1
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Bohg C, Öster C, Türkaydin B, Lisurek M, Sanchez-Carranza P, Lange S, Utesch T, Sun H, Lange A. The opening dynamics of the lateral gate regulates the activity of rhomboid proteases. SCIENCE ADVANCES 2023; 9:eadh3858. [PMID: 37467320 PMCID: PMC10355837 DOI: 10.1126/sciadv.adh3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Rhomboid proteases hydrolyze substrate helices within the lipid bilayer to release soluble domains from the membrane. Here, we investigate the mechanism of activity regulation for this unique but wide-spread protein family. In the model rhomboid GlpG, a lateral gate formed by transmembrane helices TM2 and TM5 was previously proposed to allow access of the hydrophobic substrate to the shielded hydrophilic active site. In our study, we modified the gate region and either immobilized the gate by introducing a maleimide-maleimide (M2M) crosslink or weakened the TM2/TM5 interaction network through mutations. We used solid-state nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and molecular docking to investigate the resulting effects on structure and dynamics on the atomic level. We find that variants with increased dynamics at TM5 also exhibit enhanced activity, whereas introduction of a crosslink close to the active site strongly reduces activity. Our study therefore establishes a strong link between the opening dynamics of the lateral gate in rhomboid proteases and their enzymatic activity.
Collapse
Affiliation(s)
- Claudia Bohg
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Carl Öster
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Berke Türkaydin
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michael Lisurek
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Pascal Sanchez-Carranza
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Sascha Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Tillmann Utesch
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Han Sun
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
3
|
Nejatfard A, Wauer N, Bhaduri S, Conn A, Gourkanti S, Singh N, Kuo T, Kandel R, Amaro RE, Neal SE. Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates. Cell Rep 2021; 37:109840. [PMID: 34686332 PMCID: PMC8641752 DOI: 10.1016/j.celrep.2021.109840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023] Open
Abstract
Nearly one-third of proteins are initially targeted to the endoplasmic reticulum (ER) membrane, where they are correctly folded and then delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) moves these clients from the ER membrane to the cytosol, a process known as retrotranslocation. Our recent work in Saccharomyces cerevisiae reveals a derlin rhomboid pseudoprotease, Dfm1, is involved in the retrotranslocation of ubiquitinated ERAD membrane substrates. In this study, we identify conserved residues of Dfm1 that are critical for retrotranslocation. We find several retrotranslocation-deficient Loop 1 mutants that display impaired binding to membrane substrates. Furthermore, Dfm1 possesses lipid thinning function to facilitate in the removal of ER membrane substrates, and this feature is conserved in its human homolog, Derlin-1, further implicating that derlin-mediated retrotranslocation is a well-conserved process.
Collapse
Affiliation(s)
- Anahita Nejatfard
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Satarupa Bhaduri
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Conn
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Saroj Gourkanti
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Narinderbir Singh
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tiffany Kuo
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Bohg C, Öster C, Utesch T, Bischoff S, Lange S, Shi C, Sun H, Lange A. A combination of solid-state NMR and MD simulations reveals the binding mode of a rhomboid protease inhibitor. Chem Sci 2021; 12:12754-12762. [PMID: 34703562 PMCID: PMC8494044 DOI: 10.1039/d1sc02146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Intramembrane proteolysis plays a fundamental role in many biological and pathological processes. Intramembrane proteases thus represent promising pharmacological targets, but few selective inhibitors have been identified. This is in contrast to their soluble counterparts, which are inhibited by many common drugs, and is in part explained by the inherent difficulty to characterize the binding of drug-like molecules to membrane proteins at atomic resolution. Here, we investigated the binding of two different inhibitors to the bacterial rhomboid protease GlpG, an intramembrane protease characterized by a Ser–His catalytic dyad, using solid-state NMR spectroscopy. H/D exchange of deuterated GlpG can reveal the binding position while chemical shift perturbations additionally indicate the allosteric effects of ligand binding. Finally, we determined the exact binding mode of a rhomboid protease-inhibitor using a combination of solid-state NMR and molecular dynamics simulations. We believe this approach can be widely adopted to study the structure and binding of other poorly characterized membrane protein–ligand complexes in a native-like environment and under physiological conditions. Proton-detected solid-state NMR in combination with molecular docking and molecular dynamics (MD) simulations allow the study of rhomboid protease inhibition under native-like conditions.![]()
Collapse
Affiliation(s)
- Claudia Bohg
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Tillmann Utesch
- Structural Chemistry and Computational Biophysics Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Susanne Bischoff
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany .,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China Huangshan Road 443 Hefei 230027 People's Republic of China
| | - Han Sun
- Structural Chemistry and Computational Biophysics Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany .,Institut für Biologie, Humboldt-Universität zu Berlin Invalidenstraße 42 10115 Berlin Germany
| |
Collapse
|
5
|
Düsterhöft S, Kahveci-Türköz S, Wozniak J, Seifert A, Kasparek P, Ohm H, Liu S, Kopkanova J, Lokau J, Garbers C, Preisinger C, Sedlacek R, Freeman M, Ludwig A. The iRhom homology domain is indispensable for ADAM17-mediated TNFα and EGF receptor ligand release. Cell Mol Life Sci 2021; 78:5015-5040. [PMID: 33950315 PMCID: PMC8233286 DOI: 10.1007/s00018-021-03845-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
Membrane-tethered signalling proteins such as TNFα and many EGF receptor ligands undergo shedding by the metalloproteinase ADAM17 to get released. The pseudoproteases iRhom1 and iRhom2 are important for the transport, maturation and activity of ADAM17. Yet, the structural and functional requirements to promote the transport of the iRhom-ADAM17 complex have not yet been thoroughly investigated. Utilising in silico and in vitro methods, we here map the conserved iRhom homology domain (IRHD) and provide first insights into its structure and function. By focusing on iRhom2, we identified different structural and functional factors within the IRHD. We found that the structural integrity of the IRHD is a key factor for ADAM17 binding. In addition, we identified a highly conserved motif within an unstructured region of the IRHD, that, when mutated, restricts the transport of the iRhom-ADAM17 complex through the secretory pathway in in vitro, ex vivo and in vivo systems and also increases the half-life of iRhom2 and ADAM17. Furthermore, the disruption of this IRHD motif was also reflected by changes in the yet undescribed interaction profile of iRhom2 with proteins involved in intracellular vesicle transport. Overall, we provide the first insights into the forward trafficking of iRhoms which is critical for TNFα and EGF receptor signalling.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Selcan Kahveci-Türköz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Henrike Ohm
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Shixin Liu
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Jana Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
6
|
Phosphatidylglyerol Lipid Binding at the Active Site of an Intramembrane Protease. J Membr Biol 2020; 253:563-576. [PMID: 33210155 PMCID: PMC7688093 DOI: 10.1007/s00232-020-00152-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 10/25/2022]
Abstract
Transmembrane substrate cleavage by the small Escherichia coli rhomboid protease GlpG informs on mechanisms by which lipid interactions shape reaction coordinates of membrane-embedded enzymes. Here, I review and discuss new work on the molecular picture of protein-lipid interactions that might govern the formation of the substrate-enzyme complex in fluid lipid membranes. Negatively charged PG-type lipids are of particular interest, because they are a major component of bacterial membranes. Atomistic computer simulations indicate POPG and DOPG lipids bridge remote parts of GlpG and might pre-occupy the substrate-docking site. Inhibition of catalytic activity by PG lipids could arise from ligand-like lipid binding at the active site, which could delay or prevent substrate docking. Dynamic protein-lipid H-bond networks, water access to the active site, and fluctuations in the orientation of GlpG suggest that GlpG has lipid-coupled dynamics that could shape the energy landscape of transmembrane substrate docking.
