1
|
He X, Liu C, Li X, Yang Q, Niu F, An L, Fan Y, Li Y, Zhou Z, Zhou H, Yang X, Liu X. Structural and biochemical insights into the molecular mechanism of N-acetylglucosamine/N-Acetylmuramic acid kinase MurK from Clostridium acetobutylicum. Int J Biol Macromol 2024; 280:135747. [PMID: 39304040 DOI: 10.1016/j.ijbiomac.2024.135747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MurK is a MurNAc- and GlcNAc-specific amino sugar kinase, phosphorylates MurNAc and GlcNAc at the 6-hydroxyl group in an ATP-dependent manner, and contributes to the recovery of both amino sugars during the cell wall turnover in Clostridium acetobutylicum. Herein, we determined the crystal structures of MurK in complex with MurNAc, GlcNAc, and glucose, respectively. MurK represents the V-shaped fold, which is divided into a small N-terminal domain and a large C-terminal domain. The catalytic pocket is located within the deep cavity between the two domains of the MurK monomer. We mapped the significant enzyme-substrate interactions, identified key residues involved in the catalytic activity of MurK, and found that residues Asp77 and Arg78 from the β4-α2-loop confer structural flexibilities to specifically accommodate GlcNAc and MurNAc, respectively. Moreover, structural comparison revealed that MurK adopts closed-active conformation induced by the N-acetyl moiety from GlcNAc/MurNAc, rather than closed-inactive conformation induced by glucose, to carry out its catalytic reaction. Taken together, our study provides structural and functional insights into the molecular mechanism of MurK for the phosphorylation of both MurNAc and GlcNAc, sugar substrate specificity, and conformational changes upon sugar substrate binding.
Collapse
Affiliation(s)
- Xingyi He
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Chen Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Xiaobing Li
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Qian Yang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Fumin Niu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - LiNa An
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Yuxin Fan
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Yingying Li
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Ziteng Zhou
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiaoyun Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Xiuhua Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
2
|
Lipiński O, Sonani RR, Dubin G. Crystal structure of glycerol kinase from Trypanosoma cruzi, a potential molecular target in Chagas disease. Acta Crystallogr D Struct Biol 2024; 80:629-638. [PMID: 39052317 DOI: 10.1107/s2059798324006594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. It bears a significant global health burden with limited treatment options, thus calling for the development of new and effective drugs. Certain trypanosomal metabolic enzymes have been suggested to be druggable and valid for subsequent inhibition. In this study, the crystal structure of glycerol kinase from T. cruzi, a key enzyme in glycerol metabolism in this parasite, is presented. Structural analysis allowed a detailed description of the glycerol binding pocket, while comparative assessment pinpointed a potential regulatory site which may serve as a target for selective inhibition. These findings advance the understanding of glycerol metabolism in eukaryotes and provide a solid basis for the future treatment of Chagas disease.
Collapse
Affiliation(s)
- Oskar Lipiński
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ravi R Sonani
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Nishikawa A, Karita S, Umekawa M. Ngk1 kinase-mediated N-acetylglucosamine metabolism promotes UDP-GlcNAc biosynthesis in Saccharomyces cerevisiae. FEBS Lett 2024; 598:1644-1654. [PMID: 38622055 DOI: 10.1002/1873-3468.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
N-acetylglucosamine (GlcNAc) is an important structural component of the cell wall chitin, N-glycans, glycolipids, and GPI-anchors in eukaryotes. GlcNAc kinase phosphorylates GlcNAc into GlcNAc-6-phosphate, a precursor of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that serves as a substrate for glycan synthesis. Although GlcNAc kinase is found widely in organisms ranging from microorganisms to mammals, it has never been found in the model yeast Saccharomyces cerevisiae. Here, we demonstrate the presence of GlcNAc metabolism for UDP-GlcNAc biosynthesis in S. cerevisiae through Ngk1, a GlcNAc kinase we discovered previously. The overexpression or deletion of Ngk1 in the presence of GlcNAc affected the amount of both UDP-GlcNAc and chitin, suggesting that GlcNAc metabolism via Ngk1 promotes UDP-GlcNAc synthesis. Our data suggest that the Ngk1-mediated GlcNAc metabolism compensates for the hexosamine pathway, a known pathway for UDP-GlcNAc synthesis.
Collapse
Affiliation(s)
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Midori Umekawa
- Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
4
|
Celik A, Beyer I, Fiedler D. An Uncommon Phosphorylation Mode Regulates the Activity and Protein Interactions of N-Acetylglucosamine Kinase. J Am Chem Soc 2024; 146:14807-14815. [PMID: 38733353 PMCID: PMC11140747 DOI: 10.1021/jacs.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
While the function of protein phosphorylation in eukaryotic cell signaling is well established, the role of a closely related modification, protein pyrophosphorylation, is just starting to surface. A recent study has identified several targets of endogenous protein pyrophosphorylation in mammalian cell lines, including N-acetylglucosamine kinase (NAGK). Here, a detailed functional analysis of NAGK phosphorylation and pyrophosphorylation on serine 76 (S76) has been conducted. This analysis was enabled by using amber codon suppression to obtain phosphorylated pS76-NAGK, which was subsequently converted to site-specifically pyrophosphorylated NAGK (ppS76-NAGK) with a phosphorimidazolide reagent. A significant reduction in GlcNAc kinase activity was observed upon phosphorylation and near-complete inactivation upon pyrophosphorylation. The formation of ppS76-NAGK proceeded via an ATP-dependent autocatalytic process, and once formed, ppS76-NAGK displayed notable stability toward dephosphorylation in mammalian cell lysates. Proteomic examination unveiled a distinct set of protein-protein interactions for ppS76-NAGK, suggesting an alternative function, independent of its kinase activity. Overall, a significant regulatory role of pyrophosphorylation on NAGK activity was uncovered, providing a strong incentive to investigate the influence of this unusual phosphorylation mode on other kinases.
