1
|
An YJ, Jung YE, Lee KW, Kaushal P, Ko IY, Shin SM, Ji S, Yu W, Lee C, Lee WK, Cha K, Lee JH, Cha SS, Yim HS. Structural and biochemical investigation into stable FGF2 mutants with novel mutation sites and hydrophobic replacements for surface-exposed cysteines. PLoS One 2024; 19:e0307499. [PMID: 39236042 PMCID: PMC11376533 DOI: 10.1371/journal.pone.0307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) is an attractive biomaterial for pharmaceuticals and functional cosmetics. To improve the thermo-stability of FGF2, we designed two mutants harboring four-point mutations: FGF2-M1 (D28E/C78L/C96I/S137P) and FGF2-M2 (D28E/C78I/C96I/S137P) through bioinformatics, molecular thermodynamics, and molecular modeling. The D28E mutation reduced fragmentation of the FGF2 wild type during preparation, and the substitution of a whale-specific amino acid, S137P, enhanced the thermal stability of FGF2. Surface-exposed cysteines that participate in oligomerization through intermolecular disulfide bond formation were substituted with hydrophobic residues (C78L/C78I and C96I) using the in silico method. High-resolution crystal structures revealed at the atomic level that the introduction of mutations stabilizes each local region by forming more favorable interactions with neighboring residues. In particular, P137 forms CH-π interactions with the side chain indole ring of W123, which seems to stabilize a β-hairpin structure, containing a heparin-binding site of FGF2. Compared to the wild type, both FGF2-M1 and FGF2-M2 maintained greater solubility after a week at 45 °C, with their Tm values rising by ~ 5 °C. Furthermore, the duration for FGF2-M1 and FGF2-M2 to reach 50% residual activity at 45 °C extended to 8.8- and 8.2-fold longer, respectively, than that of the wild type. Interestingly, the hydrophobic substitution of surface-exposed cysteine in both FGF2 mutants makes them more resistant to proteolytic cleavage by trypsin, subtilisin, proteinase K, and actinase than the wild type and the Cys → Ser substitution. The hydrophobic replacements can influence protease resistance as well as oligomerization and thermal stability. It is notable that hydrophobic substitutions of surface-exposed cysteines, as well as D28E and S137P of the FGF2 mutants, were designed through various approaches with structural implications. Therefore, the engineering strategies and structural insights adopted in this study could be applied to improve the stability of other proteins.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Ye-Eun Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Kyeong Won Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Prashant Kaushal
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic Korea
| | - In Young Ko
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongiu, Republic of Korea
| | - Seung Min Shin
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Sangho Ji
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Wookyung Yu
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic Korea
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongiu, Republic of Korea
| | - Kiweon Cha
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongiu, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Hyung-Soon Yim
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| |
Collapse
|
2
|
Bujotzek A, Tiefenthaler G, Lariviere L, D'Andrea L, Marquez EA, Rudloff I, Cho SX, Deen NS, Richter W, Regenass-Lechner F, Poehler A, Whisstock JC, Sydow-Andersen J, Reiser X, Schuster S, Neubauer J, Hoepfl S, Richter K, Nold MF, Nold-Petry CA, Schumacher F, Ellisdon AM. Protein engineering of a stable and potent anti-inflammatory IL-37-Fc fusion with enhanced therapeutic potential. Cell Chem Biol 2021; 29:586-596.e4. [PMID: 34699747 DOI: 10.1016/j.chembiol.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/31/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.
