1
|
Linzer CR, Stein CS, Witmer NH, Xu Z, Schnicker NJ, Boudreau RL. Mitoregulin self-associates to form likely homo-oligomeric pore-like complexes. iScience 2025; 28:111554. [PMID: 39811642 PMCID: PMC11732159 DOI: 10.1016/j.isci.2024.111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has been shown to broadly influence mitochondria, boosting respiratory efficiency and Ca2+ retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure. We noted two key published observations that seemingly remained overlooked: 1) endogenous Mtln co-immunoprecipitates with epitope-tagged Mtln at high efficiency, and 2) Mtln primarily appears to exist in a ∼66 kDa complex. To investigate if Mtln may self-oligomerize into higher-order complexes, we performed co-immunoprecipitation, computational modeling, and native gel assessments of Mtln-containing complexes in cells and tissues and tested whether synthetic Mtln protein itself forms oligomeric complexes. Our combined results provide strong support that Mtln self-associates and likely forms a hexameric pore-like structure.
Collapse
Affiliation(s)
- Connor R. Linzer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Colleen S. Stein
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan H. Witmer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ryan L. Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Linzer CR, Stein CS, Witmer NH, Xu Z, Schnicker NJ, Boudreau RL. Mitoregulin self-associates to form likely homo-oligomeric pore-like structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601956. [PMID: 39026732 PMCID: PMC11257578 DOI: 10.1101/2024.07.10.601956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has also been shown to more broadly influence mitochondria, boosting respiratory efficiency and Ca 2+ retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure. We previously noted two key published observations that seemingly remained overlooked: 1) endogenous Mtln co-immunoprecipitates with epitope-tagged Mtln at high efficiency, and 2) Mtln primarily exists in a ∼66 kDa complex. To investigate if Mtln may self-oligomerize into higher-order complexes, we performed co-immunoprecipitation, protein modeling simulations, and native gel assessments of Mtln-containing complexes in cells and tissues, as well as tested whether synthetic Mtln protein itself forms oligomeric complexes. Our combined results provide strong support that Mtln self-associates and likely forms a hexameric pore-like structure.
Collapse
|
3
|
Caniceiro AB, Bueschbell B, Barreto CA, Preto AJ, Moreira IS. MUG: A mutation overview of GPCR subfamily A17 receptors. Comput Struct Biotechnol J 2022; 21:586-600. [PMID: 36659920 PMCID: PMC9822836 DOI: 10.1016/j.csbj.2022.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate several signaling pathways through a general mechanism that involves their activation, upholding a chain of events that lead to the release of molecules responsible for cytoplasmic action and further regulation. These physiological functions can be severely altered by mutations in GPCR genes. GPCRs subfamily A17 (dopamine, serotonin, adrenergic and trace amine receptors) are directly related with neurodegenerative diseases, and as such it is crucial to explore known mutations on these systems and their impact in structure and function. A comprehensive and detailed computational framework - MUG (Mutations Understanding GPCRs) - was constructed, illustrating key reported mutations and their effect on receptors of the subfamily A17 of GPCRs. We explored the type of mutations occurring overall and in the different families of subfamily A17, as well their localization within the receptor and potential effects on receptor functionality. The mutated residues were further analyzed considering their pathogenicity. The results reveal a high diversity of mutations in the GPCR subfamily A17 structures, drawing attention to the considerable number of mutations in conserved residues and domains. Mutated residues were typically hydrophobic residues enriched at the ligand binding pocket and known activating microdomains, which may lead to disruption of receptor function. MUG as an interactive web application is available for the management and visualization of this dataset. We expect that this interactive database helps the exploration of GPCR mutations, their influence, and their familywise and receptor-specific effects, constituting the first step in elucidating their structures and molecules at the atomic level.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD in Biosciences, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Beatriz Bueschbell
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Carlos A.V. Barreto
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - António J. Preto
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Irina S. Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Corresponding author at: Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
4
|
Corin K, Bowie JU. How physical forces drive the process of helical membrane protein folding. EMBO Rep 2022; 23:e53025. [PMID: 35133709 PMCID: PMC8892262 DOI: 10.15252/embr.202153025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Protein folding is a fundamental process of life with important implications throughout biology. Indeed, tens of thousands of mutations have been associated with diseases, and most of these mutations are believed to affect protein folding rather than function. Correct folding is also a key element of design. These factors have motivated decades of research on protein folding. Unfortunately, knowledge of membrane protein folding lags that of soluble proteins. This gap is partly caused by the greater technical challenges associated with membrane protein studies, but also because of additional complexities. While soluble proteins fold in a homogenous water environment, membrane proteins fold in a setting that ranges from bulk water to highly charged to apolar. Thus, the forces that drive folding vary in different regions of the protein, and this complexity needs to be incorporated into our understanding of the folding process. Here, we review our understanding of membrane protein folding biophysics. Despite the greater challenge, better model systems and new experimental techniques are starting to unravel the forces and pathways in membrane protein folding.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - James U Bowie
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
5
|
Tryptophan, an Amino-Acid Endowed with Unique Properties and Its Many Roles in Membrane Proteins. CRYSTALS 2021. [DOI: 10.3390/cryst11091032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tryptophan is an aromatic amino acid with unique physico-chemical properties. It is often encountered in membrane proteins, especially at the level of the water/bilayer interface. It plays a role in membrane protein stabilization, anchoring and orientation in lipid bilayers. It has a hydrophobic character but can also engage in many types of interactions, such as π–cation or hydrogen bonds. In this review, we give an overview of the role of tryptophan in membrane proteins and a more detailed description of the underlying noncovalent interactions it can engage in with membrane partners.
