1
|
Luo S, Xiong D, Zhao X, Duan L. An Attempt of Seeking Favorable Binding Free Energy Prediction Schemes Considering the Entropic Effect on Fis-DNA Binding. J Phys Chem B 2023; 127:1312-1324. [PMID: 36735878 DOI: 10.1021/acs.jpcb.2c07811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein-DNA binding mechanisms in a complex manner are essential for understanding many biological processes. Over the past decades, numerous experiments and calculations have analyzed the specificity of protein-DNA binding. However, the accuracy of binding free energy prediction for multi-base DNA systems still needs to be improved. Fis is a DNA-binding protein that regulates various transcription and recombination reactions. In the present work, we tested several methods of predict binding free energy based on this system to find a favorable prediction scheme and explore the binding mechanism of Fis protein and DNA. Two solvent models (explicit and implicit solvent models) were chosen for the dynamics process, and the predicted binding free energy was more accurate under the explicit solvent model. When different Poisson-Boltzmann/Generalized Born (PB/GB) models were tested for DNA force fields (BSC1 and OL15), it was found that the binding free energy predicted by the selected OL15 force field performed better and the correlation between predicted and experimental values was improved with the increasing interior dielectric constant (Dk). Finally, using Dk = 8, the GBOBC1 model combined with interaction entropy (IE), which was calculated for entropic contribution (GBOBC1_IE_8), was screened out for the binding free energy prediction and analysis of the Fis-DNA system, and the validity of the method was further verified by testing the Cren7-DNA system. By performing conformational analysis of the minor groove, it was found that mutation of the DNA central sequence A/T to C/G and deletion of the guanine 2-amino group would change the minor groove width and thus affect the formation of the major groove, altering the interaction and atomic contact between the protein and the major groove, thus changing the binding affinity of Fis and DNA. Hopefully, the series of tests in this work can shed some light on the related studies of protein and DNA systems.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
2
|
Dong MJ, Luo H, Gao F. DoriC 12.0: an updated database of replication origins in both complete and draft prokaryotic genomes. Nucleic Acids Res 2022; 51:D117-D120. [PMID: 36305822 PMCID: PMC9825612 DOI: 10.1093/nar/gkac964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 01/29/2023] Open
Abstract
DoriC was first launched in 2007 as a database of replication origins (oriCs) in bacterial genomes and has since been constantly updated to integrate the latest research progress in this field. The database was subsequently extended to include the oriCs in archaeal genomes as well as those in plasmids. This latest release, DoriC 12.0, includes the oriCs in both draft and complete prokaryotic genomes. At the same time, the number of oriCs in the database has also increased significantly and currently contains over 200 000 bacterial entries distributed in more than 40 phyla. Among them, a large number are from bacteria in new phyla whose oriCs were not explored before. Additionally, new oriC features and improvements have been introduced, especially in the visualization and analysis of oriCs. Currently, DoriC is considered as an important database in the fields of bioinformatics, microbial genomics, and even synthetic biology, providing a valuable resource as well as a comprehensive platform for the research on oriCs. DoriC 12.0 can be accessed at https://tubic.org/doric/ and http://tubic.tju.edu.cn/doric/.
Collapse
Affiliation(s)
| | | | - Feng Gao
- To whom correspondence should be addressed. Tel: +86 22 27404118; Fax: +86 22 27404118;
| |
Collapse
|
3
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
4
|
Facilitated Dissociation of Nucleoid Associated Proteins from DNA in the Bacterial Confinement. Biophys J 2022; 121:1119-1133. [PMID: 35257784 PMCID: PMC9034294 DOI: 10.1016/j.bpj.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription machinery depends on the temporal formation of protein-DNA complexes. Recent experiments demonstrated that not only the formation but also the lifetime of such complexes can affect the transcriptional machinery. In parallel, in vitro single-molecule studies showed that nucleoid-associated proteins (NAPs) leave the DNA rapidly as the bulk concentration of the protein increases via facilitated dissociation (FD). Nevertheless, whether such a concentration-dependent mechanism is functional in a bacterial cell, in which NAP levels and the 3d chromosomal structure are often coupled, is not clear a priori. Here, by using extensive coarse-grained molecular simulations, we model the unbinding of specific and nonspecific dimeric NAPs from a high-molecular-weight circular DNA molecule in a cylindrical structure mimicking the cellular confinement of a bacterial chromosome. Our simulations confirm that physiologically relevant peak protein levels (tens of micromolar) lead to highly compact chromosomal structures. This compaction results in rapid off rates (shorter DNA residence times) for specifically DNA-binding NAPs, such as the factor for inversion stimulation, which mostly dissociate via a segmental jump mechanism. Contrarily, for nonspecific NAPs, which are more prone to leave their binding sites via 1d sliding, the off rates decrease as the protein levels increase. The simulations with restrained chromosome models reveal that chromosome compaction is in favor of faster dissociation but only for specific proteins, and nonspecific proteins are not affected by the chromosome compaction. Overall, our results suggest that the cellular concentration level of a structural DNA-binding protein can be highly intermingled with its DNA residence time.