Collapse
Affiliation(s)
- Alexander Bujotzek
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Georg Tiefenthaler
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Laurent Lariviere
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Laura D'Andrea
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Elsa A Marquez
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ina Rudloff
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Steven X Cho
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Nadia S Deen
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Wolfgang Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | | | - Alexander Poehler
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Jasmin Sydow-Andersen
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Xaver Reiser
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Sabine Schuster
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Jeannette Neubauer
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Sebastian Hoepfl
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Kirsten Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia; Monash Newborn, Monash Children's Hospital, Melbourne, VIC 3168, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
| | - Felix Schumacher
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
3
|
Davis JE, Alghanmi A, Gundampati RK, Jayanthi S, Fields E, Armstrong M, Weidling V, Shah V, Agrawal S, Koppolu BP, Zaharoff DA, Kumar TKS. Probing the role of proline -135 on the structure, stability, and cell proliferation activity of human acidic fibroblast growth factor. Arch Biochem Biophys 2018; 654:115-125. [PMID: 30031837 DOI: 10.1016/j.abb.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Human acidic fibroblast growth factor 1 (hFGF1) is a protein intricately involved in cell growth and tissue repair. In this study, we investigate the effect(s) of understanding the role of a conserved proline (P135), located in the heparin binding pocket, on the structure, stability, heparin binding affinity, and cell proliferation activity of hFGF1. Substitution of proline-135 with a positively charged lysine (P135K) resulted in partial destabilization of the protein; however, the overall structural integrity of the protein was maintained upon substitution of proline-135 with either a negative charge (P135E) or a polar amino acid (P135Q). Interestingly, upon heparin binding, an increase in thermal stability equivalent to that of wt-hFGF1 was observed when P135 was replaced with a positive (P135K) or a negative charge (P135E), or with a polar amino acid (P135Q). Surprisingly, introduction of negative charge in the heparin-binding pocket at position 135 (P135E) increased hFGF1's affinity for heparin by 3-fold, while the P135K mutation, did not alter the heparin-binding affinity. However, the enhanced heparin-binding affinity of mutant P135E did not translate to an increase in cell proliferation activity. Interestingly, the P135K and P135E double mutations, P135K/R136E and P135/R136E, reduced the heparin binding affinity by ∼3-fold. Furthermore, the cell proliferation activity was increased when the charge reversal mutation R136E was paired with both P135E (P135E/R136E) and P135K (P135K/R136E). Overall, the results of this study suggest that while heparin is useful for stabilizing hFGF1 on the cell surface, this interaction is not mandatory for activation of the FGF receptor.
Collapse
Affiliation(s)
- Julie Eberle Davis
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Arwa Alghanmi
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Srinivas Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ellen Fields
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Monica Armstrong
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Vanessa Weidling
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Varun Shah
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Bhanu Prasanth Koppolu
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, 27695, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, 27695, USA
| | | |
Collapse
|
4
|
Davis JE, Gundampati RK, Jayanthi S, Anderson J, Pickhardt A, Koppolu BP, Zaharoff DA, Kumar TKS. Effect of extension of the heparin binding pocket on the structure, stability, and cell proliferation activity of the human acidic fibroblast growth factor. Biochem Biophys Rep 2018; 13:45-57. [PMID: 29556563 PMCID: PMC5857160 DOI: 10.1016/j.bbrep.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/02/2022] Open
Abstract
Acidic human fibroblast growth factor (hFGF1) plays a key role in cell growth and proliferation. Activation of the cell surface FGF receptor is believed to involve the glycosaminoglycan, heparin. However, the exact role of heparin is a subject of considerable debate. In this context, in this study, the correlation between heparin binding affinity and cell proliferation activity of hFGF1 is examined by extending the heparin binding pocket through selective engineering via charge reversal mutations (D82R, D84R and D82R/D84R). Results of biophysical experiments such as intrinsic tryptophan fluorescence and far UV circular dichroism spectroscopy suggest that the gross native structure of hFGF1 is not significantly perturbed by the engineered mutations. However, results of limited trypsin digestion and ANS binding experiments show that the backbone structure of the D82R variant is more flexible than that of the wild type hFGF1. Results of the temperature and urea-induced equilibrium unfolding experiments suggest that the stability of the charge-reversal mutations increases in the presence of heparin. Isothermal titration calorimetry (ITC) data reveal that the heparin binding affinity is significantly increased when the charge on D82 is reversed but not when the negative charge is reversed at both positions D82 and D84 (D82R/D84R). However, despite the increased affinity of D82R for heparin, the cell proliferation activity of the D82R variant is observed to be reduced compared to the wild type hFGF1. The results of this study clearly demonstrate that heparin binding affinity of hFGF1 is not strongly correlated to its cell proliferation activity.