Collapse
Affiliation(s)
- Arif Celik
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Ida Beyer
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
5
|
Stasiak AC, Gogler K, Borisova M, Fink P, Mayer C, Stehle T, Zocher G. N-acetylmuramic acid recognition by MurK kinase from the MurNAc auxotrophic oral pathogen Tannerella forsythia. J Biol Chem 2023; 299:105076. [PMID: 37481208 PMCID: PMC10465942 DOI: 10.1016/j.jbc.2023.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
The bacterial cell wall consists of a three-dimensional peptidoglycan layer, composed of peptides linked to the sugars N-acetylmuramic acid (MurNAc) and GlcNAc. Unlike other bacteria, the pathogenic Tannerella forsythia, a member of the red complex group of bacteria associated with the late stages of periodontitis, lacks biosynthetic pathways for MurNAc production and therefore obtains MurNAc from the environment. Sugar kinases play a crucial role in the MurNAc recycling process, activating the sugar molecules by phosphorylation. In this study, we present the first crystal structures of a MurNAc kinase, called murein sugar kinase (MurK), in its unbound state as well as in complexes with the ATP analog β-γ-methylene adenosine triphosphate (AMP-PCP) and with MurNAc. We also determined the crystal structures of K1058, a paralogous MurNAc kinase of T. forsythia, in its unbound state and in complex with MurNAc. We identified the active site and residues crucial for MurNAc specificity as the less bulky side chains of S133, P134, and L135, which enlarge the binding cavity for the lactyl ether group, unlike the glutamate or histidine residues present in structural homologs. In establishing the apparent kinetic parameters for both enzymes, we showed a comparable affinity for MurNAc (Km 180 μM and 30 μM for MurK and K1058, respectively), with MurK being over two hundred times faster than K1058 (Vmax 80 and 0.34 μmol min-1 mg-1, respectively). These data might support a structure-guided approach to development of inhibitory MurNAc analogs for pathogen MurK enzymes.
Collapse
Affiliation(s)
| | - Karolin Gogler
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, University of Tuebingen, Tuebingen, Germany
| | - Phillipp Fink
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, University of Tuebingen, Tuebingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
6
|
Das J, Kumar R, Shah V, Raghavendra KP, Sharma AK. Identification and functional characterisation of N-acetylglucosamine kinase from Helicoverpa armigera divulge its potential role in growth and development via UDP-GlcNAc salvage pathway. Int J Biol Macromol 2023; 242:124674. [PMID: 37137348 DOI: 10.1016/j.ijbiomac.2023.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
N-acetylglucosamine kinase (NAGK), a major enzyme of sugar-kinase/Hsp70/actin superfamily, catalyses the conversion of N-acetylglucosamine to GlcNAc-6-phosphate, the first step leading to the salvage synthesis of uridine diphosphate N-acetylglucosamine. Here, we present the first report on identification, cloning, recombinant expression and functional characterisation of NAGK from Helicoverpa armigera (HaNAGK). The purified soluble HaNAGK exhibited a molecular mass of ~39 kDa with monomeric conformation. It catalysed the sequential transformation of GlcNAc into UDP-GlcNAc, indicating its role as the initiator of UDP-GlcNAc salvage pathway. HaNAGK exhibited ubiquitous expressions across all the developmental stages and major tissues of H. armigera. The gene was significantly upregulated (80 %; p < 0.01) by the moulting hormone 20-hydroxyecdysone and significantly downregulated (89 %; p < 0.001) by the chitin synthesis inhibitor novaluron, indicating its involvement in ecdysis and chitin metabolism. Furthermore, RNAi of HaNAGK caused poor weight gain, deformed insect bodies, aberrant metamorphosis and pronounced wing abnormalities in >55 % of surviving adults, while recording 7.79 ± 1.52 % and 24.25 ± 7.21 % mortality during larval and pupal stages, respectively. Altogether, the present findings suggest that HaNAGK plays a crucial role in the growth and development of H. armigera and thus, could be considered as a compelling gene of interest while formulating novel pest management strategies.
Collapse
Affiliation(s)
- Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - K P Raghavendra
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
7
|
Roy S, Vivoli Vega M, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ. The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding. J Biol Chem 2023; 299:103033. [PMID: 36806680 PMCID: PMC10031466 DOI: 10.1016/j.jbc.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
Collapse
Affiliation(s)
| | | | | | | | - Amy Kent
- Living Systems Institute, Exeter, UK
| | - Kim Evans
- Living Systems Institute, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Exeter, UK
| | | |
Collapse
|
8
|
Hagenhaus V, Gorenflos López JL, Rosenstengel R, Neu C, Hackenberger CPR, Celik A, Weinert K, Nguyen MB, Bork K, Horstkorte R, Gesper A. Glycation Interferes with the Activity of the Bi-Functional UDP- N-Acetylglucosamine 2-Epimerase/ N-Acetyl-mannosamine Kinase (GNE). Biomolecules 2023; 13:biom13030422. [PMID: 36979358 PMCID: PMC10046061 DOI: 10.3390/biom13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations in the gene coding for the bi-functional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of the sialic acid biosynthesis, are responsible for autosomal-recessive GNE myopathy (GNEM). GNEM is an adult-onset disease with a yet unknown exact pathophysiology. Since the protein appears to work adequately for a certain period of time even though the mutation is already present, other effects appear to influence the onset and progression of the disease. In this study, we want to investigate whether the late onset of GNEM is based on an age-related effect, e.g., the accumulation of post-translational modifications (PTMs). Furthermore, we also want to investigate what effect on the enzyme activity such an accumulation would have. We will particularly focus on glycation, which is a PTM through non-enzymatic reactions between the carbonyl groups (e.g., of methylglyoxal (MGO) or glyoxal (GO)) with amino groups of proteins or other biomolecules. It is already known that the levels of both MGO and GO increase with age. For our investigations, we express each domain of the GNE separately, treat them with one of the glycation agents, and determine their activity. We demonstrate that the enzymatic activity of the N-acetylmannosamine kinase (GNE-kinase domain) decreases dramatically after glycation with MGO or GO-with a remaining activity of 13% ± 5% (5 mM MGO) and 22% ± 4% (5 mM GO). Whereas the activity of the UDP-N-acetylglucosamine 2-epimerase (GNE-epimerase domain) is only slightly reduced after glycation-with a remaining activity of 60% ± 8% (5 mM MGO) and 63% ± 5% (5 mM GO).
Collapse
Affiliation(s)
- Vanessa Hagenhaus
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Jacob L Gorenflos López
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Rebecca Rosenstengel
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Carolin Neu
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Arif Celik
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Klara Weinert
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Mai-Binh Nguyen
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Kaya Bork
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Astrid Gesper
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| |
Collapse
|
9
|
Identification and biochemical characterization of a novel N-acetylglucosamine kinase in Saccharomyces cerevisiae. Sci Rep 2022; 12:16991. [PMID: 36216916 PMCID: PMC9550789 DOI: 10.1038/s41598-022-21400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is a key component of glycans such as glycoprotein and the cell wall. GlcNAc kinase is an enzyme that transfers a phosphate onto GlcNAc to generate GlcNAc-6-phosphate, which can be a precursor for glycan synthesis. GlcNAc kinases have been found in a broad range of organisms, including pathogenic yeast, human and bacteria. However, this enzyme has never been discovered in Saccharomyces cerevisiae, a eukaryotic model. In this study, the first GlcNAc kinase from S. cerevisiae was identified and named Ngk1. The Km values of Ngk1 for GlcNAc and glucose were 0.11 mM and 71 mM, respectively, suggesting that Ngk1 possesses a high affinity for GlcNAc, unlike hexokinases. Ngk1 showed the GlcNAc phosphorylation activity with various nucleoside triphosphates, namely ATP, CTP, GTP, ITP, and UTP, as phosphoryl donors. Ngk1 is phylogenetically distant from known enzymes, as the amino acid sequence identity with others is only about 20% or less. The physiological role of Ngk1 in S. cerevisiae is also discussed.