Collapse
|
7
|
Structural cavities are critical to balancing stability and activity of a membrane-integral enzyme. Proc Natl Acad Sci U S A 2020; 117:22146-22156. [PMID: 32848056 DOI: 10.1073/pnas.1917770117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Packing interaction is a critical driving force in the folding of helical membrane proteins. Despite the importance, packing defects (i.e., cavities including voids, pockets, and pores) are prevalent in membrane-integral enzymes, channels, transporters, and receptors, playing essential roles in function. Then, a question arises regarding how the two competing requirements, packing for stability vs. cavities for function, are reconciled in membrane protein structures. Here, using the intramembrane protease GlpG of Escherichia coli as a model and cavity-filling mutation as a probe, we tested the impacts of native cavities on the thermodynamic stability and function of a membrane protein. We find several stabilizing mutations which induce substantial activity reduction without distorting the active site. Notably, these mutations are all mapped onto the regions of conformational flexibility and functional importance, indicating that the cavities facilitate functional movement of GlpG while compromising the stability. Experiment and molecular dynamics simulation suggest that the stabilization is induced by the coupling between enhanced protein packing and weakly unfavorable lipid desolvation, or solely by favorable lipid solvation on the cavities. Our result suggests that, stabilized by the relatively weak interactions with lipids, cavities are accommodated in membrane proteins without severe energetic cost, which, in turn, serve as a platform to fine-tune the balance between stability and flexibility for optimal activity.
Collapse
|
8
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
9
|
Bondar AN. Mechanisms by Which Lipids Influence Conformational Dynamics of the GlpG Intramembrane Protease. J Phys Chem B 2019; 123:4159-4172. [PMID: 31059259 DOI: 10.1021/acs.jpcb.8b11291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhomboid intramembrane proteases are bound to lipid membranes, where they dock and cleave other transmembrane substrates. How the lipid membrane surrounding the protease impacts the conformational dynamics of the protease is essential to understand because it informs on the reaction coordinate of substrate binding. Atomistic molecular dynamics simulations allow us to probe protein motions and characterize the coupling between protein and lipids. Simulations performed here on GlpG, the rhomboid protease from Escherichia coli, indicate that the thickness of the lipid membrane close to GlpG depends on both the composition of the lipid membrane and the conformation of GlpG. Transient binding of a lipid headgroup at the active site of the protease, as observed in some of the simulations reported here, suggests that a lipid headgroup might compete with the substrate for access to the GlpG active site. Interactions identified between lipid headgroups and the protein influence the dynamics of lipid interactions close to the substrate-binding site. These observations suggest that the lipid membrane environment shapes the energy profile of the substrate-docking region of the enzyme reaction coordinate.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
10
|
Paschkowsky S, Recinto SJ, Young JC, Bondar AN, Munter LM. Membrane cholesterol as regulator of human rhomboid protease RHBDL4. J Biol Chem 2018; 293:15556-15568. [PMID: 30143535 DOI: 10.1074/jbc.ra118.002640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
In the last decade, intramembrane proteases have gained increasing attention because of their many links to various diseases. Nevertheless, our understanding as to how they function or how they are regulated is still limited, especially when it comes to human homologues. In this regard, here we sought to unravel mechanisms of regulation of the protease rhomboid-like protein-4 (RHBDL4), one of five active human serine intramembrane proteases. In view of our recent finding that human RHBDL4 efficiently cleaves the amyloid precursor protein (APP), a key protein in the pathology of Alzheimer's disease, we used established reagents to modulate the cellular cholesterol content and analyzed the effects of this modulation on RHBDL4-mediated processing of endogenous APP. We discovered that lowering membrane cholesterol levels increased the levels of RHBDL4-specific endogenous APP fragments, whereas high cholesterol levels had the opposite effect. Direct binding of cholesterol to APP did not mediate these modulating effects of cholesterol. Instead, using homology modeling, we identified two potential cholesterol-binding motifs in the transmembrane helices 3 and 6 of RHBDL4. Substitution of the essential tyrosine residues of the potential cholesterol-binding motifs to alanine increased the levels of endogenous APP C-terminal fragments, reflecting enhanced RHBDL4 activity. In summary, we provide evidence that the activity of RHBDL4 is regulated by cholesterol likely through a direct binding of cholesterol to the enzyme.
Collapse
Affiliation(s)
- Sandra Paschkowsky
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| | | | - Jason C Young
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Ana-Nicoleta Bondar
- the Department of Physics, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Lisa Marie Munter
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| |
Collapse
|
11
|
Gao R, Gao W, Xu G, Xu J, Ren H. Single amino acid mutation of SR-BI decreases infectivity of hepatitis C virus derived from cell culture in a cell culture model. World J Gastroenterol 2017; 23:5158-5166. [PMID: 28811710 PMCID: PMC5537182 DOI: 10.3748/wjg.v23.i28.5158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of a single amino acid mutation in human class B scavenger receptor I (SR-BI) on the infectivity of cell culture-derived hepatitis C virus (HCVcc) in SR-BI knock-down Huh7-siSR-BI cells.
METHODS Site-directed mutagenesis was used to construct the SR-BI S112F mutation, and the mutation was confirmed by nucleotide sequencing. SR-BI knock-down Huh7-siSR-BI cells were transfected with SR-BI S112F, SR-BI wild type (WT) and control plasmids, and then infected with HCVpp (HCV pseudoparticles) and hepatitis C virus derived from cell culture (HCVcc). A fluorescence assay was performed to analyze the effect of the S112F mutation on HCV entry; quantitative real-time PCR, immunofluorescence, and Western blot assays were used to analyze the effect of the S112F mutation on HCV infectivity. CHO cells expressing WT and SR-BI S112F were incubated with the HCV E2 protein expressed in HEK 293T cells, and flow cytometry was performed to examine the ability of SR-BI S112F to bind to the HCV E2 protein. Huh7-siSR-BI cells were transfected with SR-BI WT and the S112F mutant, and then DiI-HDL was added and images captured under the microscope to assess the ability of SR-BI S112F to take up HDL.