Collapse
|
6
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
7
|
Jimenez RC, Casajuana-Martin N, García-Recio A, Alcántara L, Pardo L, Campillo M, Gonzalez A. The mutational landscape of human olfactory G protein-coupled receptors. BMC Biol 2021; 19:21. [PMID: 33546694 PMCID: PMC7866472 DOI: 10.1186/s12915-021-00962-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Olfactory receptors (ORs) constitute a large family of sensory proteins that enable us to recognize a wide range of chemical volatiles in the environment. By contrast to the extensive information about human olfactory thresholds for thousands of odorants, studies of the genetic influence on olfaction are limited to a few examples. To annotate on a broad scale the impact of mutations at the structural level, here we analyzed a compendium of 119,069 natural variants in human ORs collected from the public domain. RESULTS OR mutations were categorized depending on their genomic and protein contexts, as well as their frequency of occurrence in several human populations. Functional interpretation of the natural changes was estimated from the increasing knowledge of the structure and function of the G protein-coupled receptor (GPCR) family, to which ORs belong. Our analysis reveals an extraordinary diversity of natural variations in the olfactory gene repertoire between individuals and populations, with a significant number of changes occurring at the structurally conserved regions. A particular attention is paid to mutations in positions linked to the conserved GPCR activation mechanism that could imply phenotypic variation in the olfactory perception. An interactive web application (hORMdb, Human Olfactory Receptor Mutation Database) was developed for the management and visualization of this mutational dataset. CONCLUSION We performed topological annotations and population analysis of natural variants of human olfactory receptors and provide an interactive application to explore human OR mutation data. We envisage that the utility of this information will increase as the amount of available pharmacological data for these receptors grow. This effort, together with ongoing research in the study of genetic changes in other sensory receptors could shape an emerging sensegenomics field of knowledge, which should be considered by food and cosmetic consumer product manufacturers for the benefit of the general population.
Collapse
Affiliation(s)
- Ramón Cierco Jimenez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Present Address: International Agency for Research on Cancer, Evidence Synthesis and Classification Section, WHO Classification of Tumours Group, 150 Cours Albert Thomas, 69008, Lyon, France
| | - Nil Casajuana-Martin
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Adrián García-Recio
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Lidia Alcántara
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Mercedes Campillo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Angel Gonzalez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
| |
Collapse
|
8
|
Xiao Y, Zeng B, Berner N, Frishman D, Langosch D, George Teese M. Experimental determination and data-driven prediction of homotypic transmembrane domain interfaces. Comput Struct Biotechnol J 2020; 18:3230-3242. [PMID: 33209210 PMCID: PMC7649602 DOI: 10.1016/j.csbj.2020.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Homotypic TMD interfaces identified by different techniques share strong similarities. The GxxxG motif is the feature most strongly associated with interfaces. Other features include conservation, polarity, coevolution, and depth in the membrane The role of each of each feature strongly depends on the individual protein. Machine-learning helps predict interfaces from evolutionary sequence data
Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we performed a systematic analysis of their physical and evolutionary properties. To this end, we generated a dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally identified here and combined with literature data. We show that interfacial residues of these homotypic TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues. Further, we suggest for the first time that interface positions are deficient in β-branched residues, and likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these features and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the prediction of key interface residues from evolutionary sequence data.
Collapse
Affiliation(s)
- Yao Xiao
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Bo Zeng
- Department of Bioinformatics, Wissenschaftszentrum, Weihenstephan, Maximus-von-Imhof-Forum 3, Freising 85354, Germany
| | - Nicola Berner
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum, Weihenstephan, Maximus-von-Imhof-Forum 3, Freising 85354, Germany.,Department of Bioinformatics, Peter the Great Saint Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation
| | - Dieter Langosch
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mark George Teese
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.,TNG Technology Consulting GmbH, Beta-Straße 13a, 85774 Unterföhring, Germany
| |
Collapse
|
9
|
Rao R, Diharce J, Dugué B, Ostuni MA, Cadet F, Etchebest C. Versatile Dimerisation Process of Translocator Protein (TSPO) Revealed by an Extensive Sampling Based on a Coarse-Grained Dynamics Study. J Chem Inf Model 2020; 60:3944-3957. [DOI: 10.1021/acs.jcim.0c00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rajas Rao
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Julien Diharce
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Bérénice Dugué
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Mariano A. Ostuni
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Frédéric Cadet
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
- PEACCEL, Artificial Intelligence Department, 6 Square Albin Cachot, Box 42, 75013 Paris, France
| | - Catherine Etchebest
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| |
Collapse
|
10
|
Armbruster KM, Komazin G, Meredith TC. Bacterial lyso-form lipoproteins are synthesized via an intramolecular acyl chain migration. J Biol Chem 2020; 295:10195-10211. [PMID: 32471867 DOI: 10.1074/jbc.ra120.014000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
All bacterial lipoproteins share a variably acylated N-terminal cysteine residue. Gram-negative bacterial lipoproteins are triacylated with a thioether-linked diacylglycerol moiety and an N-acyl chain. The latter is transferred from a membrane phospholipid donor to the α-amino terminus by the enzyme lipoprotein N-acyltransferase (Lnt), using an active-site cysteine thioester covalent intermediate. Many Gram-positive Firmicutes also have N-acylated lipoproteins, but the enzymes catalyzing N-acylation remain uncharacterized. The integral membrane protein Lit (lipoprotein intramolecular transacylase) from the opportunistic nosocomial pathogen Enterococcus faecalis synthesizes a specific lysoform lipoprotein (N-acyl S-monoacylglycerol) chemotype by an unknown mechanism that helps this bacterium evade immune recognition by the Toll-like receptor 2 family complex. Here, we used a deuterium-labeled lipoprotein substrate with reconstituted Lit to investigate intramolecular acyl chain transfer. We observed that Lit transfers the sn-2 ester-linked lipid from the diacylglycerol moiety to the α-amino terminus without forming a covalent thioester intermediate. Utilizing Mut-Seq to analyze an alanine scan library of Lit alleles, we identified two stretches of functionally important amino acid residues containing two conserved histidines. Topology maps based on reporter fusion assays and cysteine accessibility placed both histidines in the extracellular half of the cytoplasmic membrane. We propose a general acid base-promoted catalytic mechanism, invoking direct nucleophilic attack by the substrate α-amino group on the sn-2 ester to form a cyclic tetrahedral intermediate that then collapses to produce lyso-lipoprotein. Lit is a unique example of an intramolecular transacylase differentiated from that catalyzed by Lnt, and provides insight into the heterogeneity of bacterial lipoprotein biosynthetic systems.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gloria Komazin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park Pennsylvania, USA