Collapse
Affiliation(s)
- Julie Eberle Davis
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Srinivas Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Joshua Anderson
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Abigail Pickhardt
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Bhanu prasanth Koppolu
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina‐Chapel Hill, NC 27695, USA
| | - David A. Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina‐Chapel Hill, NC 27695, USA
| | | |
Collapse
|
5
|
Dvorak P, Bednar D, Vanacek P, Balek L, Eiselleova L, Stepankova V, Sebestova E, Kunova Bosakova M, Konecna Z, Mazurenko S, Kunka A, Vanova T, Zoufalova K, Chaloupkova R, Brezovsky J, Krejci P, Prokop Z, Dvorak P, Damborsky J. Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng 2018; 115:850-862. [PMID: 29278409 DOI: 10.1002/bit.26531] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023]
Abstract
Fibroblast growth factors (FGFs) serve numerous regulatory functions in complex organisms, and their corresponding therapeutic potential is of growing interest to academics and industrial researchers alike. However, applications of these proteins are limited due to their low stability. Here we tackle this problem using a generalizable computer-assisted protein engineering strategy to create a unique modified FGF2 with nine mutations displaying unprecedented stability and uncompromised biological function. The data from the characterization of stabilized FGF2 showed a remarkable prediction potential of in silico methods and provided insight into the unfolding mechanism of the protein. The molecule holds a considerable promise for stem cell research and medical or pharmaceutical applications.
Collapse
Affiliation(s)
- Pavel Dvorak
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - David Bednar
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Pavel Vanacek
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Lukas Balek
- Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic
| | - Livia Eiselleova
- Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic
| | - Veronika Stepankova
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Eva Sebestova
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | | | - Zaneta Konecna
- Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic
| | - Stanislav Mazurenko
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Antonin Kunka
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Tereza Vanova
- Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic
| | - Karolina Zoufalova
- Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic
| | - Radka Chaloupkova
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Brezovsky
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Pavel Krejci
- Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Zbynek Prokop
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Dvorak
- Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Damborsky
- Faculty of Science, Department of Experimental Biology, Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
6
|
Shukla H, Shukla R, Sonkar A, Pandey T, Tripathi T. Distant Phe345 mutation compromises the stability and activity of Mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Sci Rep 2017; 7:1058. [PMID: 28432345 PMCID: PMC5430663 DOI: 10.1038/s41598-017-01235-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Isocitrate lyase (ICL), a potential anti-tubercular drug target, catalyzes the first step of the glyoxylate shunt. In the present investigation, we studied the conformational flexibility of MtbICL to better understand its stability and catalytic activity. Our biochemical results showed that a point mutation at Phe345, which is topologically distant (>10 Å) to the active site signature sequence (189KKCGH193), completely abolishes the activity of the enzyme. In depth computational analyses were carried out for understanding the structural alterations using molecular dynamics, time-dependent secondary structure and principal component analysis. The results showed that the mutated residue increased the structural flexibility and induced conformational changes near the active site (residues 170–210) and in the C-terminal lid region (residues 411–428). Both these regions are involved in the catalytic activity of MtbICL. Upon mutation, the residual mobility of the enzyme increased, resulting in a decrease in the stability, which was confirmed by the lower free energy of stabilization in the mutant enzyme suggesting the destabilization in the structure. Our results have both biological importance and chemical novelty. It reveals internal dynamics of the enzyme structure and also suggests that regions other than the active site should be exploited for targeting MtbICL inhibition and development of novel anti-tuberculosis compounds.