Collapse
|
5
|
Tague JG, Regmi A, Gregory GJ, Boyd EF. Fis Connects Two Sensory Pathways, Quorum Sensing and Surface Sensing, to Control Motility in Vibrio parahaemolyticus. Front Microbiol 2021; 12:669447. [PMID: 34858358 PMCID: PMC8630636 DOI: 10.3389/fmicb.2021.669447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023] Open
Abstract
Factor for inversion stimulation (Fis) is a global regulator that is highly expressed during exponential phase growth and undetectable in stationary phase growth. Quorum sensing (QS) is a global regulatory mechanism that controls gene expression in response to changes in cell density and growth phase. In Vibrio parahaemolyticus, a marine species and a significant human pathogen, the QS regulatory sRNAs, Qrr1 to Qrr5, are expressed during exponential growth and negatively regulate the high cell density QS master regulator OpaR. OpaR is a positive regulator of capsule polysaccharide (CPS) formation, which is required for biofilm formation, and is a repressor of lateral flagella required for swarming motility. In V. parahaemolyticus, we show that Fis is a positive regulator of the qrr sRNAs expression. In an in-frame fis deletion mutant, qrr expression was repressed and opaR expression was induced. The Δfis mutant produced CPS and biofilm, but swarming motility was abolished. Also, the fis deletion mutant was more sensitive to polymyxin B. Swarming motility requires expression of both the surface sensing scrABC operon and lateral flagella laf operon. Our data showed that in the Δfis mutant both laf and scrABC genes were repressed. Fis controlled swarming motility indirectly through the QS pathway and directly through the surface sensing pathway. To determine the effects of Fis on cellular metabolism, we performed in vitro growth competition assays, and found that Δfis was outcompeted by wild type in minimal media supplemented with intestinal mucus as a sole nutrient source. The data showed that Fis positively modulated mucus components L-arabinose, D-gluconate and N-acetyl-D-glucosamine catabolism gene expression. In an in vivo colonization competition assay, Δfis was outcompeted by wild type, indicating Fis is required for fitness. Overall, these data demonstrate a global regulatory role for Fis in V. parahaemolyticus that includes QS, motility, and metabolism.
Collapse
Affiliation(s)
- Jessica G Tague
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Abish Regmi
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Gwendolyn J Gregory
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
6
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Gasperotti A, Göing S, Fajardo-Ruiz E, Forné I, Jung K. Function and Regulation of the Pyruvate Transporter CstA in Escherichia coli. Int J Mol Sci 2020; 21:ijms21239068. [PMID: 33260635 PMCID: PMC7730263 DOI: 10.3390/ijms21239068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Pyruvate is a central metabolite that connects many metabolic pathways in living organisms. To meet the cellular pyruvate requirements, the enterobacterium Escherichia coli has at least three pyruvate uptake systems—the H+/pyruvate symporter BtsT, and two thus far less well-characterized transporters, YhjX and CstA. BtsT and CstA belong to the putative carbon starvation (CstA) family (transporter classification TC# 2.A.114). We have created an E. coli mutant that cannot grow on pyruvate as the sole carbon source and used it to characterize CstA as a pyruvate transporter. Transport studies in intact cells confirmed that CstA is a highly specific pyruvate transporter with moderate affinity and is energized by a proton gradient. When cells of a reporter strain were cultured in complex medium, cstA expression was maximal only in stationary phase. A DNA affinity-capture assay combined with mass spectrometry and an in-vivo reporter assay identified Fis as a repressor of cstA expression, in addition to the known activator cAMP-CRP. The functional characterization and regulation of this second pyruvate uptake system provides valuable information for understanding the complexity of pyruvate sensing and uptake in E. coli.
Collapse
Affiliation(s)
- Ana Gasperotti
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
| | - Stephanie Göing
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
| | - Elena Fajardo-Ruiz
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Kirsten Jung
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
- Correspondence:
| |
Collapse
|
8
|
A bacteriophage mimic of the bacterial nucleoid-associated protein Fis. Biochem J 2020; 477:1345-1362. [PMID: 32207815 PMCID: PMC7166090 DOI: 10.1042/bcj20200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
Abstract
We report the identification and characterization of a bacteriophage λ-encoded protein, NinH. Sequence homology suggests similarity between NinH and Fis, a bacterial nucleoid-associated protein (NAP) involved in numerous DNA topology manipulations, including chromosome condensation, transcriptional regulation and phage site-specific recombination. We find that NinH functions as a homodimer and is able to bind and bend double-stranded DNA in vitro. Furthermore, NinH shows a preference for a 15 bp signature sequence related to the degenerate consensus favored by Fis. Structural studies reinforced the proposed similarity to Fis and supported the identification of residues involved in DNA binding which were demonstrated experimentally. Overexpression of NinH proved toxic and this correlated with its capacity to associate with DNA. NinH is the first example of a phage-encoded Fis-like NAP that likely influences phage excision-integration reactions or bacterial gene expression.