| |
Collapse
|
11
|
Cho H, Stanzione F, Oak A, Kim GH, Yerneni S, Qi L, Sum AK, Chan C. Intrinsic Structural Features of the Human IRE1α Transmembrane Domain Sense Membrane Lipid Saturation. Cell Rep 2020; 27:307-320.e5. [PMID: 30943411 DOI: 10.1016/j.celrep.2019.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/22/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Activation of inositol-requiring enzyme (IRE1α) is an indispensable step in remedying the cellular stress associated with lipid perturbation in the endoplasmic reticulum (ER) membrane. IRE1α is a single-spanning ER transmembrane protein possessing both kinase and endonuclease functions, and its activation can be fully achieved through the dimerization and/or oligomerization process. How IRE1α senses membrane lipid saturation remains largely unresolved. Using both computational and experimental tools, we systematically investigated the dimerization process of the transmembrane domain (TMD) of IRE1α and found that, with help of the serine 450 residue, the conserved tryptophan 457 residue buttresses the core dimerization interface of IRE1α-TMD. BiFC (bimolecular fluorescence complementation) experiments revealed that mutation on these residues abolished the saturated fatty acid-induced dimerization in the ER membrane and subsequently inactivated IRE1α activity in vivo. Therefore, our results suggest that the structural elements of IRE1α-TMD serve as a key sensor that detects membrane aberrancy.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Francesca Stanzione
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; Institute of Medical Science-University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Amrita Oak
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Geun Hyang Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sindura Yerneni
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Amadeu K Sum
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Lacapere JJ, Duma L, Finet S, Kassiou M, Papadopoulos V. Insight into the Structural Features of TSPO: Implications for Drug Development. Trends Pharmacol Sci 2020; 41:110-122. [PMID: 31864680 PMCID: PMC7021566 DOI: 10.1016/j.tips.2019.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
The translocator protein (TSPO), an 18-kDa transmembrane protein primarily found in the outer mitochondrial membrane, is evolutionarily conserved and widely distributed across species. In mammals, TSPO has been described as a key member of a multiprotein complex involved in many putative functions and, over the years, several classes of ligand have been developed to modulate these functions. In this review, we consider the currently available atomic structures of mouse and bacterial TSPO and propose a rationale for the development of new ligands for the protein. We provide a review of TSPO monomeric and oligomeric states and their conformational flexibility, together with ligand-binding site and interaction mechanisms. These data are expected to help considerably the development of high-affinity ligands for TSPO-based therapies or diagnostics.
Collapse
Affiliation(s)
- Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005 Paris, France.
| | - Luminita Duma
- CNRS Enzyme and Cell Engineering Laboratory, Sorbonne Université, Université de Technologie de Compiègne, 60203 Compiègne Cedex, France
| | - Stephanie Finet
- IMPMC, UMR 7590 CNRS Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, F11, Eastern Ave, Sydney, NSW 2006, Australia
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev 2019; 38:100591. [PMID: 31353059 DOI: 10.1016/j.blre.2019.100591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by a variable response to steroids during induction and/or consolidation therapy. Notably, recent work suggested that these differences in glucocorticoid sensitivity might, at least in part, be mediated by hyperactivation of specific oncogenic pathways such as RAS/MEK/ERK, PI3K/AKT and IL7R/JAK/STAT. In this review, we elaborate on putative associations between aberrant signaling, therapy resistance, incidence of relapse and clinical outcome in human T-ALL. Furthermore, we emphasize that this potential association with clinical parameters might also be mediated by the tumor microenvironment as a result of increased sensitivity of leukemic T-cells towards cytokine induced signaling pathway activation. With this in mind, we provide an overview of small molecule inhibitors that might have clinical potential for the treatment of human T-ALL in the near future as a result of their ability to overcome steroid resistance thereby potentially increasing survival rates in this aggressive hematological neoplasm.
Collapse
Affiliation(s)
- Renate De Smedt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
14
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
15
|
Anderson SM, Mueller BK, Lange EJ, Senes A. Combination of Cα-H Hydrogen Bonds and van der Waals Packing Modulates the Stability of GxxxG-Mediated Dimers in Membranes. J Am Chem Soc 2017; 139:15774-15783. [PMID: 29028318 PMCID: PMC5927632 DOI: 10.1021/jacs.7b07505] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GxxxG motif is frequently found at the dimerization interface of a transmembrane structural motif called GASright, which is characterized by a short interhelical distance and a right-handed crossing angle between the helices. In GASright dimers, such as glycophorin A (GpA), BNIP3, and members of the ErbB family, the backbones of the helices are in contact, and they invariably display networks of 4 to 8 weak hydrogen bonds between Cα-H carbon donors and carbonyl acceptors on opposing helices (Cα-H···O═C hydrogen bonds). These networks of weak hydrogen bonds at the helix-helix interface are presumably stabilizing, but their energetic contribution to dimerization has yet to be determined experimentally. Here, we present a computational and experimental structure-based analysis of GASright dimers of different predicted stabilities, which show that a combination of van der Waals packing and Cα-H hydrogen bonding predicts the experimental trend of dimerization propensities. This finding provides experimental support for the hypothesis that the networks of Cα-H hydrogen bonds are major contributors to the free energy of association of GxxxG-mediated dimers. The structural comparison between groups of GASright dimers of different stabilities reveals distinct sequence as well as conformational preferences. Stability correlates with shorter interhelical distances, narrower crossing angles, better packing, and the formation of larger networks of Cα-H hydrogen bonds. The identification of these structural rules provides insight on how nature could modulate stability in GASright and finely tune dimerization to support biological function.