Collapse
|
10
|
Allmeroth K, Hartman MD, Purrio M, Mesaros A, Denzel MS. Hexosamine pathway activation improves memory but does not extend lifespan in mice. Aging Cell 2022; 21:e13711. [PMID: 36124412 PMCID: PMC9577955 DOI: 10.1111/acel.13711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023] Open
Abstract
Glucosamine feeding and genetic activation of the hexosamine biosynthetic pathway (HBP) have been linked to improved protein quality control and lifespan extension. However, as an energy sensor, the HBP has been implicated in tumor progression and diabetes. Given these opposing outcomes, it is imperative to explore the long-term effects of chronic HBP activation in mammals. Thus, we asked if HBP activation affects metabolism, coordination, memory, and survival in mice. N-acetyl-D-glucosamine (GlcNAc) supplementation in the drinking water had no adverse effect on weight in males but increased weight in young females. Glucose or insulin tolerance was not affected up to 20 months of age. Of note, we observed improved memory in young male mice supplemented with GlcNAc. Survival was not changed by GlcNAc treatment. To assess the effects of genetic HBP activation, we overexpressed the pathway's key enzyme GFAT1 and a constitutively activated mutant form in all mouse tissues. We detected elevated levels of the HBP product UDP-GlcNAc in mouse brains, but did not find any effects on behavior, memory, or survival. Together, while dietary GlcNAc supplementation did not extend survival in mice, it positively affected memory and is generally well tolerated.
Collapse
Affiliation(s)
- Kira Allmeroth
- Max Planck Institute for Biology of AgeingCologneGermany
| | | | - Martin Purrio
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Andrea Mesaros
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Martin S. Denzel
- Max Planck Institute for Biology of AgeingCologneGermany,CECAD ‐ Cluster of ExcellenceUniversity of CologneCologneGermany,Center for Molecular Medicine CologneUniversity of CologneCologneGermany,Altos Labs, Cambridge Institute of ScienceGranta Park, Great AbingtonCambridgeUK
| |
Collapse
|
11
|
Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. Nature 2022; 609:590-596. [PMID: 36002575 PMCID: PMC9477735 DOI: 10.1038/s41586-022-05125-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1–3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP—but not unmodified MDP—constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls. N-acetylglucosamine kinase catalyses the phosphorylation of muramyl dipeptide and is thus essential for its recognition and immunostimulatory activity in human and mouse cells.
Collapse
|
12
|
Dash R, Mitra S, Munni YA, Choi HJ, Ali MC, Barua L, Jang TJ, Moon IS. Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function. Int J Mol Sci 2021; 22:8048. [PMID: 34360815 PMCID: PMC8347710 DOI: 10.3390/ijms22158048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
An enzyme of the mammalian amino-sugar metabolism pathway, N-acetylglucosamine kinase (NAGK), that synthesizes N-acetylglucosamine (GlcNAc)-6-phosphate, is reported to promote dynein functions during mitosis, axonal and dendritic growth, cell migration, and selective autophagy, which all are unrelated to its enzyme activity. As non-enzymatic structural functions can be altered by genetic variation, we made an effort in this study aimed at deciphering the pathological effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in NAGK gene. An integrated computational approach, including molecular dynamics (MD) simulation and protein-protein docking simulation, was used to identify the damaging nsSNPs and their detailed structural and functional consequences. The analysis revealed the four most damaging variants (G11R, G32R, G120E, and A156D), which are highly conserved and functional, positioned in both small (G11R and G32R) and large (G120E and A156D) domains of NAGK. G11R is located in the ATP binding region, while variants present in the large domain (G120E and A156D) were found to induce substantial alterations in the structural organizations of both domains, including the ATP and substrate binding sites. Furthermore, all variants were found to reduce binding energy between NAGK and dynein subunit DYNLRB1, as revealed by protein-protein docking and MM-GBSA binding energy calculation supporting their deleteriousness on non-canonical function. We hope these findings will direct future studies to gain more insight into the role of these variants in the loss of NAGK function and their role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Md. Chayan Ali
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh;
| | - Largess Barua
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju 38066, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| |
Collapse
|
13
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
15
|
ten Klooster JP, Sotiriou A, Boeren S, Vaessen S, Vervoort J, Pieters R. Type 2 diabetes-related proteins derived from an in vitro model of inflamed fat tissue. Arch Biochem Biophys 2018. [DOI: 10.1016/j.abb.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis. PLoS Genet 2016; 12:e1005931. [PMID: 26978032 PMCID: PMC4792400 DOI: 10.1371/journal.pgen.1005931] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment. Tumor heterogeneity exists in many human cancers, and it has been shown that it can play a role in tumor progression. Indeed, cell diversity may be critically important when tumors experience selective pressures, like nutrient deprivation, hypoxia, chemotherapy. PKA, through incompletely understood mechanisms, controls several cellular processes like cell growth, cell differentiation, cell metabolism, cell migration and, as more recently observed, also cancer progression. In this work, we show that activation of PKA induces the ability of a cancer cell sub-population to survive under strong stress conditions namely nutrient deprivation and cell detachment. Indeed, PKA activation in these cells results in autophagy induction, and at the same time, in activation of glutamine metabolism and Src kinase. Importantly, blocking directly the PKA pathway, as well as the autophagy, the glutamine metabolism or the Src pathway by inhibitory drugs, almost completely prevents cell growth of this sub-population of resistant cancer cells. These results suggest that drugs, targeting especially PKA pathway as well as downstream processes like autophagy, glutamine metabolism and Src signaling, may specifically inhibit cancer cells ability to survive under selective pressure favoring cancer resistance.
Collapse
|
17
|
Islam MA, Sharif SR, Lee H, Moon IS. N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons. Mol Cells 2015; 38:876-85. [PMID: 26467288 PMCID: PMC4625069 DOI: 10.14348/molcells.2015.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| |
Collapse
|
18
|
Furo K, Nozaki M, Murashige H, Sato Y. Identification of an N-acetylglucosamine kinase essential for UDP-N-acetylglucosamine salvage synthesis in Arabidopsis. FEBS Lett 2015; 589:3258-62. [PMID: 26408204 DOI: 10.1016/j.febslet.2015.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/29/2023]
Abstract
Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) donates GlcNAc for various glycans and glycoconjugates. We previously found that GlcNAc supplementation increases the UDP-GlcNAc content in Arabidopsis; however, the metabolic pathway was undefined. Here, we show that the homolog of human GlcNAc kinase (GNK) is conserved in land plants. Enzymatic assays of the Arabidopsis homologous protein (AtGNK) revealed kinase activity that was highly specific for GlcNAc. We also demonstrate the role of AtGNK in plants by using its knockout mutant, which presents lower UDP-GlcNAc contents and is insensitive to GlcNAc supplementation. Moreover, our results demonstrate the presence of a GlcNAc salvage pathway in plants.