Collapse
|
9
|
Zhou J, Gao Z, Zhang H, Dong Y. Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun 2020; 76:209-215. [PMID: 32356522 PMCID: PMC7193516 DOI: 10.1107/s2053230x20005427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/18/2020] [Indexed: 11/10/2022] Open
Abstract
Factor for inversion stimulation (Fis) is a versatile bacterial nucleoid-associated protein that can directly bind and bend DNA to influence DNA topology. It also plays crucial roles in regulating bacterial virulence factors and in optimizing bacterial adaptation to various environments. Fis from Pseudomonas aeruginosa (PA4853, referred to as PaFis) has recently been found to be required for virulence by regulating the expression of type III secretion system (T3SS) genes. PaFis can specifically bind to the promoter region of exsA, which functions as a T3SS master regulator, to regulate its expression and plays an essential role in transcription elongation from exsB to exsA. Here, the crystal structure of PaFis, which is composed of a four-helix bundle and forms a homodimer, is reported. PaFis shows remarkable structural similarities to the well studied Escherichia coli Fis (EcFis), including an N-terminal flexible loop and a C-terminal helix-turn-helix (HTH) motif. However, the critical residues for Hin-catalyzed DNA inversion in the N-terminal loop of EcFis are not conserved in PaFis and further studies are required to investigate its exact role. A gel-electrophoresis mobility-shift assay showed that PaFis can efficiently bind to the promoter region of exsA. Structure-based mutagenesis revealed that several conserved basic residues in the HTH motif play essential roles in DNA binding. These structural and biochemical studies may help in understanding the role of PaFis in the regulation of T3SS expression and in virulence.
Collapse
Affiliation(s)
- Juan Zhou
- Institute of Health Sciences and School of Life Science, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
10
|
Dages S, Zhi X, Leng F. Fis protein forms DNA topological barriers to confine transcription-coupled DNA supercoiling in Escherichia coli. FEBS Lett 2020; 594:791-798. [PMID: 31639222 PMCID: PMC10857741 DOI: 10.1002/1873-3468.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023]
Abstract
Previously, we demonstrated that transcription-coupled DNA supercoiling (TCDS) potently activated or inhibited nearby promoters in Escherichia coli even in the presence of all four DNA topoisomerases, suggesting that DNA topoisomerases are not the only factors regulating TCDS. A different mechanism exists to confine this localized DNA supercoiling. Using an in vivo system containing the TCDS-activated leu-500 promoter (Pleu-500 ), we find that the nucleoid-associated Fis protein potently inhibits the TCDS-mediated activation of Pleu-500 . We also find that deletion of the fis gene significantly enhances TCDS-mediated inhibition of transcription of three genes purH, yieP, and yrdA divergently coupled to different rrn operons in the early log phase. These results suggest that Fis protein forms DNA topological barriers upon binding to its recognition sites, blocks TCDS diffusion, and potently inhibits the TCDS-activated Pleu-500 .
Collapse
Affiliation(s)
- Samantha Dages
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Xiaoduo Zhi
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| |
Collapse
|
11
|
Abstract
How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.
Collapse
Affiliation(s)
- Subhash C. Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| | - Zhong Qian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sankar L. Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| |
Collapse
|
12
|
Hancock SP, Cascio D, Johnson RC. Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res 2019; 47:8874-8887. [PMID: 31616952 PMCID: PMC7145599 DOI: 10.1093/nar/gkz642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023] Open
Abstract
Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis β-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.
Collapse
MESH Headings
- Allosteric Site
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Binding Sites
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- Crystallography, X-Ray
- DNA Nucleotidyltransferases/chemistry
- DNA Nucleotidyltransferases/genetics
- DNA Nucleotidyltransferases/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Factor For Inversion Stimulation Protein/chemistry
- Factor For Inversion Stimulation Protein/genetics
- Factor For Inversion Stimulation Protein/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinational DNA Repair
- Sequence Alignment
- Thermodynamics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Department of Chemistry, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Duilio Cascio
- University of California at Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
NapA (Rv0430), a Novel Nucleoid-Associated Protein that Regulates a Virulence Operon in Mycobacterium tuberculosis in a Supercoiling-Dependent Manner. J Mol Biol 2019; 431:1576-1591. [DOI: 10.1016/j.jmb.2019.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
|
14
|
Colonization efficiency of Pseudomonas putida is influenced by Fis-controlled transcription of nuoA-N operon. PLoS One 2018; 13:e0201841. [PMID: 30071101 PMCID: PMC6072106 DOI: 10.1371/journal.pone.0201841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023] Open
Abstract
Root colonization of plant growth-promoting bacteria is a complex multistep process that is influenced by several factors. For example, during adherence to plant roots, bacteria have to endure reactive oxygen species (ROS) produced by plants. In this study, we report that the global transcriptional regulator Fis is involved in the regulation of ROS-tolerance of Pseudomonas putida and thereby affects barley root colonization. Fis overexpression reduced both ROS-tolerance and adherence to barley roots and activated the transcription of the nuoA-N operon encoding NADH dehydrogenase I, the first enzyme of a membrane-bound electron-transport chain. The nuoA-N knockout mutation in the fis-overexpression background increased the ROS-tolerance and adherence to barley roots. We show that nuoA has two transcriptional start sites located 104 and 377 nucleotides upstream of the coding sequence, indicating the presence of two promoters. The DNase I footprint analysis revealed four Fis binding sites: Fis-nuo1 to Fis-nuo4, situated between these two promoters. Site-directed mutagenesis in a promoter-lacZ reporter and β-galactosidase assay further confirmed direct binding of Fis to Fis-nuo2 and probably to Fis-nuo4 but not to Fis-nuo1 and Fis-nuo3. Additionally, the results implied that Fis binding to Fis-nuo4 could affect transcription of the nuoA-N operon by modification of upstream DNA topology. Moreover, our transposon mutagenesis results indicated that Fis might be involved in the regulation of several alternative ROS detoxification processes utilizing NADH.