Collapse
Affiliation(s)
- Samantha M Anderson
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Benjamin K Mueller
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Evan J Lange
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
17
|
Jefferson RE, Min D, Corin K, Wang JY, Bowie JU. Applications of Single-Molecule Methods to Membrane Protein Folding Studies. J Mol Biol 2017; 430:424-437. [PMID: 28549924 DOI: 10.1016/j.jmb.2017.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Protein folding is a fundamental life process with many implications throughout biology and medicine. Consequently, there have been enormous efforts to understand how proteins fold. Almost all of this effort has focused on water-soluble proteins, however, leaving membrane proteins largely wandering in the wilderness. The neglect has occurred not because membrane proteins are unimportant but rather because they present many theoretical and technical complications. Indeed, quantitative membrane protein folding studies are generally restricted to a handful of well-behaved proteins. Single-molecule methods may greatly alter this picture, however, because the ability to work at or near infinite dilution removes aggregation problems, one of the main technical challenges of membrane protein folding studies.
Collapse
Affiliation(s)
- Robert E Jefferson
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Karolina Corin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Jing Yang Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
18
|
Schanzenbach C, Schmidt FC, Breckner P, Teese MG, Langosch D. Identifying ionic interactions within a membrane using BLaTM, a genetic tool to measure homo- and heterotypic transmembrane helix-helix interactions. Sci Rep 2017; 7:43476. [PMID: 28266525 PMCID: PMC5339904 DOI: 10.1038/srep43476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
The assembly of integral membrane protein complexes is frequently supported by transmembrane domain (TMD) interactions. Here, we present the BLaTM assay that measures homotypic as well as heterotypic TMD-TMD interactions in a bacterial membrane. The system is based on complementation of β-lactamase fragments genetically fused to interacting TMDs, which confers ampicillin resistance to expressing cells. We validated BLaTM by showing that the assay faithfully reports known sequence-specific interactions of both types. In a practical application, we used BLaTM to screen a focussed combinatorial library for heterotypic interactions driven by electrostatic forces. The results reveal novel patterns of ionizable amino acids within the isolated TMD pairs. Those patterns indicate that formation of heterotypic TMD pairs is most efficiently supported by closely spaced ionizable residues of opposite charge. In addition, TMD heteromerization can apparently be driven by hydrogen bonding between basic or between acidic residues.
Collapse
Affiliation(s)
- Christoph Schanzenbach
- Munich Center For Integrated Protein Science (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Fabian C. Schmidt
- Munich Center For Integrated Protein Science (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Patrick Breckner
- Munich Center For Integrated Protein Science (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mark G. Teese
- Munich Center For Integrated Protein Science (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Dieter Langosch
- Munich Center For Integrated Protein Science (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
19
|
Steindorf D, Schneider D. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:245-256. [DOI: 10.1016/j.bbamem.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
20
|
Kordyukova L. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Virus Res 2017; 227:183-199. [DOI: 10.1016/j.virusres.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
21
|
Abstract
The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets.
Collapse
Affiliation(s)
- Hang Yin
- Department of Chemistry and Biochemistry.,BioFrontiers Institute, and.,Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Aaron D Flynn
- BioFrontiers Institute, and.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309; ,
| |
Collapse
|
22
|
Identification and Characterization of the Novel Subunit CcoM in the cbb3₃Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell. mBio 2016; 7:e01921-15. [PMID: 26814183 PMCID: PMC4742706 DOI: 10.1128/mbio.01921-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions. The respiratory chain has recently moved into the focus for drug development against prokaryotic human pathogens, in particular, for multiresistant strains (P. Murima, J. D. McKinney, and K. Pethe, Chem Biol 21:1423–1432, 2014, http://dx.doi.org/10.1016/j.chembiol.2014.08.020). cbb3-CcO is an essential enzyme for many different pathogenic bacterial species, e.g., Helicobacter pylori, Vibrio cholerae, and Pseudomonas aeruginosa, and represents a promising drug target. In order to develop compounds targeting these proteins, a detailed understanding of the molecular architecture and function is required. Here we identified and characterized a novel subunit, CcoM, in the cbb3-CcO complex and thereby completed the crystal structure of the Cbb3 oxidase from Pseudomonas stutzeri, a bacterium closely related to the human pathogen Pseudomonas aeruginosa.
Collapse
|
23
|
Kwon MJ, Park J, Jang S, Eom CY, Oh ES. The Conserved Phenylalanine in the Transmembrane Domain Enhances Heteromeric Interactions of Syndecans. J Biol Chem 2015; 291:872-81. [PMID: 26601939 DOI: 10.1074/jbc.m115.685040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The transmembrane domain (TMD) of the syndecans, a family of transmembrane heparin sulfate proteoglycans, is involved in forming homo- and heterodimers and oligomers that transmit signaling events. Recently, we reported that the unique phenylalanine in TMD positively regulates intramolecular interactions of syndecan-2. Besides the unique phenylalanine, syndecan-2 contains a conserved phenylalanine (SDC2-Phe-169) that is present in all syndecan TMDs, but its function has not been determined. We therefore investigated the structural role of SDC2-Phe-169 in syndecan TMDs. Replacement of SDC2-Phe-169 by tyrosine (S2F169Y) did not affect SDS-resistant homodimer formation but significantly reduced SDS-resistant heterodimer formation between syndecan-2 and -4, suggesting that SDC2-Phe-169 is involved in the heterodimerization/oligomerization of syndecans. Similarly, in an in vitro binding assay, a syndecan-2 mutant (S2(F169Y)) showed a significantly reduced interaction with syndecan-4. FRET assays showed that heteromolecular interactions between syndecan-2 and -4 were reduced in HEK293T cells transfected with S2(F169Y) compared with syndecan-2. Moreover, S2(F169Y) reduced downstream reactions mediated by the heterodimerization of syndecan-2 and -4, including Rac activity, cell migration, membrane localization of PKCα, and focal adhesion formation. The conserved phenylalanine in syndecan-1 and -3 also showed heterodimeric interaction with syndecan-2 and -4. Taken together, these findings suggest that the conserved phenylalanine in the TMD of syndecans is crucial in regulating heteromeric interactions of syndecans.