Collapse
Affiliation(s)
- Keisuke Furo
- Department of Biology, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Mamoru Nozaki
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroshi Murashige
- Department of Biology, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yasushi Sato
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
19
|
Islam MA, Sharif SR, Lee H, Seog DH, Moon IS. N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points. Exp Mol Med 2015; 47:e177. [PMID: 26272270 PMCID: PMC4558486 DOI: 10.1038/emm.2015.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 11/09/2022] Open
Abstract
N-acetylglucosamine kinase (GlcNAc kinase or NAGK) is a ubiquitously expressed enzyme in mammalian cells. Recent studies have shown that NAGK has an essential structural, non-enzymatic role in the upregulation of dendritogenesis. In this study, we conducted yeast two-hybrid screening to search for NAGK-binding proteins and found a specific interaction between NAGK and dynein light-chain roadblock type 1 (DYNLRB1). Immunocytochemistry (ICC) on hippocampal neurons using antibodies against NAGK and DYNLRB1 or dynein heavy chain showed some colocalization, which was increased by treating the live cells with a crosslinker. A proximity ligation assay (PLA) of NAGK-dynein followed by tubulin ICC showed the localization of PLA signals on microtubule fibers at dendritic branch points. NAGK-dynein PLA combined with Golgi ICC showed the colocalization of PLA signals with somal Golgi facing the apical dendrite and with Golgi outposts in dendritic branch points and distensions. NAGK-Golgi PLA followed by tubulin or DYNLRB1 ICC showed that PLA signals colocalize with DYNLRB1 at dendritic branch points and at somal Golgi, indicating a tripartite interaction between NAGK, dynein and Golgi. Finally, the ectopic introduction of a small peptide derived from the C-terminal amino acids 74–96 of DYNLRB1 resulted in the stunting of hippocampal neuron dendrites in culture. Our data indicate that the NAGK-dynein-Golgi tripartite interaction at dendritic branch points functions to regulate dendritic growth and/or branching.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - HyunSook Lee
- Neuroscience Section, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - Dae-Hyun Seog
- Departments of Biochemistry, College of Medicine Inje University, Busan, Republic of Korea
| | - Il Soo Moon
- 1] Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea [2] Neuroscience Section, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
20
|
Sharif SR, Lee H, Islam MA, Seog DH, Moon IS. N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol Cells 2015; 38:402-8. [PMID: 25921606 PMCID: PMC4443281 DOI: 10.14348/molcells.2015.2242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/27/2022] Open
Abstract
Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Md. Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 614-735,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| |
Collapse
|
21
|
Wratil PR, Rigol S, Solecka B, Kohla G, Kannicht C, Reutter W, Giannis A, Nguyen LD. A novel approach to decrease sialic acid expression in cells by a C-3-modified N-acetylmannosamine. J Biol Chem 2014; 289:32056-32063. [PMID: 25278018 DOI: 10.1074/jbc.m114.608398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Due to its position at the outermost of glycans, sialic acid is involved in a myriad of physiological and pathophysiological cell functions such as host-pathogen interactions, immune regulation, and tumor evasion. Inhibitors of cell surface sialylation could be a useful tool in cancer, immune, antibiotic, or antiviral therapy. In this work, four different C-3 modified N-acetylmannosamine analogs were tested as potential inhibitors of cell surface sialylation. Peracetylated 2-acetylamino-2-deoxy-3-O-methyl-D-mannose decreases cell surface sialylation in Jurkat cells in a dose-dependent manner up to 80%, quantified by flow cytometry and enzyme-linked lectin assays. High-performance liquid chromatography experiments revealed that not only the concentration of membrane bound but also of cytosolic sialic acid is reduced in treated cells. We have strong evidence that the observed reduction of sialic acid expression in cells is caused by the inhibition of the bifunctional enzyme UDP-GlcNAc-2-epimerase/ManNAc kinase. 2-Acetylamino-2-deoxy-3-O-methyl-D-mannose inhibits the human ManNAc kinase domain of the UDP-GlcNAc-2-epimerase/ManNAc kinase. Binding kinetics of the inhibitor and human N-acetylmannosamine kinase were evaluated using surface plasmon resonance. Specificity studies with human N-acetylglucosamine kinase and hexokinase IV indicated a high specificity of 2-acetylamino-2-deoxy-3-O-methyl-D-mannose for MNK. This substance represents a novel class of inhibitors of sialic acid expression in cells, targeting the key enzyme of sialic acid de novo biosynthesis.
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie, und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, D-14195 Berlin-Dahlem
| | - Stephan Rigol
- Institut für Organische Chemie, Universität Leipzig, Fakultät für Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, and
| | - Barbara Solecka
- Octapharma R&D, Molecular Biochemistry Berlin, Walther-Nernst-Strasse 3, D-12489 Berlin, Germany
| | - Guido Kohla
- Octapharma R&D, Molecular Biochemistry Berlin, Walther-Nernst-Strasse 3, D-12489 Berlin, Germany
| | - Christoph Kannicht
- Octapharma R&D, Molecular Biochemistry Berlin, Walther-Nernst-Strasse 3, D-12489 Berlin, Germany
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie, und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, D-14195 Berlin-Dahlem
| | - Athanassios Giannis
- Institut für Organische Chemie, Universität Leipzig, Fakultät für Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, and.
| | - Long D Nguyen
- Institut für Laboratoriumsmedizin, Klinische Chemie, und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, D-14195 Berlin-Dahlem,.
| |
Collapse
|
22
|
Lee H, Dutta S, Moon IS. Upregulation of dendritic arborization by N-acetyl-D-glucosamine kinase is not dependent on its kinase activity. Mol Cells 2014; 37:322-9. [PMID: 24722415 PMCID: PMC4012081 DOI: 10.14348/molcells.2014.2377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 11/27/2022] Open
Abstract
N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is highly expressed and plays a critical role in the development of dendrites in brain neurons. In this study, the authors conducted structure-function analysis to verify the previously proposed 3D model structure of GlcNAc/ ATP-bound NAGK. Three point NAGK mutants with different substrate binding capacities and reaction velocities were produced. Wild-type (WT) NAGK showed strong substrate preference for GlcNAc. Conversion of Cys143, which does not make direct hydrogen bonds with GlcNAc, to Ser (i.e., C143S) had the least affect on the enzymatic activity of NAGK. Conversion of Asn36, which plays a role in domain closure by making a hydrogen bond with GlcNAc, to Ala (i.e., N36A) mildly reduced NAGK enzyme activity. Conversion of Asp107, which makes hydrogen bonds with GlcNAc and would act as a proton acceptor during nucleophilic attack on the γ-phosphate of ATP, to Ala (i.e., D107A), caused a total loss in enzyme activity. The overexpression of EGFP-tagged WT or any of the mutant NAGKs in rat hippocampal neurons (DIV 5-9) increased dendritic architectural complexity. Finally, the overexpression of the small, but not of the large, domain of NAGK resulted in dendrite degeneration. Our data show the effect of structure on the functional aspects of NAGK, and in particular, that the small domain of NAGK, and not its NAGK kinase activity, plays a critical role in the upregulation of dendritogenesis.