Collapse
|
15
|
Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R. The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida. PLoS One 2017; 12:e0185482. [PMID: 28945818 PMCID: PMC5612765 DOI: 10.1371/journal.pone.0185482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022] Open
Abstract
LapA is the biggest protein in Pseudomonas putida and a key factor for biofilm formation. Its importance and posttranslational regulation is rather thoroughly studied but less is known about the transcriptional regulation. Here we give evidence that transcription of lapA in LB-grown bacteria is initiated from six promoters, three of which display moderate RpoS-dependence. The global transcription regulator Fis binds to the lapA promoter area at six positions in vitro, and Fis activates the transcription of lapA while overexpressed in cells. Two of the six Fis binding sites, Fis-A7 and Fis-A5, are necessary for the positive effect of Fis on the transcription of lapA in vivo. Our results indicate that Fis binding to the Fis-A7 site increases the level of transcription from the most distal promoter of lapA, whereas Fis binding to the Fis-A5 site could be important for modifying the promoter area topology.
Collapse
Affiliation(s)
- Hanna Ainelo
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Andrio Lahesaare
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Annika Teppo
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Riho Teras
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Deng X, Li M, Pan X, Zheng R, Liu C, Chen F, Liu X, Cheng Z, Jin S, Wu W. Fis Regulates Type III Secretion System by Influencing the Transcription of exsA in Pseudomonas aeruginosa Strain PA14. Front Microbiol 2017; 8:669. [PMID: 28469612 PMCID: PMC5395579 DOI: 10.3389/fmicb.2017.00669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Fis is a versatile DNA binding protein in bacteria. It has been demonstrated in multiple bacteria that Fis plays crucial roles in regulating bacterial virulence factors and optimizing bacterial adaptation to various environments. However, the role of Fis in Pseudomonas aeruginosa virulence as well as gene regulation remains largely unknown. Here, we found that Fis was required for the virulence of P. aeruginosa in a murine acute pneumonia model. Transcriptome analysis revealed that expression of T3SS genes, including master regulator ExsA, was defective in a fis::Tn mutant. We further demonstrate that the continuous transcription of exsC, exsE, exsB, and exsA driven by the exsC promoter was required for the activation of T3SS. Fis was found to specifically bind to the exsB-exsA intergenic region and plays an essential role in the transcription elongation from exsB to exsA. Therefore, we found a novel role of Fis in the regulation of exsA expression.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Ruiping Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Fei Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China.,Department of Molecular Genetics and Microbiology, College of Medicine, University of FloridaGainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| |
Collapse
|
17
|
Jha SN, Jaiswal P, Grewal MK, Gupta M, Bhardwaj R. Detection of Adulterants and Contaminants in Liquid Foods-A Review. Crit Rev Food Sci Nutr 2017; 56:1662-84. [PMID: 25975571 DOI: 10.1080/10408398.2013.798257] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Milk and fruit juices have paramount importance in human diet. Increasing demand of these liquid foods has made them vulnerable to economic adulteration during processing and in supply chain. Adulterants are difficult to detect by consumers and thus necessitating the requirement of rapid, accurate and sensitive detection. The potential adulterants in milk and fruit juices and their limits set by different regulatory bodies have been briefly described in this review. Potential advantages and limitations of various techniques such as physicochemical methods, chromatography, immunoassays, molecular, electrical, spectroscopy with chemometrics, electronic nose, and biosensors have been described. Spectroscopy in combination with chemometrics has shown potential for rapid, precise, and sensitive detection of potential adulterants in these liquid foods.