RESULTS The SR-BI S112F mutation was successfully constructed. The S112F mutation decreased the expression of the SR-BI mRNA and protein. SR-BI S112F decreased HCV entry and HCVcc infectivity in Huh7-siSR-BI cells. The S112F mutation impaired the binding of SR-BI to HCV E2 protein and decreased the HDL uptake of SR-BI.
CONCLUSION The S112F single amino acid mutation in SR-BI decreased the levels of the SR-BI mRNA and protein, as well as the ability of SR-BI to bind to the HCV E2 protein. Amino acid 112 in SR-BI plays important roles in HCV entry and the infectivity of HCVcc in vitro.
Collapse
|
12
|
Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2200-2209. [PMID: 28460881 DOI: 10.1016/j.bbamcr.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Rhomboids are intramembrane serine proteases that cleave the transmembrane helices of substrate proteins, typically releasing luminal/extracellular domains from the membrane. They are conserved in all branches of life and there is a growing recognition of their association with a wide range of human diseases. Human rhomboids, for example, have been implicated in cancer, metabolic disease and neurodegeneration, while rhomboids in apicomplexan parasites appear to contribute to their invasion of host cells. Recent advances in our knowledge of the structure and the enzyme function of rhomboids, and increasing efforts to identify specific inhibitors, are beginning to provide important insight into the prospect of rhomboids becoming future therapeutic targets. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ulrike Künzel
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
13
|
Taylor KC, Sanders CR. Regulation of KCNQ/Kv7 family voltage-gated K + channels by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:586-597. [PMID: 27818172 DOI: 10.1016/j.bbamem.2016.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
Many years of studies have established that lipids can impact membrane protein structure and function through bulk membrane effects, by direct but transient annular interactions with the bilayer-exposed surface of protein transmembrane domains, and by specific binding to protein sites. Here, we focus on how phosphatidylinositol 4,5-bisphosphate (PIP2) and polyunsaturated fatty acids (PUFAs) impact ion channel function and how the structural details of the interactions of these lipids with ion channels are beginning to emerge. We focus on the Kv7 (KCNQ) subfamily of voltage-gated K+ channels, which are regulated by both PIP2 and PUFAs and play a variety of important roles in human health and disease. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Keenan C Taylor
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Substrates and physiological functions of secretase rhomboid proteases. Semin Cell Dev Biol 2016; 60:10-18. [PMID: 27497690 DOI: 10.1016/j.semcdb.2016.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 02/01/2023]
Abstract
Rhomboids are conserved intramembrane serine proteases with widespread functions. They were the earliest discovered members of the wider rhomboid-like superfamily of proteases and pseudoproteases. The secretase class of rhomboid proteases, distributed through the secretory pathway, are the most numerous in eukaryotes, but our knowledge of them is limited. Here we aim to summarise all that has been published on secretase rhomboids in a concise encyclopaedia of the enzymes, their substrates, and their biological roles. We also discuss emerging themes of how these important enzymes are regulated.
Collapse
|
15
|
Guo R, Gaffney K, Yang Z, Kim M, Sungsuwan S, Huang X, Hubbell WL, Hong H. Steric trapping reveals a cooperativity network in the intramembrane protease GlpG. Nat Chem Biol 2016; 12:353-360. [PMID: 26999782 PMCID: PMC4837050 DOI: 10.1038/nchembio.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
Membrane proteins are assembled through balanced interactions among protein, lipids and water. Studying their folding while maintaining the native lipid environment is necessary but challenging. Here we present methods for analyzing key elements in membrane protein folding including thermodynamic stability, compactness of the unfolded state and folding cooperativity under native conditions. The methods are based on steric trapping which couples unfolding of a doubly-biotinylated protein to binding of monovalent streptavidin (mSA). We further advanced this technology for general application by developing versatile biotin probes possessing spectroscopic reporters that are sensitized by mSA binding or protein unfolding. By applying these methods to an intramembrane protease GlpG of Escherichia coli, we elucidated a widely unraveled unfolded state, subglobal unfolding of the region encompassing the active site, and a network of cooperative and localized interactions to maintain the stability. These findings provide crucial insights into the folding energy landscape of membrane proteins.
Collapse
Affiliation(s)
- Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kristen Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Suttipun Sungsuwan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to γ-secretase. Curr Opin Struct Biol 2016; 37:97-107. [PMID: 26811996 DOI: 10.1016/j.sbi.2015.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Intramembrane proteases catalyze hydrolysis of peptide bond within the lipid bilayer and play a key role in a variety of cellular processes. These membrane-embedded enzymes comprise four major classes: rhomboid serine proteases, site-2 metalloproteases, Rce1-type glutamyl proteases, and aspartyl proteases exemplified by signal peptide peptidase and γ-secretase. In the past several years, three-dimensional structures of representative members of these four classes of intramembrane protease have been reported at atomic resolutions, which reveal distinct protein folds and active site configurations. These structures, together with structure-guided biochemical analyses, shed light on the working mechanisms of water access and substrate entry. In this review, we discuss the shared as well as unique features of these intramembrane proteases, with a focus on presenilin-the catalytic component of γ-secretase.
Collapse
|
17
|
Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, del Val C, Friedman R, Gkeka P, Hege HC, Hénin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. J Membr Biol 2015; 248:611-40. [PMID: 26063070 PMCID: PMC4515176 DOI: 10.1007/s00232-015-9802-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
Abstract
Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Collapse
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Toby W. Allen
- School of Applied Sciences & Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne, Vic, 3001, Australia; and Department of Chemistry, University of California, Davis. Davis, CA 95616, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Daniel Baum
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Grace Brannigan
- Center for Computational and Integrative Biology and Department of Physics, Rutgers University-Camden, Camden, NJ, USA
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Lucie Delemotte
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coral del Val
- Department of Artificial Intelligence, University of Granada, E-18071 Granada, Spain
| | - Ran Friedman
- Linnæus University, Department of Chemistry and Biomedical Sciences & Centre for Biomaterials Chemistry, 391 82 Kalmar, Sweden
| | - Paraskevi Gkeka
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Hans-Christian Hege
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, IBPC and CNRS, Paris, France
| | - Marina A. Kasimova
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Antonios Kolocouris
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Michael L. Klein
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Norbert Lindow
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Mahua Roy
- Department of Chemistry, University of California, Irvine
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Mounir Tarek
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- CNRS, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
| | - Florentina Tofoleanu
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefano Vanni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Sinisa Urban
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, 725 N. Wolfe Street, 507 Preclinical Teaching Building, Baltimore, MD 21205, USA
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy C. Smith
- Oak Ridge National Laboratory, PO BOX 2008 MS6309, Oak Ridge, TN 37831-6309, USA
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
18
|
Li Y, Bohm C, Dodd R, Chen F, Qamar S, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Structural biology of presenilin 1 complexes. Mol Neurodegener 2014; 9:59. [PMID: 25523933 PMCID: PMC4326451 DOI: 10.1186/1750-1326-9-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022] Open
Abstract
The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter H St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
19
|
Foo ACY, Harvey BGR, Metz JJ, Goto NK. Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease. Protein Sci 2014; 24:464-73. [PMID: 25307614 DOI: 10.1002/pro.2585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High-resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water-soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10-12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer-chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | | | | | | |
Collapse
|
20
|
Zoll S, Stanchev S, Began J, Skerle J, Lepšík M, Peclinovská L, Majer P, Strisovsky K. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J 2014; 33:2408-21. [PMID: 25216680 PMCID: PMC4253528 DOI: 10.15252/embj.201489367] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the 'water retention site', suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.
