menkes domains.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem Rev 2006; 106:1995-2044. [PMID: 16771441 DOI: 10.1021/cr040410w] [Citation(s) in RCA: 1239] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Gaggelli
- Department of Chemistry, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | | | | | |
Collapse
|
29
|
Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N, Pierattelli R, Rosato A, Voulgaris P. The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat Chem Biol 2006; 2:367-8. [PMID: 16732294 DOI: 10.1038/nchembio797] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 05/01/2006] [Indexed: 01/12/2023]
Abstract
Cellular systems allow transition-metal ions to reach or leave the cell or intracellular locations through metal transfer between proteins. By coupling mutagenesis and advanced NMR experiments, we structurally characterized the adduct between the copper chaperone Atx1 and the first copper(I)-binding domain of the Ccc2 ATPase. Copper was required for the interaction. This study provides an understanding of metal-mediated protein-protein interactions in which the metal ion is essential for the weak, reversible interaction between the partners.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Achila D, Banci L, Bertini I, Bunce J, Ciofi-Baffoni S, Huffman DL. Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proc Natl Acad Sci U S A 2006; 103:5729-34. [PMID: 16571664 PMCID: PMC1458641 DOI: 10.1073/pnas.0504472103] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Indexed: 12/16/2022] Open
Abstract
Human Wilson protein is a copper-transporting ATPase located in the secretory pathway possessing six N-terminal metal-binding domains. Here we focus on the function of the metal-binding domains closest to the vesicular portion of the copper pump, i.e., domain 4 (WLN4), and a construct of domains 5 and 6 (WLN5-6). For comparison purposes, some experiments were also performed with domain 2 (WLN2). The solution structure of apoWLN5-6 consists of two ferredoxin folds connected by a short linker, and (15)N relaxation rate measurements show that it behaves as a unit in solution. An NMR titration of apoWLN5-6 with the metallochaperone Cu(I)HAH1 reveals no complex formation and no copper exchange between the two proteins, whereas titration of Cu(I)HAH1 with WLN4 shows the formation of an adduct that is in fast exchange on the NMR time scale with the isolated protein species as confirmed by (15)N relaxation data. A similar interaction is also observed between Cu(I)HAH1 and WLN2; however, the relative amount of the adduct in the protein mixture is lower. An NMR titration of apoWLN5-6 with Cu(I)WLN4 shows copper transfer, first to WLN6 then to WLN5, without the formation of an adduct. Therefore, we suggest that WLN4 and WLN2 are two acceptors of Cu(I) from HAH1, which then somehow route copper to WLN5-6, before the ATP-driven transport of copper across the vesicular membrane.
Collapse
Affiliation(s)
- David Achila
- *Department of Chemistry, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5413; and
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Ivano Bertini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Jennifer Bunce
- *Department of Chemistry, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5413; and
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - David L. Huffman
- *Department of Chemistry, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5413; and
| |
Collapse
|