Collapse
Affiliation(s)
- Shyam Narayan Jha
- a Agricultural Structures and Environmental Control Division, Central Institute of Postharvest Engineering & Technology , Ludhiana , India
| | - Pranita Jaiswal
- a Agricultural Structures and Environmental Control Division, Central Institute of Postharvest Engineering & Technology , Ludhiana , India
| | - Manpreet Kaur Grewal
- a Agricultural Structures and Environmental Control Division, Central Institute of Postharvest Engineering & Technology , Ludhiana , India
| | - Mansha Gupta
- a Agricultural Structures and Environmental Control Division, Central Institute of Postharvest Engineering & Technology , Ludhiana , India
| | - Rishi Bhardwaj
- a Agricultural Structures and Environmental Control Division, Central Institute of Postharvest Engineering & Technology , Ludhiana , India
| |
Collapse
|
18
|
Tsai MY, Zhang B, Zheng W, Wolynes PG. Molecular Mechanism of Facilitated Dissociation of Fis Protein from DNA. J Am Chem Soc 2016; 138:13497-13500. [PMID: 27685351 DOI: 10.1021/jacs.6b08416] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fis protein is a nucleoid-associated protein that plays many roles in transcriptional regulation and DNA site-specific recombination. In contrast to the naïve expectation based on stoichiometry, recent single-molecule studies have shown that the dissociation of Fis protein from DNA is accelerated by increasing the concentration of the Fis protein. Because the detailed molecular mechanism of facilitated dissociation is still not clear, in this study, we employ computational methods to explore the binding landscapes of Fis:DNA complexes with various stoichiometries. When two Fis molecules are present, simulations uncover a ternary complex, where the originally bound Fis protein is partially dissociated from DNA. The simulations support a three-state sequential kinetic model (N ⇄ I → D) for facilitated dissociation, thus explaining the concentration-dependent dissociation.
Collapse
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Weihua Zheng
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Peter G Wolynes
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
19
|
Tan L, Moriel DG, Totsika M, Beatson SA, Schembri MA. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli. PLoS One 2016; 11:e0162391. [PMID: 27598999 PMCID: PMC5012682 DOI: 10.1371/journal.pone.0162391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen.
Collapse
Affiliation(s)
- Lendl Tan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Danilo G. Moriel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, QLD 4059, Brisbane, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
- * E-mail:
| |
Collapse
|
20
|
Brandi A, Giangrossi M, Giuliodori AM, Falconi M. An Interplay among FIS, H-NS, and Guanosine Tetraphosphate Modulates Transcription of the Escherichia coli cspA Gene under Physiological Growth Conditions. Front Mol Biosci 2016; 3:19. [PMID: 27252944 PMCID: PMC4877382 DOI: 10.3389/fmolb.2016.00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/01/2016] [Indexed: 11/13/2022] Open
Abstract
CspA, the most characterized member of the csp gene family of Escherichia coli, is highly expressed not only in response to cold stress, but also during the early phase of growth at 37°C. Here, we investigate at molecular level the antagonistic role played by the nucleoid proteins FIS and H-NS in the regulation of cspA expression under non-stress conditions. By means of both probing experiments and immunological detection, we demonstrate in vitro the existence of binding sites for these proteins on the cspA regulatory region, in which FIS and H-NS bind simultaneously to form composite DNA-protein complexes. While the in vitro promoter activity of cspA is stimulated by FIS and repressed by H-NS, a compensatory effect is observed when both proteins are added in the transcription assay. Consistently with these findings, inactivation of fis and hns genes reversely affect the in vivo amount of cspA mRNA. In addition, by means of strains expressing a high level of the alarmone guanosine tetraphosphate ((p)ppGpp) and in vitro transcription assays, we show that the cspA promoter is sensitive to (p)ppGpp inhibition. The (p)ppGpp-mediated expression of fis and hns genes is also analyzed, thus clarifying some aspects of the regulatory loop governing cspA transcription.
Collapse
Affiliation(s)
- Anna Brandi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Mara Giangrossi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Anna M Giuliodori
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Maurizio Falconi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| |
Collapse
|
21
|
Hancock SP, Stella S, Cascio D, Johnson RC. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 2016; 11:e0150189. [PMID: 26959646 PMCID: PMC4784862 DOI: 10.1371/journal.pone.0150189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 11/18/2022] Open
Abstract
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.
Collapse
Affiliation(s)
- Stephen P. Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
| | - Stefano Stella
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Reid C. Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized.
Collapse
Affiliation(s)
- Reid C. Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, Phone: 310 825-7800, Fax: 310 206-5272
| |
Collapse
|
23
|
Lahesaare A, Moor H, Kivisaar M, Teras R. Pseudomonas putida Fis binds to the lapF promoter in vitro and represses the expression of LapF. PLoS One 2014; 9:e115901. [PMID: 25545773 PMCID: PMC4278767 DOI: 10.1371/journal.pone.0115901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
The biofilm matrix of the rhizospheric bacterium Pseudomonas putida consists mainly of a proteinaceous component. The two largest P. putida proteins, adhesins LapA and LapF, are involved in biofilm development but prevail in different developmental stages of the biofilm matrix. LapA is abundant in the initial stage of biofilm formation whereas LapF is found in the mature biofilm. Although the transcriptional regulation of the adhesins is not exhaustively studied, some factors that can be involved in their regulation have been described. For example, RpoS, the major stress response sigma factor, activates, and Fis represses LapF expression. This study focused on the LapF expression control by Fis. Indeed, using DNase I footprint analysis a Fis binding site Fis-F2 was located 150 bp upstream of the lapF gene coding sequence. The mapped 5' end of the lapF mRNA localized the promoter to the same region, overlapping with the Fis binding site Fis-F2. Monitoring the lapF promoter activity by a β-galactosidase assay revealed that Fis overexpression causes a 4-fold decrease in the transcriptional activity. Furthermore, mutations that diminished Fis binding to the Fis-F2 site abolished the repression of the lapF promoter. Thus, these data suggest that Fis is involved in the biofilm regulation via repression of LapF expression.