Collapse
Affiliation(s)
- Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Department of Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Skerle
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Peclinovská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
21
|
Kroos L, Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2873-85. [PMID: 24099006 DOI: 10.1016/j.bbamem.2013.03.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Intramembrane metalloproteases are nearly ubiquitous in living organisms and they function in diverse processes ranging from cholesterol homeostasis and the unfolded protein response in humans to sporulation, stress responses, and virulence of bacteria. Understanding how these enzymes function in membranes is a challenge of fundamental interest with potential applications if modulators can be devised. Progress is described toward a mechanistic understanding, based primarily on molecular genetic and biochemical studies of human S2P and bacterial SpoIVFB and RseP, and on the structure of the membrane domain of an archaeal enzyme. Conserved features of the enzymes appear to include transmembrane helices and loops around the active site zinc ion, which may be near the membrane surface. Extramembrane domains such as PDZ (PSD-95, DLG, ZO-1) or CBS (cystathionine-β-synthase) domains govern substrate access to the active site, but several different mechanisms of access and cleavage site selection can be envisioned, which might differ depending on the substrate and the enzyme. More work is needed to distinguish between these mechanisms, both for enzymes that have been relatively well-studied, and for enzymes lacking PDZ and CBS domains, which have not been studied. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
22
|
Sibley LD. The roles of intramembrane proteases in protozoan parasites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2908-15. [PMID: 24099008 DOI: 10.1016/j.bbamem.2013.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 11/30/2022]
Abstract
Intramembrane proteolysis is widely conserved throughout different forms of life, with three major types of proteases being known for their ability to cleave peptide bonds directly within the transmembrane domains of their substrates. Although intramembrane proteases have been extensively studied in humans and model organisms, they have only more recently been investigated in protozoan parasites, where they turn out to play important and sometimes unexpected roles. Signal peptide peptidases are involved in endoplasmic reticulum (ER) quality control and signal peptide degradation from exported proteins. Recent studies suggest that repurposing inhibitors developed for blocking presenilins may be useful for inhibiting the growth of Plasmodium, and possibly other protozoan parasites, by blocking signal peptide peptidases. Rhomboid proteases, originally described in the fly, are also widespread in parasites, and are especially expanded in apicomplexans. Their study in parasites has revealed novel roles that expand our understanding of how these proteases function. Within this diverse group of parasites, rhomboid proteases contribute to processing of adhesins involved in attachment, invasion, intracellular replication, phagocytosis, and immune evasion, placing them at the vertex of host-parasite interactions. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Untangling structure-function relationships in the rhomboid family of intramembrane proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2862-72. [PMID: 24099005 DOI: 10.1016/j.bbamem.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 05/04/2013] [Indexed: 12/30/2022]
Abstract
Rhomboid proteases are a family of integral membrane proteins that have been implicated in critical regulatory roles in a wide array of cellular processes and signaling events. The determination of crystal structures of the prokaryotic rhomboid GlpG from Escherichia coli and Haemophilus influenzae has ushered in an era of unprecedented understanding into molecular aspects of intramembrane proteolysis by this fascinating class of protein. A combination of structural studies by X-ray crystallography, and biophysical and spectroscopic analyses, combined with traditional enzymatic and functional analysis has revealed fundamental aspects of rhomboid structure, substrate recognition and the catalytic mechanism. This review summarizes these remarkable advances by examining evidence for the proposed catalytic mechanism derived from inhibitor co-crystal structures, conflicting models of rhomboid-substrate interaction, and recent work on the structure and function of rhomboid cytosolic domains. In addition to exploring progress on aspects of rhomboid structure, areas for future research and unaddressed questions are emphasized and highlighted. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
|
24
|
Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles. Curr Opin Struct Biol 2013; 23:851-8. [DOI: 10.1016/j.sbi.2013.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/06/2013] [Accepted: 07/19/2013] [Indexed: 12/20/2022]
|
25
|
Li Y, Lu SHJ, Tsai CJ, Bohm C, Qamar S, Dodd RB, Meadows W, Jeon A, McLeod A, Chen F, Arimon M, Berezovska O, Hyman BT, Tomita T, Iwatsubo T, Johnson CM, Farrer LA, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Structural interactions between inhibitor and substrate docking sites give insight into mechanisms of human PS1 complexes. Structure 2013; 22:125-35. [PMID: 24210759 PMCID: PMC3887256 DOI: 10.1016/j.str.2013.09.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/28/2013] [Accepted: 09/21/2013] [Indexed: 11/18/2022]
Abstract
Presenilin-mediated endoproteolysis of transmembrane proteins plays a key role in physiological signaling and in the pathogenesis of Alzheimer disease and some cancers. Numerous inhibitors have been found via library screens, but their structural mechanisms remain unknown. We used several biophysical techniques to investigate the structure of human presenilin complexes and the effects of peptidomimetic γ-secretase inhibitors. The complexes are bilobed. The head contains nicastrin ectodomain. The membrane-embedded base has a central channel and a lateral cleft, which may represent the initial substrate docking site. Inhibitor binding induces widespread structural changes, including rotation of the head and closure of the lateral cleft. These changes block substrate access to the catalytic pocket and inhibit the enzyme. Intriguingly, peptide substrate docking has reciprocal effects on the inhibitor binding site. Similar reciprocal shifts may underlie the mechanisms of other inhibitors and of the “lateral gate” through which substrates access to the catalytic site. The head contains nicastrin ectodomain and overhangs a solute-accessible cavity in base The base has a central channel and a lateral cleft (putative substrate docking site) Inhibitors close the cleft and channel and rotate the head, blocking substrate access
Collapse
Affiliation(s)
- Yi Li
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Stephen Hsueh-Jeng Lu
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ching-Ju Tsai
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christopher Bohm
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Roger B Dodd
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - William Meadows
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Amy Jeon
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Adam McLeod
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Fusheng Chen
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Muriel Arimon
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Genetics and Genomics, Biostatistics, and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Peter H St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON M5S 3H2, Canada.