Collapse
Affiliation(s)
- Mi-Jung Kwon
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Jisu Park
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Sinae Jang
- the Seoul Center, Korea Basic Science Institute, Seoul 136-075, Korea
| | - Chi-Yong Eom
- the Seoul Center, Korea Basic Science Institute, Seoul 136-075, Korea
| | - Eok-Soo Oh
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| |
Collapse
|
24
|
Abstract
Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane.
Collapse
Affiliation(s)
- Mark G Teese
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| |
Collapse
|
25
|
Nash A, Notman R, Dixon AM. De novo design of transmembrane helix–helix interactions and measurement of stability in a biological membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1248-57. [DOI: 10.1016/j.bbamem.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 01/03/2023]
|
26
|
Stangl M, Schneider D. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1886-96. [PMID: 25791349 DOI: 10.1016/j.bbamem.2015.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
27
|
Toward understanding driving forces in membrane protein folding. Arch Biochem Biophys 2014; 564:297-313. [DOI: 10.1016/j.abb.2014.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
|
28
|
The influenza virus neuraminidase protein transmembrane and head domains have coevolved. J Virol 2014; 89:1094-104. [PMID: 25378494 DOI: 10.1128/jvi.02005-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Transmembrane domains (TMDs) from single-spanning membrane proteins are commonly viewed as membrane anchors for functional domains. Influenza virus neuraminidase (NA) exemplifies this concept, as it retains enzymatic function upon proteolytic release from the membrane. However, the subtype 1 NA TMDs have become increasingly more polar in human strains since 1918, which suggests that selection pressure exists on this domain. Here, we investigated the N1 TMD-head domain relationship by exchanging a prototypical "old" TMD (1933) with a "recent" (2009), more polar TMD and an engineered hydrophobic TMD. Each exchange altered the TMD association, decreased the NA folding efficiency, and significantly reduced viral budding and replication at 37°C compared to at 33°C, at which NA folds more efficiently. Passaging the chimera viruses at 37°C restored the NA folding efficiency, viral budding, and infectivity by selecting for NA TMD mutations that correspond with their polar or hydrophobic assembly properties. These results demonstrate that single-spanning membrane protein TMDs can influence distal domain folding, as well as membrane-related processes, and suggest the NA TMD in H1N1 viruses has become more polar to maintain compatibility with the evolving enzymatic head domain. IMPORTANCE The neuraminidase (NA) protein from influenza A viruses (IAVs) functions to promote viral release and is one of the major surface antigens. The receptor-destroying activity in NA resides in the distal head domain that is linked to the viral membrane by an N-terminal hydrophobic transmembrane domain (TMD). Over the last century, the subtype 1 NA TMDs (N1) in human H1N1 viruses have become increasingly more polar, and the head domains have changed to alter their antigenicity. Here, we provide the first evidence that an "old" N1 head domain from 1933 is incompatible with a "recent" (2009), more polar N1 TMD sequence and that, during viral replication, the head domain drives the selection of TMD mutations. These mutations modify the intrinsic TMD assembly to restore the head domain folding compatibility and the resultant budding deficiency. This likely explains why the N1 TMDs have become more polar and suggests the N1 TMD and head domain have coevolved.
Collapse
|
29
|
Kirrbach J, Krugliak M, Ried CL, Pagel P, Arkin IT, Langosch D. Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins. Bioinformatics 2013; 29:1623-30. [PMID: 23640719 DOI: 10.1093/bioinformatics/btt247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Most integral membrane proteins form dimeric or oligomeric complexes. Oligomerization is frequently supported by the non-covalent interaction of transmembrane helices. It is currently not clear how many high-affinity transmembrane domains (TMD) exist in a proteome and how specific their interactions are with respect to preferred contacting faces and their underlying residue motifs. RESULTS We first identify a threshold of 55% sequence similarity, which demarcates the border between meaningful alignments of TMDs and chance alignments. Clustering the human single-span membrane proteome using this threshold groups ~40% of the TMDs. The homotypic interaction of the TMDs representing the 33 largest clusters was systematically investigated under standardized conditions. The results reveal a broad distribution of relative affinities. High relative affinity frequently coincides with (i) the existence of a preferred helix-helix interface and (ii) sequence specificity as indicated by reduced affinity after mutating conserved residues. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jan Kirrbach
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2013; 53:211-222. [PMID: 23234870 DOI: 10.1016/j.jbior.2012.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
Interleukin-7 (IL-7), a cytokine produced in the bone marrow, thymus and other organs, is mandatory for normal human T-cell development and peripheral homeostasis. Different studies, including phase I clinical trials, have indicated the potential therapeutic value of recombinant IL-7 in the context of anti-cancer immunotherapy and as a booster of immune reconstitution. However, the two main pathways activated by IL-7, JAK/STAT5 and PI3K/Akt/mTOR, have both been implicated in cancer and there is considerable evidence that IL-7 and its receptor (IL-7R), formed by IL-7Rα (encoded by IL7R) and γc, may partake in T-cell acute lymphoblastic leukemia (T-ALL) development. In this context, the most compelling data comes from recent studies demonstrating that around 10% of T-ALL patients display IL7R gain-of-function mutations leading, in most cases, to disulfide bond-dependent homodimerization of two mutant receptors and consequent constitutive activation of downstream signaling, with ensuing cell transformation in vitro and tumorigenic ability in vivo. Here, we review the data on the involvement of IL-7 and IL-7R in T-ALL, further discussing the peculiarities of IL-7R-mediated signaling in human leukemia T-cells that may be of therapeutic value, namely regarding the potential use of PI3K and mTOR pharmacological inhibitors.