Collapse
Affiliation(s)
- Andrio Lahesaare
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hanna Moor
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Riho Teras
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
24
|
Sing CE, Olvera de la Cruz M, Marko JF. Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins. Nucleic Acids Res 2014; 42:3783-91. [PMID: 24393773 PMCID: PMC3973338 DOI: 10.1093/nar/gkt1327] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent work has demonstrated concentration-dependent unbinding rates of proteins from DNA, using fluorescence visualization of the bacterial nucleoid protein Fis [Graham et al. (2011) (Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res., 39:2249)]. The physical origin of this concentration-dependence is unexplained. We use a combination of coarse-grained simulation and theory to demonstrate that this behavior can be explained by taking into account the dimeric nature of the protein, which permits partial dissociation and exchange with other proteins in solution. Concentration-dependent unbinding is generated by this simple model, quantitatively explaining experimental data. This effect is likely to play a major role in determining binding lifetimes of proteins in vivo where there are very high concentrations of solvated molecules.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Materials Science, Northwestern University, 2220 Cook Dr. Evanston, IL 60208, USA, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
25
|
Duprey A, Reverchon S, Nasser W. Bacterial virulence and Fis: adapting regulatory networks to the host environment. Trends Microbiol 2013; 22:92-9. [PMID: 24370464 DOI: 10.1016/j.tim.2013.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022]
Abstract
Pathogenic bacteria have to cope with adverse conditions, such as the host environment and host defense reactions. To adapt quickly to environmental changes, pathogens have developed complex regulatory networks that ensure adequate expression of their virulence genes. Recent evidence suggests that Fis, an abundant nucleoid-associated protein transiently produced during early exponential growth, plays a major role in these networks in several pathogenic bacteria. This review focuses on two enterobacteria, Salmonella enterica and Dickeya dadantii, that inhabit distinct ecological niches to illustrate how Fis uses different strategies to coordinate virulence gene expression, depending on the bacterial lifestyle.
Collapse
Affiliation(s)
- Alexandre Duprey
- Université Lyon 1, F-69622 Villeurbanne, France; INSA de Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Sylvie Reverchon
- Université Lyon 1, F-69622 Villeurbanne, France; INSA de Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - William Nasser
- Université Lyon 1, F-69622 Villeurbanne, France; INSA de Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France.
| |
Collapse
|
26
|
Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF. Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol Microbiol 2013; 86:1318-33. [PMID: 23078205 DOI: 10.1111/mmi.12071] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 11/30/2022]
Abstract
We examine whether the Escherichia coli chromosome is folded into a self-adherent nucleoprotein complex, or alternately is a confined but otherwise unconstrained self-avoiding polymer. We address this through in vivo visualization, using an inducible GFP fusion to the nucleoid-associated protein Fis to non-specifically decorate the entire chromosome. For a range of different growth conditions, the chromosome is a compact structure that does not fill the volume of the cell, and which moves from the new pole to the cell centre. During rapid growth, chromosome segregation occurs well before cell division, with daughter chromosomes coupled by a thin inter-daughter filament before complete segregation, whereas during slow growth chromosomes stay adjacent until cell division occurs. Image correlation analysis indicates that sub-nucleoid structure is stable on a 1 min timescale, comparable to the timescale for redistribution time measured for GFP-Fis after photobleaching. Optical deconvolution and writhe calculation analysis indicate that the nucleoid has a large-scale coiled organization rather than being an amorphous mass. Our observations are consistent with the chromosome having a self-adherent filament organization.