| |
Collapse
|
26
|
A new class of rhomboid protease inhibitors discovered by activity-based fluorescence polarization. PLoS One 2013; 8:e72307. [PMID: 23991088 PMCID: PMC3750051 DOI: 10.1371/journal.pone.0072307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/10/2013] [Indexed: 01/01/2023] Open
Abstract
Rhomboids are intramembrane serine proteases that play diverse biological roles, including some that are of potential therapeutical relevance. Up to date, rhomboid inhibitor assays are based on protein substrate cleavage. Although rhomboids have an overlapping substrate specificity, substrates cannot be used universally. To overcome the need for substrates, we developed a screening assay using fluorescence polarization activity-based protein profiling (FluoPol ABPP) that is compatible with membrane proteases. With FluoPol ABPP, we identified new inhibitors for the E. coli rhomboid GlpG. Among these was a structural class that has not yet been reported as rhomboid inhibitors: β-lactones. They form covalent and irreversible complexes with the active site serine of GlpG. The presence of alkyne handles on the β-lactones also allowed activity-based labeling. Overall, these molecules represent a new scaffold for future inhibitor and activity-based probe development, whereas the assay will allow inhibitor screening of ill-characterized membrane proteases.
Collapse
|
27
|
Xue Y, Ha Y. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. J Biol Chem 2013; 288:16645-16654. [PMID: 23609444 DOI: 10.1074/jbc.m112.438127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhomboids represent an evolutionarily ancient protease family. Unlike most other proteases, they are polytopic membrane proteins and specialize in cleaving transmembrane protein substrates. The polar active site of rhomboid protease is embedded in the membrane and normally closed. For the bacterial rhomboid GlpG, it has been proposed that one of the transmembrane helices (S5) of the protease can rotate to open a lateral gate, enabling substrate to enter the protease from inside the membrane. Here, we studied the conformational change in GlpG by solving the cocrystal structure of the protease with a mechanism-based inhibitor. We also examined the lateral gating model by cross-linking S5 to a neighboring helix (S2). The crystal structure shows that inhibitor binding displaces a capping loop (L5) from the active site but causes only minor shifts in the transmembrane helices. Cross-linking S5 and S2, which not only restricts the lateral movement of S5 but also prevents substrate from passing between the two helices, does not hinder the ability of the protease to cleave a membrane protein substrate in detergent solution and in reconstituted membrane vesicles. Taken together, these data suggest that a large lateral movement of the S5 helix is not required for substrate access to the active site of rhomboid protease.
Collapse
Affiliation(s)
- Yi Xue
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Ya Ha
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
28
|
Abstract
Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases.
Collapse
Affiliation(s)
- Ya Ha
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
29
|
Features of Pro-σK important for cleavage by SpoIVFB, an intramembrane metalloprotease. J Bacteriol 2013; 195:2793-806. [PMID: 23585539 DOI: 10.1128/jb.00229-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σ(K) during sporulation. To elucidate features of Pro-σ(K) important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σ(K) was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σ(K) residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2'). These features appear to be conserved among Pro-σ(K) orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2' of Pro-σ(K). A Lys residue at P3' of Pro-σ(K) could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9'). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σ(K). The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme.
Collapse
|
30
|
Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J 2013; 280:1579-603. [PMID: 23432912 DOI: 10.1111/febs.12199] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/11/2013] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Intramembrane proteases cleave membrane proteins in their transmembrane helices to regulate a wide range of biological processes. They catalyse hydrolytic reactions within the hydrophobic environment of lipid membranes where water is normally excluded. How? Do the different classes of intramembrane proteases share any mechanistic principles? In this review these questions will be discussed in view of the crystal structures of prokaryotic members of the three known catalytic types of intramembrane proteases published over the past 7 years. Rhomboids, the intramembrane serine proteases that are the best understood family, will be the initial area of focus, and the principles that have arisen from a number of structural and biochemical studies will be considered. The site-2 metalloprotease and GXGD-type aspartyl protease structures will then be discussed, with parallels drawn and differences highlighted between these enzymes and the rhomboids. Despite the significant advances achieved so far, to obtain a detailed understanding of the mechanism of any intramembrane protease, high-resolution structural information on the substrate-enzyme complex is required. This remains a major challenge for the field.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
31
|
Kaushik S, Mutt E, Chellappan A, Sankaran S, Srinivasan N, Sowdhamini R. Improved detection of remote homologues using cascade PSI-BLAST: influence of neighbouring protein families on sequence coverage. PLoS One 2013; 8:e56449. [PMID: 23437136 PMCID: PMC3577913 DOI: 10.1371/journal.pone.0056449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/13/2013] [Indexed: 12/31/2022] Open
Abstract
Background Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST. Methodology/Principal Findings We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families. Conclusions/Significance Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.
Collapse
Affiliation(s)
- Swati Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Eshita Mutt
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Ajithavalli Chellappan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur, Tamil Nadu, India
| | - Sandhya Sankaran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Bangalore, India
| | - Narayanaswamy Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Bangalore, India
- * E-mail: (NS); (RS)
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- * E-mail: (NS); (RS)
| |
Collapse
|
32
|
Zattas D, Adle DJ, Rubenstein EM, Hochstrasser M. N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates. Mol Biol Cell 2013; 24:890-900. [PMID: 23363603 PMCID: PMC3608499 DOI: 10.1091/mbc.e12-11-0838] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Up to 70% of yeast proteins are N-terminally acetylated, but in few cases is the function known. The NatB Nα-acetyltransferase is essential for ER-associated degradation of luminal proteins (ERAD-L). Der1, an ERAD-L cofactor of the Hrd1 ubiquitin ligase, is acetylated by NatB and is the only N-acetylation substrate crucial to ERAD-L. Two conserved ubiquitin ligases, Hrd1 and Doa10, mediate most endoplasmic reticulum–associated protein degradation (ERAD) in yeast. Degradation signals (degrons) recognized by these ubiquitin ligases remain poorly characterized. Doa10 recognizes the Deg1 degron from the MATα2 transcription factor. We previously found that deletion of the gene (NAT3) encoding the catalytic subunit of the NatB N-terminal acetyltransferase weakly stabilized a Deg1-fusion protein. By contrast, a recent analysis of several MATα2 derivatives suggested that N-terminal acetylation of these proteins by NatB was crucial for recognition by Doa10. We now analyze endogenous MATα2 degradation in cells lacking NatB and observe minimal perturbation relative to wild-type cells. However, NatB mutation strongly impairs degradation of ER-luminal Hrd1 substrates. This unexpected defect derives from a failure of Der1, a Hrd1 complex subunit, to be N-terminally acetylated in NatB mutant yeast. We retargeted Der1 to another acetyltransferase to show that it is the only ERAD factor requiring N-terminal acetylation. Preventing Der1 acetylation stimulates its proteolysis via the Hrd1 pathway, at least partially accounting for the ERAD defect observed in the absence of NatB. These results reveal an important role for N-terminal acetylation in controlling Hrd1 ligase activity toward a specific class of ERAD substrates.