Collapse
Affiliation(s)
- Daniel Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Unversidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
31
|
Ried CL, Kube S, Kirrbach J, Langosch D. Homotypic Interaction and Amino Acid Distribution of Unilaterally Conserved Transmembrane Helices. J Mol Biol 2012; 420:251-7. [DOI: 10.1016/j.jmb.2012.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/29/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022]
|
32
|
Fink A, Sal-Man N, Gerber D, Shai Y. Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:974-83. [PMID: 22155642 DOI: 10.1016/j.bbamem.2011.11.029] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/17/2011] [Accepted: 11/22/2011] [Indexed: 11/17/2022]
Abstract
Protein-protein interactions within the membrane are involved in many vital cellular processes. Consequently, deficient oligomerization is associated with known diseases. The interactions can be partially or fully mediated by transmembrane domains (TMD). However, in contrast to soluble regions, our knowledge of the factors that control oligomerization and recognition between the membrane-embedded domains is very limited. Due to the unique chemical and physical properties of the membrane environment, rules that apply to interactions between soluble segments are not necessarily valid within the membrane. This review summarizes our knowledge on the sequences mediating TMD-TMD interactions which include conserved motifs such as the GxxxG, QxxS, glycine and leucine zippers, and others. The review discusses the specific role of polar, charged and aromatic amino acids in the interface of the interacting TMD helices. Strategies to determine the strength, dynamics and specificities of these interactions by experimental (ToxR, TOXCAT, GALLEX and FRET) or various computational approaches (molecular dynamic simulation and bioinformatics) are summarized. Importantly, the contribution of the membrane environment to the TMD-TMD interaction is also presented. Studies utilizing exogenously added TMD peptides have been shown to influence in vivo the dimerization of intact membrane proteins involved in various diseases. The chirality independent TMD-TMD interactions allows for the design of novel short d- and l-amino acids containing TMD peptides with advanced properties. Overall these studies shed light on the role of specific amino acids in mediating the assembly of the TMDs within the membrane environment and their contribution to protein function. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Avner Fink
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | |
Collapse
|
33
|
Computational studies of membrane proteins: models and predictions for biological understanding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:927-41. [PMID: 22051023 DOI: 10.1016/j.bbamem.2011.09.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 01/26/2023]
Abstract
We discuss recent progresses in computational studies of membrane proteins based on physical models with parameters derived from bioinformatics analysis. We describe computational identification of membrane proteins and prediction of their topology from sequence, discovery of sequence and spatial motifs, and implications of these discoveries. The detection of evolutionary signal for understanding the substitution pattern of residues in the TM segments and for sequence alignment is also discussed. We further discuss empirical potential functions for energetics of inserting residues in the TM domain, for interactions between TM helices or strands, and their applications in predicting lipid-facing surfaces of the TM domain. Recent progresses in structure predictions of membrane proteins are also reviewed, with further discussions on calculation of ensemble properties such as melting temperature based on simplified state space model. Additional topics include prediction of oligomerization state of membrane proteins, identification of the interfaces for protein-protein interactions, and design of membrane proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
|
34
|
Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, Tritapoe J, Hixon JA, Silveira AB, Cardoso BA, Sarmento LM, Correia N, Toribio ML, Kobarg J, Horstmann M, Pieters R, Brandalise SR, Ferrando AA, Meijerink JP, Durum SK, Yunes JA, Barata JT. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43:932-9. [PMID: 21892159 DOI: 10.1038/ng.924] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/05/2011] [Indexed: 12/12/2022]
Abstract
Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (encoded by IL7R) and γc, are essential for normal T-cell development and homeostasis. Here we show that IL7R is an oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). We find that 9% of individuals with T-ALL have somatic gain-of-function IL7R exon 6 mutations. In most cases, these IL7R mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote de novo formation of intermolecular disulfide bonds between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell transformation and tumor formation. Overall, our findings indicate that IL7R mutational activation is involved in human T-cell leukemogenesis, paving the way for therapeutic targeting of IL-7R-mediated signaling in T-ALL.
Collapse
Affiliation(s)
- Priscila P Zenatti
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li E, Wimley WC, Hristova K. Transmembrane helix dimerization: beyond the search for sequence motifs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:183-93. [PMID: 21910966 DOI: 10.1016/j.bbamem.2011.08.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/07/2023]
Abstract
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | | | | |
Collapse
|
36
|
Sammond DW, Joce C, Takeshita R, McQuate SE, Ghosh N, Martin JM, Yin H. Transmembrane peptides used to investigate the homo-oligomeric interface and binding hotspot of latent membrane protein 1. Biopolymers 2011; 95:772-84. [PMID: 21560118 DOI: 10.1002/bip.21672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 04/29/2011] [Indexed: 12/30/2022]
Abstract
Epstein-Barr virus (EBV), a human γ-herpesvirus, establishes lifelong infection by targeting the adaptive immune system of the host through memory B cells. Although normally benign, EBV contributes to lymphoid malignancies and lymphoproliferative syndromes in immunocompromised individuals. The viral oncoprotein latent membrane protein 1 (LMP-1) is essential for B lymphocyte immortalization by EBV. The constitutive signaling activity of LMP-1 is dependent on homo-oligomerization of its six-spanning hydrophobic transmembrane domain (TMD). However, the mechanism driving LMP-1 intermolecular interaction is poorly understood. Here, we show that the fifth transmembrane helix (TM5) of LMP-1 strongly self-associates, forming a homotrimeric complex mediated by a polar residue embedded in the membrane, D150. Replacement of this aspartic acid residue with alanine disrupts TM5 self-association in detergent micelles and bacterial cell membranes. A full-length LMP-1 variant harboring the D150A substitution is deficient in NFκB activation, supporting the key role of the fifth transmembrane helix in constitutive activation of signaling by this oncoprotein.