Collapse
|
27
|
Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R, Johnson RC. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Nucleic Acids Res 2013; 41:6750-60. [PMID: 23661683 PMCID: PMC3711457 DOI: 10.1093/nar/gkt357] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis–DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis–DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
28
|
Chintakayala K, Singh SS, Rossiter AE, Shahapure R, Dame RT, Grainger DC. E. coli Fis protein insulates the cbpA gene from uncontrolled transcription. PLoS Genet 2013; 9:e1003152. [PMID: 23341772 PMCID: PMC3547828 DOI: 10.1371/journal.pgen.1003152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/24/2012] [Indexed: 12/20/2022] Open
Abstract
The Escherichia coli curved DNA binding protein A (CbpA) is a poorly characterised nucleoid associated factor and co-chaperone. It is expressed at high levels as cells enter stationary phase. Using genetics, biochemistry, and genomics, we have examined regulation of, and DNA binding by, CbpA. We show that Fis, the dominant growth-phase nucleoid protein, prevents CbpA expression in growing cells. Regulation by Fis involves an unusual “insulation” mechanism. Thus, Fis protects cbpA from the effects of a distal promoter, located in an adjacent gene. In stationary phase, when Fis levels are low, CbpA binds the E. coli chromosome with a preference for the intrinsically curved Ter macrodomain. Disruption of the cbpA gene prompts dramatic changes in DNA topology. Thus, our work identifies a novel role for Fis and incorporates CbpA into the growing network of factors that mediate bacterial chromosome structure. Compaction of chromosomal DNA is a fundamental process that impacts on all aspects of cellular biology. However, our understanding of chromosome organisation in bacteria is poorly developed. Since bacteria are amongst the most abundant living organisms on the planet, this represents a startling gap in our knowledge. Despite our lack of understanding, it has long been known that Escherichia coli, and other bacteria, radically re-model their chromosomes in response to environmental stress. This is most notable during periods of starvation, when the E. coli chromosome is super compacted. In dissecting the molecular mechanisms that control this phenomenon, we have found that regulatory cross-talk between DNA–organising proteins plays an essential role. Thus, the major DNA folding protein from growing E. coli inhibits production of the major chromosome organisers in starved cells. Our findings illustrate the highly dynamic nature of bacterial chromosomes. Thus, DNA topology, gene transcription, and chromosome folding proteins entwine to create a web of interactions that define the properties of the chromosome.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Shivani S. Singh
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Amanda E. Rossiter
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rajesh Shahapure
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Laboratory of Molecular Genetics and Cell Observatory, Leiden University, Leiden, The Netherlands
| | - Remus T. Dame
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Laboratory of Molecular Genetics and Cell Observatory, Leiden University, Leiden, The Netherlands
| | - David C. Grainger
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Nowak-Lovato K, Alexandrov LB, Banisadr A, Bauer AL, Bishop AR, Usheva A, Mu F, Hong-Geller E, Rasmussen KØ, Hlavacek WS, Alexandrov BS. Binding of nucleoid-associated protein fis to DNA is regulated by DNA breathing dynamics. PLoS Comput Biol 2013; 9:e1002881. [PMID: 23341768 PMCID: PMC3547798 DOI: 10.1371/journal.pcbi.1002881] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/29/2012] [Indexed: 12/23/2022] Open
Abstract
Physicochemical properties of DNA, such as shape, affect protein-DNA recognition. However, the properties of DNA that are most relevant for predicting the binding sites of particular transcription factors (TFs) or classes of TFs have yet to be fully understood. Here, using a model that accurately captures the melting behavior and breathing dynamics (spontaneous local openings of the double helix) of double-stranded DNA, we simulated the dynamics of known binding sites of the TF and nucleoid-associated protein Fis in Escherichia coli. Our study involves simulations of breathing dynamics, analysis of large published in vitro and genomic datasets, and targeted experimental tests of our predictions. Our simulation results and available in vitro binding data indicate a strong correlation between DNA breathing dynamics and Fis binding. Indeed, we can define an average DNA breathing profile that is characteristic of Fis binding sites. This profile is significantly enriched among the identified in vivo E. coli Fis binding sites. To test our understanding of how Fis binding is influenced by DNA breathing dynamics, we designed base-pair substitutions, mismatch, and methylation modifications of DNA regions that are known to interact (or not interact) with Fis. The goal in each case was to make the local DNA breathing dynamics either closer to or farther from the breathing profile characteristic of a strong Fis binding site. For the modified DNA segments, we found that Fis-DNA binding, as assessed by gel-shift assay, changed in accordance with our expectations. We conclude that Fis binding is associated with DNA breathing dynamics, which in turn may be regulated by various nucleotide modifications. Cellular transcription factors (TFs) are proteins that regulate gene expression, and thereby cellular activity and fate, by binding to specific DNA segments. The physicochemical determinants of protein-DNA binding specificity are not completely understood. Here, we report that the propensity of transient opening and re-closing of the double helix, resulting from thermal fluctuations, aka “DNA breathing” or “DNA bubbles,” can be associated with binding affinity in the case of Fis, a well-studied nucleoid-associated protein in Escherichia coli. We found that a particular breathing profile is characteristic of high-affinity Fis binding sites and that DNA fragments known to bind Fis in vivo are statistically enriched for this profile. Furthermore, we used simulations of DNA breathing dynamics to guide design of gel-shift experiments aimed at testing the idea that local breathing influences Fis binding. As a result, we show that via nucleotide modifications but without modifying nucleotides that directly contact Fis, we were able to transform a low-affinity Fis binding site into a high-affinity site and vice versa. The nucleotide modifications were designed only based on DNA breathing simulations. Our study suggests that strong Fis-DNA binding depends on DNA breathing - a novel physicochemical characteristic that could be used for prediction and rational design of TF binding sites.