Collapse
Affiliation(s)
- Dimitrios Zattas
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | | | | |
Collapse
|
33
|
Lemberg MK. Sampling the membrane: function of rhomboid-family proteins. Trends Cell Biol 2013; 23:210-7. [PMID: 23369641 DOI: 10.1016/j.tcb.2013.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/19/2012] [Accepted: 01/03/2013] [Indexed: 12/29/2022]
Abstract
Rhomboids constitute a conserved protein superfamily that specifically binds membrane proteins and directs them into various different cellular pathways ranging from regulated secretion to endoplasmic reticulum (ER)-associated degradation (ERAD). Rhomboid proteases are known to release protein domains from membranes by a cut in their membrane anchor, whereas an emerging new class of rhomboid-family proteins lacks key catalytic residues and is not proteolytically active. Recent work has shown that these rhomboid pseudoproteases, including iRhoms and derlins, bind membrane proteins to regulate their fate, but the underlying molecular mechanism is not known. This review summarizes recent advances in the molecular understanding of rhomboid-family proteins and discusses common principles in how they recognize and bind proteins in the plane of the membrane.
Collapse
Affiliation(s)
- Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Knopf RR, Feder A, Mayer K, Lin A, Rozenberg M, Schaller A, Adam Z. Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:559-71. [PMID: 22738221 DOI: 10.1111/j.1365-313x.2012.05090.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhomboids are intra-membrane serine proteases whose sequences are found in nearly all organisms. They are involved in a variety of biological functions in both eukaryotes and prokaryotes. Localization assays revealed that two Arabidopsis thaliana rhomboid-like proteases (AtRBL), AtRBL8 and AtRBL9, are targeted to the chloroplast. Using transgenic plants expressing epitope-tagged AtRBL9, we localized AtRBL9 to the chloroplast inner envelope membrane, with both its N- and C-termini facing the stroma. Mass spectrometry analyses confirmed this localization, and suggested that this is also the case for AtRBL8. Both are proteins of very low abundance. The results of size-exclusion chromatography implied that AtRBL9 forms homo-oligomers. In search of a putative function, a comparative proteomic analysis was performed on wild-type and double-knockout plants, lacking both AtRBL8 and AtRBL9, using the iTRAQ method. Of 180 envelope proteins, the level of only a few was either increased or decreased in the mutant line. One of the latter, allene oxide synthase, is involved in jasmonic acid biosynthesis. This observation provides an explanation for the recently reported aberration in flower morphology that is associated with the loss of AtRBL8.
Collapse
Affiliation(s)
- Ronit Rimon Knopf
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Uritsky N, Shokhen M, Albeck A. The Catalytic Machinery of Rhomboid Proteases: Combined MD and QM Simulations. J Chem Theory Comput 2012; 8:4663-71. [DOI: 10.1021/ct3003767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Neta Uritsky
- The Julius
Spokojny Bioorganic Chemistry Laboratory,
Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Michael Shokhen
- The Julius
Spokojny Bioorganic Chemistry Laboratory,
Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Amnon Albeck
- The Julius
Spokojny Bioorganic Chemistry Laboratory,
Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
36
|
Chadwick AC, Sahoo D. Functional characterization of newly-discovered mutations in human SR-BI. PLoS One 2012; 7:e45660. [PMID: 23029167 PMCID: PMC3448639 DOI: 10.1371/journal.pone.0045660] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022] Open
Abstract
In rodents, SR-BI has been firmly established as a physiologically relevant HDL receptor that mediates removal of HDL-cholesteryl esters (CE). However, its role in human lipoprotein metabolism is less defined. Recently, two unique point mutations in human SR-BI - S112F or T175A - were identified in subjects with high HDL-cholesterol (HDL-C) levels. We hypothesized that mutation of these conserved residues would compromise the cholesterol-transport functions of SR-BI. To test this hypothesis, S112F- and T175A-SR-BI were generated by site-directed mutagenesis. Cell surface expression was confirmed for both mutant receptors in COS-7 cells upon transient transfection, albeit at lower levels for T175A-SR-BI. Both mutant receptors displayed defective HDL binding, selective uptake of HDL-CE and release of free cholesterol (FC) from cells to HDL. Mutant receptors were also unable to re-organize plasma membrane pools of FC. While these impaired functions were independent of receptor oligomerization, inability of T175A-SR-BI to mediate cholesterol-transport functions could be related to altered N-linked glycosylation status. In conclusion, high HDL-C levels observed in carriers of S112F- or T175A-SR-BI mutant receptors are consistent with the inability of these SR-BI receptors to mediate efficient selective uptake of HDL-CE, and suggest that increased plasma HDL concentrations in these settings may not be associated with lower risk of cardiovascular disease.
Collapse
Affiliation(s)
- Alexandra C Chadwick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
37
|
Sherratt AR, Blais DR, Ghasriani H, Pezacki JP, Goto NK. Activity-Based Protein Profiling of the Escherichia coli GlpG Rhomboid Protein Delineates the Catalytic Core. Biochemistry 2012; 51:7794-803. [DOI: 10.1021/bi301087c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Allison R. Sherratt
- Department of Biochemistry,
Microbiology and Immunology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Canada K1H 8M5
| | - David R. Blais
- Steacie Institute for Molecular
Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Canada K1A 0R6
| | - Houman Ghasriani
- Department of Chemistry, University of Ottawa, 10 Marie-Curie, Ottawa, Canada
K1N 6N5
| | - John Paul Pezacki
- Department of Biochemistry,
Microbiology and Immunology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Canada K1H 8M5
- Steacie Institute for Molecular
Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Canada K1A 0R6
- Department of Chemistry, University of Ottawa, 10 Marie-Curie, Ottawa, Canada
K1N 6N5
| | - Natalie K. Goto
- Department of Biochemistry,
Microbiology and Immunology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Canada K1H 8M5
- Department of Chemistry, University of Ottawa, 10 Marie-Curie, Ottawa, Canada
K1N 6N5
| |
Collapse
|
38
|
Reddy T, Rainey JK. Multifaceted Substrate Capture Scheme of a Rhomboid Protease. J Phys Chem B 2012; 116:8942-54. [DOI: 10.1021/jp305077k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tyler Reddy
- Department of Biochemistry & Molecular Biology and ‡Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology and ‡Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
39
|
Zhou Y, Moin SM, Urban S, Zhang Y. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency. Structure 2012; 20:1255-63. [PMID: 22705210 DOI: 10.1016/j.str.2012.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/29/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
Rhomboid proteases regulate key cellular pathways, but their biochemical mechanism including how water is made available to the membrane-immersed active site remains ambiguous. We performed four prolonged molecular dynamics simulations initiated from both gate-open and gate-closed states of Escherichia coli rhomboid GlpG in a phospholipid bilayer. GlpG was notably stable in both gating states, experiencing similar tilt and local membrane thinning, with no observable gating transitions, highlighting that gating is rate-limiting. Analysis of dynamics revealed rapid loss of crystallographic waters from the active site, but retention of a water cluster within a site formed by His141, Ser181, Ser185, and/or Gln189. Experimental interrogation of 14 engineered mutants revealed an essential role for at least Gln189 and Ser185 in catalysis with no effect on structural stability. Our studies indicate that spontaneous water supply to the intramembrane active site of rhomboid proteases is rare, but its availability for catalysis is ensured by an unanticipated active site element, the water-retention site.