Collapse
Affiliation(s)
- HyunSook Lee
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Samikshan Dutta
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| |
Collapse
|
23
|
Lee H, Cho SJ, Moon IS. The non-canonical effect of N-acetyl-D-glucosamine kinase on the formation of neuronal dendrites. Mol Cells 2014; 37:248-56. [PMID: 24625575 PMCID: PMC3969046 DOI: 10.14348/molcells.2014.2354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/29/2022] Open
Abstract
N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is a N-acetylhexosamine kinase that belong to the sugar kinase/heat shock protein 70/actin superfamily. In this study, we investigated both the expression and function of NAGK in neurons. Immunohistochemistry of rat brain sections showed that NAGK was expressed at high levels in neurons but at low levels in astrocytes. Immunocytochemistry of rat hippocampal dissociate cultures confirmed these findings and showed that NAGK was also expressed at low levels in oligodendrocytes. Furthermore, several NAGK clusters were observed in the nucleoplasm of both neuron and glia. The overexpression of EGFP- or RFP (DsRed2)-tagged NAGK in rat hippocampal neurons (DIV 5-9) increased the complexity of dendritic architecture by increasing the numbers of primary dendrites and dendritic branches. In contrast, knockdown of NAGK by shRNA resulted in dendrite degeneration, and this was prevented by the co-expression of RFP-tagged NAGK. These results suggest that the upregulation of dendritic complexity is a non-canonical function of NAGK.
Collapse
Affiliation(s)
- HyunSook Lee
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Sun-Jung Cho
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| |
Collapse
|
24
|
Bacik JP, Tavassoli M, Patel TR, McKenna SA, Vocadlo DJ, Khajehpour M, Mark BL. Conformational itinerary of Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase during its catalytic cycle. J Biol Chem 2014; 289:4504-14. [PMID: 24362022 PMCID: PMC3924312 DOI: 10.1074/jbc.m113.521633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/29/2013] [Indexed: 11/06/2022] Open
Abstract
Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex. Structural analysis of the hinge regions demonstrates a role for nucleotide binding and possible cross-talk between the bound ligands to modulate the opening and closing of AnmK. Although AnmK was found to exhibit similar binding affinities for ATP, ADP, and AMPPCP according to fluorescence spectroscopy, small angle x-ray scattering analyses revealed that AnmK adopts an open conformation in solution in the absence of ligand and that it remains in this open state after binding AMPPCP, as we had observed for our crystal structure of this complex. In contrast, the enzyme favored a closed conformation when bound to ADP in solution, consistent with a previous crystal structure of this complex. Together, our findings show that the open conformation of AnmK facilitates binding of both the sugar and nucleotide substrates and that large structural rearrangements must occur upon closure of the enzyme to correctly align the substrates and residues of the enzyme for catalysis.
Collapse
Affiliation(s)
| | - Marjan Tavassoli
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - Trushar R. Patel
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - Sean A. McKenna
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - David J. Vocadlo
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5S 1P6, Canada
| | - Mazdak Khajehpour
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | | |
Collapse
|
25
|
Pinto AC, de Sá PHCG, Ramos RTJ, Barbosa S, Barbosa HPM, Ribeiro AC, Silva WM, Rocha FS, Santana MP, de Paula Castro TL, Miyoshi A, Schneider MPC, Silva A, Azevedo V. Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 2014; 15:14. [PMID: 24405787 PMCID: PMC3890534 DOI: 10.1186/1471-2164-15-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/13/2013] [Indexed: 11/12/2022] Open
Abstract
Background The completion of whole-genome sequencing for Corynebacterium pseudotuberculosis strain 1002 has contributed to major advances in research aimed at understanding the biology of this microorganism. This bacterium causes significant loss to goat and sheep farmers because it is the causal agent of the infectious disease caseous lymphadenitis, which may lead to outcomes ranging from skin injury to animal death. In the current study, we simulated the conditions experienced by the bacteria during host infection. By sequencing transcripts using the SOLiDTM 3 Plus platform, we identified new targets expected to potentiate the survival and replication of the pathogen in adverse environments. These results may also identify possible candidates useful for the development of vaccines, diagnostic kits or therapies aimed at the reduction of losses in agribusiness. Results Under the 3 simulated conditions (acid, osmotic and thermal shock stresses), 474 differentially expressed genes exhibiting at least a 2-fold change in expression levels were identified. Important genes to the infection process were induced, such as those involved in virulence, defence against oxidative stress, adhesion and regulation, and many genes encoded hypothetical proteins, indicating that further investigation of the bacterium is necessary. The data will contribute to a better understanding of the biology of C. pseudotuberculosis and to studies investigating strategies to control the disease. Conclusions Despite the veterinary importance of C. pseudotuberculosis, the bacterium is poorly characterised; therefore, effective treatments for caseous lymphadenitis have been difficult to establish. Through the use of RNAseq, these results provide a better biological understanding of this bacterium, shed light on the most likely survival mechanisms used by this microorganism in adverse environments and identify candidates that may help reduce or even eradicate the problems caused by this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Vasco Azevedo
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av, Antônio Carlos, Belo Horizonte 31,270-901, Brazil.