Collapse
Affiliation(s)
- Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Amit Sonkar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
7
|
Xia X, Kumru OS, Blaber SI, Middaugh CR, Li L, Ornitz DM, Sutherland MA, Tenorio CA, Blaber M. Engineering a Cysteine-Free Form of Human Fibroblast Growth Factor-1 for "Second Generation" Therapeutic Application. J Pharm Sci 2016; 105:1444-53. [PMID: 27019961 DOI: 10.1016/j.xphs.2016.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022]
Abstract
Human fibroblast growth factor-1 (FGF-1) has broad therapeutic potential in regenerative medicine but has undesirable biophysical properties of low thermostability and 3 buried cysteine (Cys) residues (at positions 16, 83, and 117) that interact to promote irreversible protein unfolding under oxidizing conditions. Mutational substitution of such Cys residues eliminates reactive buried thiols but cannot be accomplished simultaneously at all 3 positions without also introducing further substantial instability. The mutational introduction of a novel Cys residue (Ala66Cys) that forms a stabilizing disulfide bond (i.e., cystine) with one of the extant Cys residues (Cys83) effectively eliminates one Cys while increasing overall stability. This increase in stability offsets the associated instability of remaining Cys substitution mutations and permits production of a Cys-free form of FGF-1 (Cys16Ser/Ala66Cys/Cys117Ala) with only minor overall instability. The addition of a further stabilizing mutation (Pro134Ala) creates a Cys-free FGF-1 mutant with essentially wild-type biophysical properties. The elimination of buried free thiols in FGF-1 can substantially increase the protein half-life in cell culture. Here, we show that the effective cell survival/mitogenic functional activity of a fully Cys-free form is also substantially increased and is equivalent to wild-type FGF-1 formulated in the presence of heparin sulfate as a stabilizing agent. The results identify this Cys-free FGF-1 mutant as an advantageous "second generation" form of FGF-1 for therapeutic application.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Sachiko I Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Ling Li
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mason A Sutherland
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Connie A Tenorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306.
| |
Collapse
|
8
|
Xia X, Kumru OS, Blaber SI, Middaugh CR, Li L, Ornitz DM, Suh JM, Atkins AR, Downes M, Evans RM, Tenorio CA, Bienkiewicz E, Blaber M. An S116R Phosphorylation Site Mutation in Human Fibroblast Growth Factor-1 Differentially Affects Mitogenic and Glucose-Lowering Activities. J Pharm Sci 2016; 105:3507-3519. [PMID: 27773526 PMCID: PMC5310217 DOI: 10.1016/j.xphs.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor-1 (FGF-1), a potent human mitogen and insulin sensitizer, signals through both tyrosine kinase receptor-mediated autocrine/paracrine pathways as well as a nuclear intracrine pathway. Phosphorylation of FGF-1 at serine 116 (S116) has been proposed to regulate intracrine signaling. Position S116 is located within a ∼17 amino acid C-terminal loop that contains a rich set of functional determinants including heparin∖heparan sulfate affinity, thiol reactivity, nuclear localization, pharmacokinetics, functional half-life, nuclear ligand affinity, stability, and structural dynamics. Mutational targeting of specific functionality in this region without perturbing other functional determinants is a design challenge. S116R is a non-phosphorylatable variant present in bovine FGF-1 and other members of the human FGF family. We show that the S116R mutation in human FGF-1 is accommodated with no perturbation of biophysical or structural properties, and is therefore an attractive mutation with which to elucidate the functional role of phosphorylation. Characterization of S116R shows reduction in NIH 3T3 fibroblast mitogenic stimulation, increase in fibroblast growth factor receptor-1c activation, and prolonged duration of glucose lowering in ob/ob hyperglycemic mice. A novel FGF-1/fibroblast growth factor receptor-1c dimerization interaction combined with non-phosphorylatable intracrine signaling is hypothesized to be responsible for these observed functional effects.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 60047
| | - Sachiko I Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 60047
| | - Ling Li
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jae Myoung Suh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Connie A Tenorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Ewa Bienkiewicz
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306.
| |
Collapse
|
9
|
Blaber SI, Diaz J, Blaber M. Accelerated healing in NONcNZO10/LtJ type 2 diabetic mice by FGF-1. Wound Repair Regen 2016; 23:538-49. [PMID: 25891187 DOI: 10.1111/wrr.12305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity-induced type 2 diabetes; however, detailed wound healing properties have not been reported. Herein, we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound healing is compared to various controls, and is also quantified in response to topical administration of normal and mutant fibroblast growth factor-1 (FGF-1). Quantitation of reepithelialization shows that the diabetic condition in the NONcNZO10/LtJ mouse is concomitant with a decreased rate of dermal healing. Furthermore, topical administration of a FGF-1/heparin formulation effectively accelerates reepithelialization. A similar acceleration can also be achieved by a stabilized mutant form of FGF-1 formulated in the absence of heparin. Such accelerated rates of healing are not associated with any abnormal histology in the healed wounds. The results identify the NONcNZO10/LtJ mouse as a useful model of impaired wound healing in type 2 diabetes, and further, identify engineered forms of FGF-1 as a potential “second-generation” therapeutic to promote diabetic dermal wound healing.