Collapse
Affiliation(s)
- Yanzi Zhou
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
40
|
Jeyaraju DV, Sood A, Laforce-Lavoie A, Pellegrini L. Rhomboid proteases in mitochondria and plastids: keeping organelles in shape. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:371-80. [PMID: 22634239 DOI: 10.1016/j.bbamcr.2012.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 01/16/2023]
Abstract
Rhomboids constitute the most widespread and conserved family of intramembrane cleaving proteases. They are key regulators of critical cellular processes in bacteria and animals, and are poised to play an equally important role also in plants. Among eukaryotes, a distinct subfamily of rhomboids, prototyped by the mammalian mitochondrial protein Parl, ensures the maintenance of the structural and functional integrity of mitochondria and plastids. Here, we discuss the studies that in the past decade have unveiled the role, regulation, and structure of this unique group of rhomboid proteases. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Danny V Jeyaraju
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Rhomboids are ubiquitous intramembrane serine proteases the sequences of which are found in nearly all sequenced genomes, including those of plants. They were molecularly characterized in a number of organisms, and were found to play a role in a variety of biological functions including signaling, development, apoptosis, mitochondrial integrity, parasite invasion and more. Although rhomboid sequences are found in plants, very little is known about their function. Here, we present the current knowledge in the rhomboids field in general, and in plant rhomboids in particular. In addition, we discuss possible physiological roles of different plant rhomboids.
Collapse
Affiliation(s)
- Ronit Rimon Knopf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
42
|
Xue Y, Chowdhury S, Liu X, Akiyama Y, Ellman J, Ha Y. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. Biochemistry 2012; 51:3723-31. [PMID: 22515733 DOI: 10.1021/bi300368b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhomboid protease conducts proteolysis inside the hydrophobic environment of the membrane. The conformational flexibility of the protease is essential for the enzyme mechanism, but the nature of this flexibility is not completely understood. Here we describe the crystal structure of rhomboid protease GlpG in complex with a phosphonofluoridate inhibitor, which is covalently bonded to the catalytic serine and extends into the S' side of the substrate binding cleft. Inhibitor binding causes subtle but extensive changes in the membrane protease. Many transmembrane helices tilt and shift positions, and the gap between S2 and S5 is slightly widened so that the inhibitor can bind between them. The side chain of Phe-245 from a loop (L5) that acts as a cap rotates and uncovers the opening of the substrate binding cleft to the lipid bilayer. A concurrent turn of the polypeptide backbone at Phe-245 moves the rest of the cap and exposes the catalytic serine to the aqueous solution. This study, together with earlier crystallographic investigation of smaller inhibitors, suggests a simple model for explaining substrate binding to rhomboid protease.
Collapse
Affiliation(s)
- Yi Xue
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
43
|
Xue Y, Ha Y. Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. J Biol Chem 2011; 287:3099-107. [PMID: 22130671 DOI: 10.1074/jbc.m111.310482] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhomboid proteases have many important biological functions. Unlike soluble serine proteases such as chymotrypsin, the active site of rhomboid protease, which contains a Ser-His catalytic dyad, is submerged in the membrane and surrounded by membrane-spanning helices. Previous crystallographic analyses of GlpG, a bacterial rhomboid protease, and its complex with isocoumarin have provided insights into the mechanism of the membrane protease. Here, we studied the interaction of GlpG with 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate, both mechanism-based inhibitors for the serine protease, and describe the crystal structure of the covalent adduct between GlpG and diisopropyl fluorophosphonate, which mimics the oxyanion-containing tetrahedral intermediate of the hydrolytic reaction. The crystal structure confirms that the oxyanion is stabilized by the main chain amide of Ser-201 and by the side chains of His-150 and Asn-154. The phosphorylation of the catalytic Ser-201 weakens its interaction with His-254, causing the catalytic histidine to rotate away from the serine. The rotation of His-254 is accompanied by further rearrangement of the side chains of Tyr-205 and Trp-236 within the substrate-binding groove. The formation of the tetrahedral adduct is also accompanied by opening of the L5 cap and movement of transmembrane helix S5 toward S6 in a direction different from that predicted by the lateral gating model. Combining the new structural data with those on the isocoumarin complex sheds further light on the plasticity of the active site of rhomboid membrane protease.
Collapse
Affiliation(s)
- Yi Xue
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
44
|
Greenblatt EJ, Olzmann JA, Kopito RR. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 2011; 18:1147-52. [PMID: 21909096 DOI: 10.1038/nsmb.2111] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022]
Abstract
The degradation of misfolded secretory proteins is ultimately mediated by the ubiquitin-proteasome system in the cytoplasm, therefore endoplasmic reticulum-associated degradation (ERAD) substrates must be dislocated across the ER membrane through a process driven by the AAA ATPase p97/VCP. Derlins recruit p97/VCP and have been proposed to be part of the dislocation machinery. Here we report that Derlins are inactive members of the rhomboid family of intramembrane proteases and bind p97/VCP through C-terminal SHP boxes. Human Derlin-1 harboring mutations within the rhomboid domain stabilized mutant α-1 antitrypsin (NHK) at the cytosolic face of the ER membrane without disrupting the p97/VCP interaction. We propose that substrate interaction and p97/VCP recruitment are separate functions that are essential for dislocation and can be assigned respectively to the rhomboid domain and the C terminus of Derlin-1. These data suggest that intramembrane proteolysis and protein dislocation share unexpected mechanistic features.