| |
Collapse
|
26
|
Mutt E, Rani SS, Sowdhamini R. Structural updates of alignment of protein domains and consequences on evolutionary models of domain superfamilies. BioData Min 2013; 6:20. [PMID: 24237883 PMCID: PMC4175504 DOI: 10.1186/1756-0381-6-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influx of newly determined crystal structures into primary structural databases is increasing at a rapid pace. This leads to updation of primary and their dependent secondary databases which makes large scale analysis of structures even more challenging. Hence, it becomes essential to compare and appreciate replacement of data and inclusion of new data that is critical between two updates. PASS2 is a database that retains structure-based sequence alignments of protein domain superfamilies and relies on SCOP database for its hierarchy and definition of superfamily members. Since, accurate alignments of distantly related proteins are useful evolutionary models for depicting variations within protein superfamilies, this study aims to trace the changes in data in between PASS2 updates. RESULTS In this study, differences in superfamily compositions, family constituents and length variations between different versions of PASS2 have been tracked. Studying length variations in protein domains, which have been introduced by indels (insertions/deletions), are important because theses indels act as evolutionary signatures in introducing variations in substrate specificity, domain interactions and sometimes even regulating protein stability. With this objective of classifying the nature and source of variations in the superfamilies during transitions (between the different versions of PASS2), increasing length-rigidity of the superfamilies in the recent version is observed. In order to study such length-variant superfamilies in detail, an improved classification approach is also presented, which divides the superfamilies into distinct groups based on their extent of length variation. CONCLUSIONS An objective study in terms of transition between the database updates, detailed investigation of the new/old members and examination of their structural alignments is non-trivial and will help researchers in designing experiments on specific superfamilies, in various modelling studies, in linking representative superfamily members to rapidly expanding sequence space and in evaluating the effects of length variations of new members in drug target proteins. The improved objective classification scheme developed here would be useful in future for automatic analysis of length variation in cases of updates of databases or even within different secondary databases.
Collapse
Affiliation(s)
- Eshita Mutt
- National Centre for Biological Sciences (TIFR), UAS-GKVK Campus, Bellary Road, 560 065 Bangalore, India.
| | | | | |
Collapse
|
27
|
Piña Y, Houston SK, Murray TG, Koru-Sengul T, Decatur C, Scott WK, Nathanson L, Clarke J, Lampidis TJ. Retinoblastoma treatment: impact of the glycolytic inhibitor 2-deoxy-d-glucose on molecular genomics expression in LH(BETA)T(AG) retinal tumors. Clin Ophthalmol 2012; 6:817-30. [PMID: 22701083 PMCID: PMC3373226 DOI: 10.2147/opth.s29688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of 2-deoxy-D-glucose (2-DG) on the spatial distribution of the genetic expression of key elements involved in angiogenesis, hypoxia, cellular metabolism, and apoptosis in LH(BETA)T(AG) retinal tumors. METHODS The right eye of each LH(BETA)T(AG) transgenic mouse (n = 24) was treated with either two or six subconjunctival injections of 2-DG (500 mg/kg) or saline control at 16 weeks of age. A gene expression array analysis was performed on five different intratumoral regions (apex, center, base, anterior-lateral, and posterior-lateral) using Affymetrix GeneChip Mouse Gene 1.0 ST arrays. To test for treatment effects of each probe within each region, a two-way analysis of variance was used. RESULTS Significant differences between treatment groups (ie, 0, 2, and 6 injections) were found as well as differences among the five retinal tumor regions evaluated (P < 0.01). More than 100 genes were observed to be dysregulated by ≥2-fold difference in expression between the three treatment groups, and their dysregulation varied across the five regions assayed. Several genes involved in pathways important for tumor cell growth (ie, angiogenesis, hypoxia, cellular metabolism, and apoptosis) were identified. CONCLUSIONS 2-DG was found to significantly alter the gene expression in LH(BETA)T(AG) retinal tumor cells according to their location within the tumor as well as the treatment schedule. 2-DG's effects on genetic expression found here correlate with previous reported results on varied processes involved in its in vitro and in vivo activity in inhibiting tumor cell growth.
Collapse
Affiliation(s)
- Yolanda Piña
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bergfeld AK, Pearce OMT, Diaz SL, Pham T, Varki A. Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J Biol Chem 2012; 287:28865-81. [PMID: 22692205 DOI: 10.1074/jbc.m112.363549] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two major mammalian sialic acids are N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). The only known biosynthetic pathway generating Neu5Gc is the conversion of CMP-N-acetylneuraminic acid into CMP-Neu5Gc, which is catalyzed by the CMP-Neu5Ac hydroxylase enzyme. Given the irreversible nature of this reaction, there must be pathways for elimination or degradation of Neu5Gc, which would allow animal cells to adjust Neu5Gc levels to their needs. Although humans are incapable of synthesizing Neu5Gc due to an inactivated CMAH gene, exogenous Neu5Gc from dietary sources can be metabolically incorporated into tissues in the face of an anti-Neu5Gc antibody response. However, the metabolic turnover of Neu5Gc, which apparently prevents human cells from continued accumulation of this immunoreactive sialic acid, has not yet been elucidated. In this study, we show that pre-loaded Neu5Gc is eliminated from human cells over time, and we propose a conceivable Neu5Gc-degrading pathway based on the well studied metabolism of N-acetylhexosamines. We demonstrate that murine tissue cytosolic extracts harbor the enzymatic machinery to sequentially convert Neu5Gc into N-glycolylmannosamine, N-glycolylglucosamine, and N-glycolylglucosamine 6-phosphate, whereupon irreversible de-N-glycolylation of the latter results in the ubiquitous metabolites glycolate and glucosamine 6-phosphate. We substantiate this finding by demonstrating activity of recombinant human enzymes in vitro and by studying the fate of radiolabeled pathway intermediates in cultured human cells, suggesting that this pathway likely occurs in vivo. Finally, we demonstrate that the proposed degradative pathway is partially reversible, showing that N-glycolylmannosamine and N-glycolylglucosamine (but not glycolate) can serve as precursors for biosynthesis of endogenous Neu5Gc.
Collapse
Affiliation(s)
- Anne K Bergfeld
- Department of Medicine, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | | | | | |
Collapse
|
29
|
Martinez J, Nguyen LD, Hinderlich S, Zimmer R, Tauberger E, Reutter W, Saenger W, Fan H, Moniot S. Crystal structures of N-acetylmannosamine kinase provide insights into enzyme activity and inhibition. J Biol Chem 2012; 287:13656-65. [PMID: 22343627 DOI: 10.1074/jbc.m111.318170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sialic acids are essential components of membrane glycoconjugates. They are responsible for the interaction, structure, and functionality of all deuterostome cells and have major functions in cellular processes in health and diseases. The key enzyme of the biosynthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc) followed by its phosphorylation to ManNAc 6-phosphate and has a direct impact on the sialylation of cell surface components. Here, we present the crystal structures of the human N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase in complexes with ManNAc at 1.64 Å resolution, MNK·ManNAc·ADP (1.82 Å) and MNK·ManNAc 6-phosphate · ADP (2.10 Å). Our findings offer detailed insights in the active center of MNK and serve as a structural basis to design inhibitors. We synthesized a novel inhibitor, 6-O-acetyl-ManNAc, which is more potent than those previously tested. Specific inhibitors of sialic acid biosynthesis may serve to further study biological functions of sialic acid.