Collapse
Affiliation(s)
- Deanne W Sammond
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Schneggenburger PE, Beerlink A, Weinhausen B, Salditt T, Diederichsen U. Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:417-36. [PMID: 21181143 PMCID: PMC3070074 DOI: 10.1007/s00249-010-0645-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 11/18/2022]
Abstract
Studying membrane active peptides or protein fragments within the lipid bilayer environment is particularly challenging in the case of synthetically modified, labeled, artificial, or recently discovered native structures. For such samples the localization and orientation of the molecular species or probe within the lipid bilayer environment is the focus of research prior to an evaluation of their dynamic or mechanistic behavior. X-ray scattering is a powerful method to study peptide/lipid interactions in the fluid, fully hydrated state of a lipid bilayer. For one, the lipid response can be revealed by observing membrane thickening and thinning as well as packing in the membrane plane; at the same time, the distinct positions of peptide moieties within lipid membranes can be elucidated at resolutions of up to several angstroms by applying heavy-atom labeling techniques. In this study, we describe a generally applicable X-ray scattering approach that provides robust and quantitative information about peptide insertion and localization as well as peptide/lipid interaction within highly oriented, hydrated multilamellar membrane stacks. To this end, we have studied an artificial, designed β-helical peptide motif in its homodimeric and hairpin variants adopting different states of oligomerization. These peptide lipid complexes were analyzed by grazing incidence diffraction (GID) to monitor changes in the lateral lipid packing and ordering. In addition, we have applied anomalous reflectivity using synchrotron radiation as well as in-house X-ray reflectivity in combination with iodine-labeling in order to determine the electron density distribution ρ(z) along the membrane normal (z axis), and thereby reveal the hydrophobic mismatch situation as well as the position of certain amino acid side chains within the lipid bilayer. In the case of multiple labeling, the latter technique is not only applicable to demonstrate the peptide's reconstitution but also to generate evidence about the relative peptide orientation with respect to the lipid bilayer.
Collapse
Affiliation(s)
- Philipp E. Schneggenburger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - André Beerlink
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|
38
|
Kordyukova LV, Serebryakova MV, Polyansky AA, Kropotkina EA, Alexeevski AV, Veit M, Efremov RG, Filippova IY, Baratova LA. Linker and/or transmembrane regions of influenza A/Group-1, A/Group-2, and type B virus hemagglutinins are packed differently within trimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1843-54. [PMID: 21420932 DOI: 10.1016/j.bbamem.2011.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/19/2022]
Abstract
Influenza virus hemagglutinin is a homotrimeric spike glycoprotein crucial for virions' attachment, membrane fusion, and assembly reactions. X-ray crystallography data are available for hemagglutinin ectodomains of various types/subtypes but not for anchoring segments. To get structural information for the linker and transmembrane regions of hemagglutinin, influenza A (H1-H16 subtypes except H8 and H15) and B viruses were digested with bromelain or subtilisin Carlsberg, either within virions or in non-ionic detergent micelles. Proteolytical fragments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Within virions, hemagglutinins of most influenza A/Group-1 and type B virus strains were more susceptible to digestion with bromelain and/or subtilisin compared to A/Group-2 hemagglutinins. The cleavage sites were always located in the hemagglutinin linker sequence. In detergent, 1) bromelain cleaved hemagglutinin of every influenza A subtype in the linker region; 2) subtilisin cleaved Group-2 hemagglutinins in the linker region; 3) subtilisin cleaved Group-1 hemagglutinins in the transmembrane region; 4) both enzymes cleaved influenza B virus hemagglutinin in the transmembrane region. We propose that the A/Group-2 hemagglutinin linker and/or transmembrane regions are more tightly associated within trimers than type A/Group-1 and particularly type B ones. This hypothesis is underpinned by spatial trimeric structure modeling performed for transmembrane regions of both Group-1 and Group-2 hemagglutinin representatives. Differential S-acylation of the hemagglutinin C-terminal anchoring segment with palmitate/stearate residues possibly contributes to fine tuning of transmembrane trimer packing and stabilization since decreased stearate amount correlated with deeper digestion of influenza B and some A/Group-1 hemagglutinins.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Crusca E, Rezende AA, Marchetto R, Mendes-Giannini MJS, Fontes W, Castro MS, Cilli EM. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Biopolymers 2011; 96:41-8. [DOI: 10.1002/bip.21454] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Jirasko V, Montserret R, Lee JY, Gouttenoire J, Moradpour D, Penin F, Bartenschlager R. Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its key role as organizer of virion assembly. PLoS Pathog 2010; 6:e1001233. [PMID: 21187906 PMCID: PMC3002993 DOI: 10.1371/journal.ppat.1001233] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/16/2010] [Indexed: 12/16/2022] Open
Abstract
Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.
Collapse
Affiliation(s)
- Vlastimil Jirasko
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Schneggenburger PE, Müllar S, Worbs B, Steinem C, Diederichsen U. Molecular recognition at the membrane-water interface: controlling integral peptide helices by off-membrane nucleobase pairing. J Am Chem Soc 2010; 132:8020-8. [PMID: 20481532 DOI: 10.1021/ja1006349] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aggregation and organization of membrane proteins and transmembrane peptides is related to the interacting molecular species itself and strongly depends on the lipid environment. Because of the complexity and dynamics of these interactions, they are often hardly traceable and nearly impossible to predict. For this reason, peptide model systems are a valuable tool in studying membrane associated processes since they are synthetically accessible and can be readily modified. To control and study the aggregation of peptide transmembrane domains (TMDs) the interacting interfaces of the TMDs themselves can be altered. A second less extensively studied approach targets the TMD assembly by using interaction and recognition of domains at the membrane outside as frequently found in the membrane protein interplay and protein assembly. In the present study, double helical transmembrane domains were designed and synthesized on the basis of a recently reported d,l-alternating peptide pore motif derived from gramicidin A. The highly hydrophobic and aromatic transmembrane peptide was covalently functionalized with a short peptide nucleic acid (PNA) used as specific outer-membrane recognition unit. The PNA sequences were chosen with high polarity to ensure localization within the aqueous phase. To estimate the impact of the membrane adjacent recognition on the TMD assembly by Förster resonance energy transfer (FRET), fluorescence probes were covalently attached to the side chains of the membrane spanning peptide helices. Dimerization of the TMD-peptide/PNA conjugates within unilamellar lipid vesicles was observed. The dimer/monomer ratio of TMDs can be controlled by temperature variation.