Collapse
|
45
|
Lazareno-Saez C, Brooks CL, Lemieux MJ. Structural comparison of substrate entry gate for rhomboid intramembrane peptidases. Biochem Cell Biol 2011; 89:216-23. [PMID: 21455272 DOI: 10.1139/o10-161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rhomboids are intramembrane serine peptidases conserved in all kingdoms of life. Their general role is to cleave integral membrane proteins to release signalling molecules. These signals, when disrupted, can contribute to various diseases. Crystal structures of H. influenzae (hiGlpG) and E. coli GlpG (ecGlpG) rhomboids have revealed a structure with six transmembrane helices and a Ser-His catalytic dyad buried within the membrane. One emerging issue was the identification of the mobile element in the protein that allows substrate docking. It has been proposed that the substrate entry gate is composed of helix 5 and loop 5. The present review studies the structures of these two orthologs. In ecGlpG structures, different conformations of loop 5 and helix 5 are observed. Open and closed conformations of ecGlpG structures are compared with each other and with hiGlpG, surveying differences in hydrophobic interactions within loop 5 and helix 5. Furthermore, a comparison of the ecGlpG and hiGlpG structures reveals differences in loop 4. Overall, less variation is observed in loop 4, suggesting this region acts as an anchor for the substrate gate. Functional and regulatory implications of these variations are discussed.
Collapse
Affiliation(s)
- Christelle Lazareno-Saez
- School of Molecular & Systems Medicine, Faculty of Medicine & Dentistry, Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
46
|
Hu J, Xue Y, Lee S, Ha Y. The crystal structure of GXGD membrane protease FlaK. Nature 2011; 475:528-31. [PMID: 21765428 DOI: 10.1038/nature10218] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/18/2011] [Indexed: 11/09/2022]
Abstract
The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 Å resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.
Collapse
Affiliation(s)
- Jian Hu
- Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The mitochondrial rhomboid protease Parl governs apoptosis, morphology, metabolism and might be implicated in Parkinson's disease, but the structural basis of its activity and complex regulation remain unknown. We report the discovery of γ-cleavage, a proteolytic event on the loop connecting the first transmembrane helix (TMH) of Parl to the 6-TMH catalytic rhomboid domain of the protease. This cleavage disrupts the '1+6' structure that defines every mitochondrial rhomboid and generates a new form of Parl, PROD (Parl-rhomboid-domain). Structure-function analysis of Parl suggests that γ-cleavage could be implicated in eliminating Parl proteolytic activity, and structural modeling of PROD reveals structural conservation with the bacterial rhomboid GlpG. However, unlike bacterial rhomboids, which employ a diad-based mechanism of catalysis, Parl appears to use a conserved mitochondrial rhomboid-specific Asp residue on TMH-5 in a triad-based mechanism of catalysis. This work provides unexpected insights into the structural determinants regulating Parl stability and activity in vivo, and reveals a complex cascade of proteolytic events controlling the function of the protease in the mitochondrion.
Collapse
|
48
|
Brooks CL, Lazareno-Saez C, Lamoureux JS, Mak MW, Lemieux MJ. Insights into substrate gating in H. influenzae rhomboid. J Mol Biol 2011; 407:687-97. [PMID: 21295583 DOI: 10.1016/j.jmb.2011.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/16/2023]
Abstract
Rhomboids are a remarkable class of serine proteases that are embedded in lipid membranes. These membrane-bound enzymes play key roles in cellular signaling events, and disruptions in these events can result in numerous disease pathologies, including hereditary blindness, type 2 diabetes, Parkinson's disease, and epithelial cancers. Recent crystal structures of rhomboids from Escherichia coli have focused on how membrane-bound substrates gain access to a buried active site. In E. coli, it has been shown that movements of loop 5, with smaller movements in helix 5 and loop 4, act as substrate gate, facilitating inhibitor access to rhomboid catalytic residues. Herein we present a new structure of the Haemophilus influenzae rhomboid hiGlpG, which reveals disorder in loop 5, helix 5, and loop 4, indicating that, together, they represent mobile elements of the substrate gate. Substrate cleavage assays by hiGlpG with amino acid substitutions in these mobile regions demonstrate that the flexibilities of both loop 5 and helix 5 are important for access of the substrates to the catalytic residues. Mutagenesis indicates that less mobility by loop 4 is required for substrate cleavage. A reexamination of the reaction mechanism of rhomboid substrates, whereby cleavage of the scissile bond occurs on the si-face of the peptide bond, is discussed.
Collapse
Affiliation(s)
- Cory L Brooks
- Membrane Protein Disease Research Group, Department of Biochemistry, Faculty of Medicine and Dentistry,University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
49
|
Structure of rhomboid protease in a lipid environment. J Mol Biol 2011; 407:232-47. [PMID: 21256137 PMCID: PMC3093617 DOI: 10.1016/j.jmb.2011.01.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/24/2022]
Abstract
Structures of the prokaryotic homologue of rhomboid proteases reveal a core of six transmembrane helices, with the active-site residues residing in a hydrophilic cavity. The native environment of rhomboid protease is a lipid bilayer, yet all the structures determined thus far are in a nonnative detergent environment. There remains a possibility of structural artefacts arising from the use of detergents. In an attempt to address the effect of detergents on the structure of rhomboid protease, crystals of GlpG, an Escherichia coli rhomboid protease in a lipid environment, were obtained using two alternative approaches. The structure of GlpG refined to 1. 7-Å resolution was obtained from crystals grown in the presence of lipid bicelles. This structure reveals well-ordered and partly ordered lipid molecules forming an annulus around the protein. Lipid molecules adapt to the surface features of protein and arrange such that they match the hydrophobic thickness of GlpG. Virtually identical two-dimensional crystals were also obtained after detergent removal by dialysis. A comparison of an equivalent structure determined in a completely delipidated detergent environment provides insights on how detergent substitutes for lipid. A detergent molecule is also observed close to the active site, helping to postulate a model for substrate binding and hydrolysis in rhomboids.
Collapse
|
50
|
Sodt AJ, Head-Gordon T. Driving forces for transmembrane alpha-helix oligomerization. Biophys J 2010; 99:227-37. [PMID: 20655851 DOI: 10.1016/j.bpj.2010.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 11/25/2022] Open
Abstract
We present what we believe to be a novel statistical contact potential based on solved structures of transmembrane (TM) alpha-helical bundles, and we use this contact potential to investigate the amino acid likelihood of stabilizing helix-helix interfaces. To increase statistical significance, we have reduced the full contact energy matrix to a four-flavor alphabet of amino acids, automatically determined by our methodology, in which we find that polarity is a more dominant factor of group identity than is size, with charged or polar groups most often occupying the same face, whereas polar/apolar residue pairs tend to occupy opposite faces. We found that the most polar residues strongly influence interhelical contact formation, although they occur rarely in TM helical bundles. Two-body contact energies in the reduced letter code are capable of determining native structure from a large decoy set for a majority of test TM proteins, at the same time illustrating that certain higher-order sequence correlations are necessary for more accurate structure predictions.
Collapse
Affiliation(s)
- Alex J Sodt
- Department of Bioengineering, University of California, Berkeley, California, USA.
| | | |
Collapse
|