Collapse
|
10
|
Using the folding landscapes of proteins to understand protein function. Curr Opin Struct Biol 2016; 36:67-74. [PMID: 26812092 DOI: 10.1016/j.sbi.2016.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
Proteins fold on a biologically-relevant timescale because of a funnel-shaped energy landscape. This landscape is sculpted through evolution by selecting amino-acid sequences that stabilize native interactions while suppressing stable non-native interactions that occur during folding. However, there is strong evolutionary selection for functional residues and these cannot be chosen to optimize folding. Their presence impacts the folding energy landscape in a variety of ways. Here, we survey the effects of functional residues on folding by providing several examples. We then review how such effects can be detected computationally and be used as assays for protein function. Overall, an understanding of how functional residues modulate folding should provide insights into the design of natural proteins and their homeostasis.
Collapse
|
11
|
Xia X, Longo LM, Blaber M. Mutation Choice to Eliminate Buried Free Cysteines in Protein Therapeutics. J Pharm Sci 2015; 104:566-76. [DOI: 10.1002/jps.24188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/11/2022]
|
12
|
Alsenaidy MA, Jain NK, Kim JH, Middaugh CR, Volkin DB. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front Pharmacol 2014; 5:39. [PMID: 24659968 PMCID: PMC3950620 DOI: 10.3389/fphar.2014.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Nishant K Jain
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Jae H Kim
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| |
Collapse
|
13
|
Abstract
A number of new and innovative approaches for repairing damaged myocardium are currently undergoing investigation, with several encouraging results. In addition to the progression of stem cell-based approaches and gene therapy/silencing methods, evidence continues to emerge that protein therapeutics may be used to directly promote cardiac repair and even regeneration. However, proteins are often limited in their therapeutic potential by short local half-lives and insufficient bioavailability and bioactivity, and many academic laboratories studying cardiovascular diseases are more comfortable with molecular and cellular biology than with protein biochemistry. Protein engineering has been used broadly to overcome weaknesses traditionally associated with protein therapeutics and has the potential to specifically enhance the efficacy of molecules for cardiac repair. However, protein engineering as a strategy has not yet been used in the development of cardiovascular therapeutics to the degree that it has been used in other fields. In this review, we discuss the role of engineered proteins in cardiovascular therapies to date. Further, we address the promise of applying emerging protein engineering technologies to cardiovascular medicine and the barriers that must be overcome to enable the ultimate success of this approach.
Collapse
Affiliation(s)
- Steven M Jay
- From the Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
14
|
Longo L, Lee J, Blaber M. Experimental support for the foldability-function tradeoff hypothesis: segregation of the folding nucleus and functional regions in fibroblast growth factor-1. Protein Sci 2012; 21:1911-20. [PMID: 23047594 DOI: 10.1002/pro.2175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 11/09/2022]
Abstract
The acquisition of function is often associated with destabilizing mutations, giving rise to the stability-function tradeoff hypothesis. To test whether function is also accommodated at the expense of foldability, fibroblast growth factor-1 (FGF-1) was subjected to a comprehensive φ-value analysis at each of the 11 turn regions. FGF-1, a β-trefoil fold, represents an excellent model system with which to evaluate the influence of function on foldability: because of its threefold symmetric structure, analysis of FGF-1 allows for direct comparisons between symmetry-related regions of the protein that are associated with function to those that are not; thus, a structural basis for regions of foldability can potentially be identified. The resulting φ-value distribution of FGF-1 is highly polarized, with the majority of positions described as either folded-like or denatured-like in the folding transition state. Regions important for folding are shown to be asymmetrically distributed within the protein architecture; furthermore, regions associated with function (i.e., heparin-binding affinity and receptor-binding affinity) are localized to regions of the protein that fold after barrier crossing (late in the folding pathway). These results provide experimental support for the foldability-function tradeoff hypothesis in the evolution of FGF-1. Notably, the results identify the potential for folding redundancy in symmetric protein architecture with important implications for protein evolution and design.