Collapse
|
42
|
Labaditin, a cyclic peptide with rich biotechnological potential: preliminary toxicological studies and structural changes in water and lipid membrane environment. Amino Acids 2010; 40:135-44. [DOI: 10.1007/s00726-010-0648-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 06/01/2010] [Indexed: 01/25/2023]
|
43
|
Fiedler S, Broecker J, Keller S. Protein folding in membranes. Cell Mol Life Sci 2010; 67:1779-98. [PMID: 20101433 PMCID: PMC11115603 DOI: 10.1007/s00018-010-0259-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/01/2010] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
Separation of cells and organelles by bilayer membranes is a fundamental principle of life. Cellular membranes contain a baffling variety of proteins, which fulfil vital functions as receptors and signal transducers, channels and transporters, motors and anchors. The vast majority of membrane-bound proteins contain bundles of alpha-helical transmembrane domains. Understanding how these proteins adopt their native, biologically active structures in the complex milieu of a membrane is therefore a major challenge in today's life sciences. Here, we review recent progress in the folding, unfolding and refolding of alpha-helical membrane proteins and compare the molecular interactions that stabilise proteins in lipid bilayers. We also provide a critical discussion of a detergent denaturation assay that is increasingly used to determine membrane-protein stability but is not devoid of conceptual difficulties.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jana Broecker
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sandro Keller
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
44
|
Strong oligomerization behavior of PDGFβ receptor transmembrane domain and its regulation by the juxtamembrane regions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:605-15. [DOI: 10.1016/j.bbamem.2009.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/09/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022]
|
45
|
Ionic Interactions Promote Transmembrane Helix–Helix Association Depending on Sequence Context. J Mol Biol 2010; 396:452-61. [DOI: 10.1016/j.jmb.2009.11.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/19/2009] [Accepted: 11/21/2009] [Indexed: 11/30/2022]
|
46
|
Abstract
Membrane-spanning α-helices represent major sites of protein-protein interaction in membrane protein oligomerization and folding. As such, these interactions may be of exquisite specificity. Specificity often rests on a complex interplay of different types of residues forming the helix-helix interfaces via dense packing and different non-covalent forces, including van der Waal’s forces, hydrogen bonding, charge-charge interactions, and aromatic interactions. These interfaces often contain complex residue motifs where the contribution of constituent amino acids depends on the context of the surrounding sequence. Moreover, transmembrane helix-helix interactions are increasingly recognized as being dynamic and dependent on the functional state of a given protein.
Collapse
|
47
|
Haeger S, Kuzmin D, Detro-Dassen S, Lang N, Kilb M, Tsetlin V, Betz H, Laube B, Schmalzing G. An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors. Nat Struct Mol Biol 2009; 17:90-8. [PMID: 20023641 DOI: 10.1038/nsmb.1721] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 10/19/2009] [Indexed: 12/28/2022]
Abstract
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that mediate fast synaptic transmission. Here functional pentameric assembly of truncated fragments comprising the ligand-binding N-terminal ectodomains and the first three transmembrane helices, M1-M3, of both the inhibitory glycine receptor (GlyR) alpha1 and the 5HT(3)A receptor subunits was found to be rescued by coexpressing the complementary fourth transmembrane helix, M4. Alanine scanning identified multiple aromatic residues in M1, M3 and M4 as key determinants of GlyR assembly. Homology modeling and molecular dynamics simulations revealed that these residues define an interhelical aromatic network, which we propose determines the geometry of M1-M4 tetrahelical packing such that nascent pLGIC subunits must adopt a closed fivefold symmetry. Because pLGIC ectodomains form random nonstoichiometric oligomers, proper pentameric assembly apparently depends on intersubunit interactions between extracellular domains and intrasubunit interactions between transmembrane segments.
Collapse
Affiliation(s)
- Svenja Haeger
- Molecular Pharmacology, RWTH Aachen University of Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li E, Merzlyakov M, Lin J, Searson P, Hristova K. Utility of surface-supported bilayers in studies of transmembrane helix dimerization. J Struct Biol 2009; 168:53-60. [DOI: 10.1016/j.jsb.2009.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/06/2009] [Accepted: 03/10/2009] [Indexed: 01/09/2023]
|
49
|
Langosch D, Arkin IT. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 2009; 18:1343-58. [PMID: 19530249 PMCID: PMC2775205 DOI: 10.1002/pro.154] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/23/2022]
Abstract
Within 1 or 2 decades, the reputation of membrane-spanning alpha-helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein-protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small-scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come.
Collapse
Affiliation(s)
- Dieter Langosch
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | |
Collapse
|
50
|
Hwang HW, Lee JR, Chou KY, Suen CS, Hwang MJ, Chen C, Shieh RC, Chau LY. Oligomerization is crucial for the stability and function of heme oxygenase-1 in the endoplasmic reticulum. J Biol Chem 2009; 284:22672-9. [PMID: 19556236 DOI: 10.1074/jbc.m109.028001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1), a stress-inducible enzyme anchored in the endoplasmic reticulum (ER) by a single transmembrane segment (TMS) located at the C terminus, interacts with NADPH cytochrome P450 reductase and biliverdin reductase to catalyze heme degradation to biliverdin and its metabolite, bilirubin. Previous studies suggested that HO-1 functions as a monomer. Using chemical cross-linking, co-immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments, here we showed that HO-1 forms dimers/oligomers in the ER. However, oligomerization was not observed with a truncated HO-1 lacking the C-terminal TMS (amino acids 266-285), which exhibited cytosolic and nuclear localization, indicating that the TMS is essential for the self-assembly of HO-1 in the ER. To identify the interface involved in the TMS-TMS interaction, residue Trp-270, predicted by molecular modeling as a potential interfacial residue of TMS alpha-helices, was mutated, and the effects on protein subcellular localization and activity assessed. The results showed that the W270A mutant was present exclusively in the ER and formed oligomers with similar activity to those of the wild type HO-1. Interestingly, the W270N mutant was localized not only in the ER, but also in the cytosol and nucleus, suggesting it is susceptible to proteolytic cleavage. Moreover, the microsomal HO activity of the W270N mutant was significantly lower than that of the wild type. The W270N mutation appears to interfere with the oligomeric state, as revealed by a lower FRET efficiency. Collectively, these data suggest that oligomerization, driven by TMS-TMS interactions, is crucial for the stabilization and function of HO-1 in the ER.
Collapse
Affiliation(s)
- Hsuan-Wen Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|