Collapse
Affiliation(s)
- Jacobo Martinez
- From the Institut für Chemie und Biochemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Characterization of an N-acetylmuramic acid/N-acetylglucosamine kinase of Clostridium acetobutylicum. J Bacteriol 2011; 193:5386-92. [PMID: 21784936 DOI: 10.1128/jb.05514-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the cloning and characterization of a cytoplasmic kinase of Clostridium acetobutylicum, named MurK (for murein sugar kinase). The enzyme has a unique specificity for both amino sugars of the bacterial cell wall, N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc), which are phosphorylated at the 6-hydroxyl group. Kinetic analyses revealed Km values of 190 and 127 μM for MurNAc and GlcNAc, respectively, and a kcat value (65.0 s(-1)) that was 1.5-fold higher for the latter substrate. Neither the non-N-acetylated forms of the cell wall sugars, i.e., glucosamine and/or muramic acid, nor epimeric hexoses or 1,6-anhydro-MurNAc were substrates for the enzyme. MurK displays low overall amino acid sequence identity (24%) with human GlcNAc kinase and is the first characterized bacterial representative of the BcrAD/BadFG-like ATPase family. We propose a role of MurK in the recovery of muropeptides during cell wall rescue in C. acetobutylicum. The kinase was applied for high-sensitive detection of the amino sugars in cell wall preparations by radioactive phosphorylation.
Collapse
|
31
|
Bacik JP, Whitworth GE, Stubbs KA, Yadav AK, Martin DR, Bailey-Elkin BA, Vocadlo DJ, Mark BL. Molecular basis of 1,6-anhydro bond cleavage and phosphoryl transfer by Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase. J Biol Chem 2011; 286:12283-91. [PMID: 21288904 DOI: 10.1074/jbc.m110.198317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anhydro-N-acetylmuramic acid kinase (AnmK) catalyzes the ATP-dependent conversion of the Gram-negative peptidoglycan (PG) recycling intermediate 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) to N-acetylmuramic acid-6-phosphate (MurNAc-6-P). Here we present crystal structures of Pseudomonas aeruginosa AnmK in complex with its natural substrate, anhMurNAc, and a product of the reaction, ADP. AnmK is homodimeric, with each subunit comprised of two subdomains that are separated by a deep active site cleft, which bears similarity to the ATPase core of proteins belonging to the hexokinase-hsp70-actin superfamily of proteins. The conversion of anhMurNAc to MurNAc-6-P involves both cleavage of the 1,6-anhydro ring of anhMurNAc along with addition of a phosphoryl group to O6 of the sugar, and thus represents an unusual enzymatic mechanism involving the formal addition of H3PO4 to anhMurNAc. The structural complexes and NMR analysis of the reaction suggest that a water molecule, activated by Asp-182, attacks the anomeric carbon of anhMurNAc, aiding cleavage of the 1,6-anhydro bond and facilitating the capture of the γ phosphate of ATP by O6 via an in-line phosphoryl transfer. AnmK is active only against anhMurNAc and not the metabolically related 1,6-anhydro-N-acetylmuramyl peptides, suggesting that the cytosolic N-acetyl-anhydromuramyl-l-alanine amidase AmpD must first remove the stem peptide from these PG muropeptide catabolites before anhMurNAc can be acted upon by AnmK. Our studies provide the foundation for a mechanistic model for the dual activities of AnmK as a hydrolase and a kinase of an unusual heterocyclic monosaccharide.
Collapse
Affiliation(s)
- John-Paul Bacik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nocek B, Stein AJ, Jedrzejczak R, Cuff ME, Li H, Volkart L, Joachimiak A. Structural studies of ROK fructokinase YdhR from Bacillus subtilis: insights into substrate binding and fructose specificity. J Mol Biol 2010; 406:325-42. [PMID: 21185308 DOI: 10.1016/j.jmb.2010.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
Abstract
The main pathway of bacterial sugar phosphorylation utilizes specific phosphoenolpyruvate phosphotransferase system (PTS) enzymes. In addition to the classic PTS system, a PTS-independent secondary system has been described in which nucleotide-dependent sugar kinases are used for monosaccharide phosphorylation. Fructokinase (FK), which phosphorylates d-fructose with ATP as a cofactor, has been shown to be a member of this secondary system. Bioinformatic analysis has shown that FK is a member of the "ROK" (bacterial Repressors, uncharacterized Open reading frames, and sugar Kinases) sequence family. In this study, we report the crystal structures of ROK FK from Bacillus subtilis (YdhR) (a) apo and in the presence of (b) ADP and (c) ADP/d-fructose. All structures show that YdhR is a homodimer with a monomer composed of two similar α/β domains forming a large cleft between domains that bind ADP and D-fructose. Enzymatic activity assays support YdhR function as an ATP-dependent fructose kinase.
Collapse
Affiliation(s)
- B Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kurochkina N, Yardeni T, Huizing M. Molecular modeling of the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase and predictions of structural effects of mutations associated with HIBM and sialuria. Glycobiology 2010; 20:322-37. [PMID: 19917666 PMCID: PMC2815652 DOI: 10.1093/glycob/cwp176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/18/2022] Open
Abstract
The bifunctional enzyme UDP-GlcNAc 2-epimerase/ ManNAc kinase (GNE/MNK), encoded by the GNE gene, catalyzes the first two committed, rate-limiting steps in the biosynthesis of N-acetylneuraminic acid (sialic acid). GNE/MNK is feedback inhibited by binding of the downstream product, CMP-sialic acid in its allosteric site. GNE mutations can result in two human disorders, hereditary inclusion body myopathy (HIBM) or sialuria. So far, no active site geometry predictions or conformational transitions involved with function are available for mammalian GNE/MNK. The N-terminal GNE domain is homologous to various prokaryotic 2-epimerases, some of which have solved crystallographic structures. The C-terminal MNK domain belongs to the sugar kinases superfamily; its crystallographic structure is solved at 2.84 A and three-dimensional structures have also been reported for several other kinases. In this work, we employed available structural data of GNE/MNK homologs to model the active sites of human GNE/MNK and identify critical amino acid residues responsible for interactions with substrates. In addition, we modeled effects of GNE/MNK missense mutations associated with HIBM or sialuria on helix arrangement, substrate binding, and enzyme action. We found that all reported mutations are associated with the active sites or secondary structure interfaces of GNE/MNK. The Persian-Jewish HIBM founder mutation p.M712T is located at the interface alpha4alpha10 and likely affects GlcNAc, Mg2+, and ATP binding. This work contributes to further understanding of GNE/MNK function and ligand binding, which may assist future studies for therapeutic options that target misfolded GNE/MNK in HIBM and/or sialuria.