Collapse
Affiliation(s)
- Liam Longo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306-4300, USA
| | | | | |
Collapse
|
15
|
Xia X, Babcock JP, Blaber SI, Harper KM, Blaber M. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application. PLoS One 2012; 7:e48210. [PMID: 23133616 PMCID: PMC3486806 DOI: 10.1371/journal.pone.0048210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/24/2012] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor-1 (FGF-1) is an angiogenic factor with therapeutic potential for the treatment of ischemic disease. FGF-1 has low intrinsic thermostability and is characteristically formulated with heparin as a stabilizing agent. Heparin, however, adds a number of undesirable properties that negatively impact safety and cost. Mutations that increase the thermostability of FGF-1 may obviate the need for heparin in formulation and may prove to be useful “2nd-generation” forms for therapeutic use. We report a pharmacokinetic (PK) study in rabbits of human FGF-1 in the presence and absence of heparin, as well as three mutant forms having differential effects upon thermostability, buried reactive thiols, and heparin affinity. The results support the hypothesis that heparan sulfate proteoglycan (HSPG) in the vasculature of liver, kidney and spleen serves as the principle peripheral compartment in the distribution kinetics. The addition of heparin to FGF-1 is shown to increase endocrine-like properties of distribution. Mutant forms of FGF-1 that enhance thermostability or eliminate buried reactive thiols demonstrate a shorter distribution half-life, a longer elimination half-life, and a longer mean residence time (MRT) in comparison to wild-type FGF-1. The results show how such mutations can produce useful 2nd-generation forms with tailored PK profiles for specific therapeutic application.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Joseph P. Babcock
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Sachiko I. Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Kathleen M. Harper
- Biomedical Research Laboratory Animal Resources, Florida State University, Tallahassee, Florida, United States of America
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Alsenaidy MA, Wang T, Kim JH, Joshi SB, Lee J, Blaber M, Volkin DB, Middaugh CR. An empirical phase diagram approach to investigate conformational stability of "second-generation" functional mutants of acidic fibroblast growth factor-1. Protein Sci 2012; 21:418-32. [PMID: 22113934 DOI: 10.1002/pro.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/06/2022]
Abstract
Acidic fibroblast growth factor-1 (FGF-1) is an angiogenic protein which requires binding to a polyanion such as heparin for its mitogenic activity and physicochemical stability. To evaluate the extent to which this heparin dependence on solution stability could be reduced or eliminated, the structural integrity and conformational stability of 10 selected FGF-1 mutants were examined as a function of solution pH and temperature by a series of spectroscopic methods including circular dichroism, intrinsic and extrinsic fluorescence spectroscopy and static light scattering. The biophysical data were summarized in the form of colored empirical phase diagrams (EPDs). FGF-1 mutants were identified with stability profiles in the absence of heparin comparable to that of wild-type FGF-1 in the presence of heparin while still retaining their biological activity. In addition, a revised version of the EPD methodology was found to provide an information rich, high throughput approach to compare the effects of mutations on the overall conformational stability of proteins in terms of their response to environmental stresses such as pH and temperature.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL, McConkey BJ, Meiering EM. Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 2011; 20:161-71. [PMID: 22178248 DOI: 10.1016/j.str.2011.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/09/2011] [Accepted: 10/24/2011] [Indexed: 10/14/2022]
Abstract
The high frequency of internal structural symmetry in common protein folds is presumed to reflect their evolutionary origins from the repetition and fusion of ancient peptide modules, but little is known about the primary sequence and physical determinants of this process. Unexpectedly, a sequence and structural analysis of symmetric subdomain modules within an abundant and ancient globular fold, the β-trefoil, reveals that modular evolution is not simply a relic of the ancient past, but is an ongoing and recurring mechanism for regenerating symmetry, having occurred independently in numerous existing β-trefoil proteins. We performed a computational reconstruction of a β-trefoil subdomain module and repeated it to form a newly three-fold symmetric globular protein, ThreeFoil. In addition to its near perfect structural identity between symmetric modules, ThreeFoil is highly soluble, performs multivalent carbohydrate binding, and has remarkably high thermal stability. These findings have far-reaching implications for understanding the evolution and design of proteins via subdomain modules.