Collapse
Affiliation(s)
- Natalya Kurochkina
- Department of Biophysics, The School of Theoretical Modeling, Chevy Chase, MD 20825, USA.
| | | | | |
Collapse
|
34
|
Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson. Proteins 2009; 80:1712. [DOI: 10.1002/prot.22610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/22/2009] [Accepted: 08/26/2009] [Indexed: 11/08/2022]
|
35
|
Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VDP, Yarema KJ. Metabolic glycoengineering: sialic acid and beyond. Glycobiology 2009; 19:1382-401. [PMID: 19675091 DOI: 10.1093/glycob/cwp115] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This report provides a perspective on metabolic glycoengineering methodology developed over the past two decades that allows natural sialic acids to be replaced with chemical variants in living cells and animals. Examples are given demonstrating how this technology provides the glycoscientist with chemical tools that are beginning to reproduce Mother Nature's control over complex biological systems - such as the human brain - through subtle modifications in sialic acid chemistry. Several metabolic substrates (e.g., ManNAc, Neu5Ac, and CMP-Neu5Ac analogs) can be used to feed flux into the sialic acid biosynthetic pathway resulting in numerous - and sometime quite unexpected - biological repercussions upon nonnatural sialoside display in cellular glycans. Once on the cell surface, ketone-, azide-, thiol-, or alkyne-modified glycans can be transformed with numerous ligands via bioorthogonal chemoselective ligation reactions, greatly increasing the versatility and potential application of this technology. Recently, sialic acid glycoengineering methodology has been extended to other pathways with analog incorporation now possible in surface-displayed GalNAc and fucose residues as well as nucleocytoplasmic O-GlcNAc-modified proteins. Finally, recent efforts to increase the "druggability" of sugar analogs used in metabolic glycoengineering, which have resulted in unanticipated "scaffold-dependent" activities, are summarized.
Collapse
Affiliation(s)
- Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
36
|
Blume A, Fitzen M, Benie AJ, Peters T. Specificity of ligand binding to yeast hexokinase PII studied by STD-NMR. Carbohydr Res 2009; 344:1567-74. [DOI: 10.1016/j.carres.2009.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/14/2008] [Accepted: 01/06/2009] [Indexed: 11/16/2022]
|
37
|
Blume A, Berger M, Benie AJ, Peters T, Hinderlich S. Characterization of ligand binding to N-acetylglucosamine kinase studied by STD NMR. Biochemistry 2009; 47:13138-46. [PMID: 19006331 DOI: 10.1021/bi8016894] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saturation transfer difference (STD) NMR experiments on human N-acetylglucosamine kinase (GlcNAc kinase) have been used to determine binding epitopes for the GlcNAc and ATP substrates and their analogues. The study reveals that during the enzyme reaction the binding mode of both substrates is conserved, although the binding affinity of the sugar is reduced. This suggests that the protein does not undergo any significant structural changes during catalysis. Our experiments also demonstrate that GlcNAc kinase has residual activity in the absence of Mg(2+). Furthermore, our experiments clearly show that the GlcNAc kinase predominately, if not exclusively, produces the beta anomer of phosphorylated sugars. To identify the minimum requirements for substrate binding, a detailed analysis of different natural occurring as well as synthetic sugars was employed. Modifications at the 1, 2, 3, 4 and 6 position as well as the N-acetyl group greatly reduce the binding affinity. In addition, the binding mode of these substrate analogues is often also changed. The high beta anomeric preference of GlcNAc kinase along with the drastically reduced binding affinity for sugars other than GlcNAc, suggests that GlcNAc kinase phosphorylates beta-GlcNAc in cells.
Collapse
Affiliation(s)
- Astrid Blume
- Institut für Chemie, Universität zu Lübeck, Germany.
| | | | | | | | | |
Collapse
|
38
|
Buschiazzo A, Alzari PM. Structural insights into sialic acid enzymology. Curr Opin Chem Biol 2008; 12:565-72. [DOI: 10.1016/j.cbpa.2008.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/17/2008] [Indexed: 01/27/2023]
|
39
|
Ghaderi D, Strauss HM, Reinke S, Cirak S, Reutter W, Lucka L, Hinderlich S. Evidence for dynamic interplay of different oligomeric states of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase by biophysical methods. J Mol Biol 2007; 369:746-58. [PMID: 17448495 DOI: 10.1016/j.jmb.2007.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key enzyme for the biosynthesis of sialic acids, the terminal sugars of glycoconjugates associated with a variety of physiological and pathological processes such as cell adhesion, development, inflammation and cancer. In this study, we characterized rat GNE by different biophysical methods, analytical ultracentrifugation, dynamic light-scattering and size-exclusion chromatography, all revealing the native hydrodynamic behavior and molar mass of the protein. We show that GNE is able to reversibly self-associate into different oligomeric states including monomers, dimers and tetramers. Additionally, it forms non-specific aggregates of high molecular mass, which cannot be unequivocally assigned a distinct size. Our results also indicate that ligands of the epimerase domain of the bifunctional enzyme, namely UDP-N-acetylglucosamine and CMP-N-acetylneuraminic acid, stabilize the protein against aggregation and are capable of modulating the quaternary structure of the protein. The presence of UDP-N-acetylglucosamine strongly favors the tetrameric state, which therefore likely represents the active state of the enzyme in cells.
Collapse
Affiliation(s)
- Darius Ghaderi
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Institut für Biochemie und Molekularbiologie, Arnimallee 22, 14195 Berlin-Dahlem, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Nishimasu H, Fushinobu S, Shoun H, Wakagi T. Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Biol Chem 2007; 282:9923-9931. [PMID: 17229727 DOI: 10.1074/jbc.m610678200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexokinase catalyzes the phosphorylation of glucose to glucose 6-phosphate by using ATP as a phosphoryl donor. Recently, we identified and characterized an ATP-dependent hexokinase (StHK) from the hyperthermophilic archaeon Sulfolobus tokodaii, which can phosphorylate a broad range of sugar substrates, including glucose, mannose, glucosamine, and N-acetylglucosamine. Here we present the crystal structures of StHK in four different forms: (i) apo-form, (ii) binary complex with glucose, (iii) binary complex with ADP, and (iv) quaternary complex with xylose, Mg(2+), and ADP. Forms i and iii are in the open state, and forms ii and iv are in the closed state, indicating that sugar binding induces a large conformational change, whereas ADP binding does not. The four different crystal structures of the same enzyme provide "snapshots" of the conformational changes during the catalytic cycle. StHK exhibits a core fold characteristic of the hexokinase family, but the structures of several loop regions responsible for substrate binding are significantly different from those of other known hexokinase family members. Structural comparison of StHK with human N-acetylglucosamine kinase and other hexokinases provides an explanation for the ability of StHK to phosphorylate both glucose and N-acetylglucosamine. A Mg(2+) ion and coordinating water molecules are well defined in the electron density of the quaternary complex structure. This structure represents the first direct visualization of the binding mode for magnesium to hexokinase and thus allows for a better understanding of the catalytic mechanism proposed for the entire hexokinase family.
Collapse
Affiliation(s)
- Hiroshi Nishimasu
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Shoun
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayoshi Wakagi
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|