Collapse
Affiliation(s)
- Aron Broom
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kumar K, Bhargava P, Roy U. In vitro refolding of triosephosphate isomerase from L. donovani. Appl Biochem Biotechnol 2011; 164:1207-14. [PMID: 21365180 DOI: 10.1007/s12010-011-9206-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/14/2011] [Indexed: 11/30/2022]
Abstract
The triosephosphate isomerase of Leishmania donovani (LdTIM) was expressed at high level in Escherichia coli. The TIM gene was cloned in expression vector pET-23(a) with C-terminal 6× His tag fused in frame, and expressed as a 27.6-kDa protein in E. coli as inclusion bodies. The recombinant LdTIM from E. coli lysate was solubilized in 6 M guanidine hydrochloride and purified by Ni-NTA chromatography. In the present study, the effect of bovine serum albumin on the reactivation of TIM was investigated. Furthermore, 8-anilino-1-naphthalene sulfonic acid was used to detect the structural changes induced by bovine serum albumin (BSA). Here, we conclude that BSA assists in the refolding and regain of LdTIM enzyme activity by providing framework for structure formation. This study indicates that numerous protein-protein contacts are constantly occurring inside the cell that leads to the formation of native protein.
Collapse
Affiliation(s)
- Kishore Kumar
- Division of Biochemistry, Central Drug Research Institute, Lucknow 226001, UP, India
| | | | | |
Collapse
|
19
|
Lee J, Blaber SI, Dubey VK, Blaber M. A polypeptide "building block" for the β-trefoil fold identified by "top-down symmetric deconstruction". J Mol Biol 2011; 407:744-63. [PMID: 21315087 DOI: 10.1016/j.jmb.2011.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor-1, a member of the 3-fold symmetric β-trefoil fold, was subjected to a series of symmetric constraint mutations in a process termed "top-down symmetric deconstruction." The mutations enforced a cumulative exact 3-fold symmetry upon symmetrically equivalent positions within the protein and were combined with a stability screen. This process culminated in a β-trefoil protein with exact 3-fold primary-structure symmetry that exhibited excellent folding and stability properties. Subsequent fragmentation of the repeating primary-structure motif yielded a 42-residue polypeptide capable of spontaneous assembly as a homotrimer, producing a thermostable β-trefoil architecture. The results show that despite pronounced reduction in sequence complexity, pure symmetry in the design of a foldable, thermostable β-trefoil fold is possible. The top-down symmetric deconstruction approach provides a novel alternative means to successfully identify a useful polypeptide "building block" for subsequent "bottom-up" de novo design of target protein architecture.
Collapse
Affiliation(s)
- Jihun Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | | | | | |
Collapse
|
20
|
Experimental support for the evolution of symmetric protein architecture from a simple peptide motif. Proc Natl Acad Sci U S A 2010; 108:126-30. [PMID: 21173271 DOI: 10.1073/pnas.1015032108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The majority of protein architectures exhibit elements of structural symmetry, and "gene duplication and fusion" is the evolutionary mechanism generally hypothesized to be responsible for their emergence from simple peptide motifs. Despite the central importance of the gene duplication and fusion hypothesis, experimental support for a plausible evolutionary pathway for a specific protein architecture has yet to be effectively demonstrated. To address this question, a unique "top-down symmetric deconstruction" strategy was utilized to successfully identify a simple peptide motif capable of recapitulating, via gene duplication and fusion processes, a symmetric protein architecture (the threefold symmetric β-trefoil fold). The folding properties of intermediary forms in this deconstruction agree precisely with a previously proposed "conserved architecture" model for symmetric protein evolution. Furthermore, a route through foldable sequence-space between the simple peptide motif and extant protein fold is demonstrated. These results provide compelling experimental support for a plausible evolutionary pathway of symmetric protein architecture via gene duplication and fusion processes.
Collapse
|
21
|
Lee J, Blaber SI, Irsigler A, Aspinwall E, Blaber M. X-ray structure and biophysical properties of rabbit fibroblast growth factor 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1097-104. [PMID: 19923726 DOI: 10.1107/s1744309109040287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/02/2009] [Indexed: 11/10/2022]
Abstract
The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel proangiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.
Collapse
Affiliation(s)
- Jihun Lee
- Department of Biomedical Sciences, Florida State University, Tallahassee, 32306-4300, USA
| | | | | | | | | |
Collapse
|
22
|
Lee J, Blaber M. Structural Basis of Conserved Cysteine in the Fibroblast Growth Factor Family: Evidence for a Vestigial Half-Cystine. J Mol Biol 2009; 393:128-39. [DOI: 10.1016/j.jmb.2009.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 11/15/2022]
|
23
|
The Interaction between Thermodynamic Stability and Buried Free Cysteines in Regulating the Functional Half-Life of Fibroblast Growth Factor-1. J Mol Biol 2009; 393:113-27. [DOI: 10.1016/j.jmb.2009.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 11/23/2022]
|
24
|
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8:235-53. [PMID: 19247306 DOI: 10.1038/nrd2792] [Citation(s) in RCA: 1398] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
Collapse
Affiliation(s)
- Andrew Beenken
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
25
|
Lee S, Brown A, Pitt WR, Higueruelo AP, Gong S, Bickerton GR, Schreyer A, Tanramluk D, Baylay A, Blundell TL. Structural interactomics: informatics approaches to aid the interpretation of genetic variation and the development of novel therapeutics. MOLECULAR BIOSYSTEMS 2009; 5:1456-72. [DOI: 10.1039/b906402h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Abstract
Despite having remarkably similar three-dimensional structures and stabilities, IL-1beta promotes signaling, whereas IL-1Ra inhibits it. Their energy landscapes are similar and have coevolved to facilitate competitive binding to the IL-1 receptor. Nevertheless, we find that IL-1Ra folds faster than IL-1beta. A structural alignment of the proteins shows differences mainly in two loops, a beta-bulge of IL-1beta and a loop in IL-1Ra that interacts with residue K145 and connects beta-strands 11 and 12. Bioassays indicate that inserting the beta-bulge from IL-1beta confers partial signaling capability onto a K145D mutant of IL-1Ra. Based on the alignment, mutational assays and our computational folding results, we hypothesize that functional regions are not central to the beta-trefoil motif and cause slow folding. The IL-1beta beta-bulge facilitates activity and replacing it by the IL-1Ra beta-turn results in a hybrid protein that folds faster than IL-1beta. Inserting the beta11-beta12 connecting-loop, which aids inhibition, into either IL-1beta or the hybrid protein slows folding. Thus, regions that aid function (either through activity or inhibition) can be inferred from folding traps via structural differences. Mapping functional properties onto the numerous folds determined in structural genomics efforts is an area of intense interest. Our studies provide a systematic approach to mapping the functional genomics of a fold family.
Collapse
|
27
|
Asada M, Honda E, Imamura T. Biologically active fibroblast growth factor 1 tagged with various epitopes. BMC Res Notes 2008; 1:42. [PMID: 18710495 PMCID: PMC2526085 DOI: 10.1186/1756-0500-1-42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 07/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibroblast growth factor (FGF) family members are involved in the regulation of a variety of biological phenomena. Because most of their activity is exerted via a signaling complex composed of FGF, heparin/heparan sulfate and FGF receptor tyrosine kinase, it is important to study the dynamic behavior of all the molecules in the complex without disturbing their interaction or activity. FINDINGS We used E. coli to express biologically active human FGF1 tagged at its C-terminus with myc-(His)6, V5-(His)6 or 3xFLAG-(His)6. We found that the tagged FGF1s had affinities for heparin that were similar to that of the native form. The tagged FGF1s also exhibited mitogenic activity similar to that of the native form. Apparently, the tags do not interfere with the formation of the three-member complex involving FGF1, FGF receptor and heparan sulfate/heparin. CONCLUSION Tagged FGF1s should be useful for investigating the dynamic behavior of FGF1 in the context of its three-member signaling complex and other molecular complexes.
Collapse
Affiliation(s)
- Masahiro Asada
- Signaling Molecules Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central #6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
28
|
Lee J, Dubey VK, Longo LM, Blaber M. A Logical OR Redundancy within the Asx-Pro-Asx-Gly Type I β-Turn Motif. J Mol Biol 2008; 377:1251-64. [DOI: 10.1016/j.jmb.2008.01.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
|