Collapse
Affiliation(s)
- Kristy Nowak-Lovato
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ludmil B. Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Afsheen Banisadr
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amy L. Bauer
- X-Theoretical Design Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan R. Bishop
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Anny Usheva
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Fangping Mu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Elizabeth Hong-Geller
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Kim Ø. Rasmussen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail: (WSH); (BSA)
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail: (WSH); (BSA)
| |
Collapse
|
30
|
Maienschein-Cline M, Dinner AR, Hlavacek WS, Mu F. Improved predictions of transcription factor binding sites using physicochemical features of DNA. Nucleic Acids Res 2012; 40:e175. [PMID: 22923524 PMCID: PMC3526315 DOI: 10.1093/nar/gks771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Typical approaches for predicting transcription factor binding sites (TFBSs) involve use of a position-specific weight matrix (PWM) to statistically characterize the sequences of the known sites. Recently, an alternative physicochemical approach, called SiteSleuth, was proposed. In this approach, a linear support vector machine (SVM) classifier is trained to distinguish TFBSs from background sequences based on local chemical and structural features of DNA. SiteSleuth appears to generally perform better than PWM-based methods. Here, we improve the SiteSleuth approach by considering both new physicochemical features and algorithmic modifications. New features are derived from Gibbs energies of amino acid-DNA interactions and hydroxyl radical cleavage profiles of DNA. Algorithmic modifications consist of inclusion of a feature selection step, use of a nonlinear kernel in the SVM classifier, and use of a consensus-based post-processing step for predictions. We also considered SVM classification based on letter features alone to distinguish performance gains from use of SVM-based models versus use of physicochemical features. The accuracy of each of the variant methods considered was assessed by cross validation using data available in the RegulonDB database for 54 Escherichia coli TFs, as well as by experimental validation using published ChIP-chip data available for Fis and Lrp.
Collapse
|
31
|
Prigent-Combaret C, Zghidi-Abouzid O, Effantin G, Lejeune P, Reverchon S, Nasser W. The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii. Mol Microbiol 2012; 86:172-86. [PMID: 22925161 DOI: 10.1111/j.1365-2958.2012.08182.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle-biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase-regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid-associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co-ordinate basic metabolism, virulence and modifications of lifestyle.
Collapse
|
32
|
Cline SD, Saleem S, Daines DA. Regulation of the vapBC-1 toxin-antitoxin locus in nontypeable Haemophilus influenzae. PLoS One 2012; 7:e32199. [PMID: 22427824 PMCID: PMC3302801 DOI: 10.1371/journal.pone.0032199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/24/2012] [Indexed: 12/27/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) are human-adapted commensal bacteria that can cause a number of chronic mucosal infections, including otitis media and bronchitis. One way for these organisms to survive antibiotic therapy and cause recurrent disease is to stop replicating, as most antimicrobials target essential biosynthetic pathways. Toxin-antitoxin (TA) gene pairs have been shown to facilitate entry into a reversible bacteriostatic state. Characteristically, these operons encode a protein toxin and an antitoxin that associate following translation to form a nontoxic complex, which then binds to and regulates the cognate TA promoter. Under stressful conditions, the labile antitoxin is degraded and the complex disintegrates, freeing the stable toxin to facilitate growth arrest. How these events affected the regulation of the TA locus, as well as how the transcription of the operon was subsequently returned to its normal state upon resumption of growth, was not fully understood. Here we show that expression of the NTHi vapBC-1 TA locus is repressed by a complex of VapB-1 and VapC-1 under conditions favorable for growth, and activated by the global transactivator Factor for Inversion Stimulation (Fis) upon nutrient upshift from stationary phase. Further, we demonstrate for the first time that the VapC-1 toxin alone can bind to its cognate TA locus control region and that the presence of VapB-1 directs the binding of the VapBC-1 complex in the transcriptional regulation of vapBC-1.
Collapse
Affiliation(s)
| | | | - Dayle A. Daines
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Bacteria and bacteriophages have evolved DNA modification as a strategy to protect their genomes. Mom protein of bacteriophage Mu modifies the phage DNA, rendering it refractile to numerous restriction enzymes and in turn enabling the phage to successfully invade a variety of hosts. A strong fortification, a combined activity of the phage and host factors, prevents untimely expression of mom and associated toxic effects. Here, we identify the bacterial chromatin architectural protein Fis as an additional player in this crowded regulatory cascade. Both in vivo and in vitro studies described here indicate that Fis acts as a transcriptional repressor of mom promoter. Further, our data shows that Fis mediates its repressive effect by denying access to RNA polymerase at mom promoter. We propose that a combined repressive effect of Fis and previously characterized negative regulatory factors could be responsible to keep the gene silenced most of the time. We thus present a new facet of Fis function in Mu biology. In addition to bringing about overall downregulation of Mu genome, it also ensures silencing of the advantageous but potentially lethal mom gene.
Collapse
Affiliation(s)
- Shweta Karambelkar
- Department of Microbiology and Cell Biology, Indian Institute of Science and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | | | | |
Collapse
|
34
|
Ouafa ZA, Reverchon S, Lautier T, Muskhelishvili G, Nasser W. The nucleoid-associated proteins H-NS and FIS modulate the DNA supercoiling response of the pel genes, the major virulence factors in the plant pathogen bacterium Dickeya dadantii. Nucleic Acids Res 2012; 40:4306-19. [PMID: 22275524 PMCID: PMC3378864 DOI: 10.1093/nar/gks014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that can destroy the plant cell walls. Previously we found that the pel gene expression is modulated by H-NS and FIS, two nucleoid-associated proteins (NAPs) modulating the DNA topology. Here, we show that relaxation of the DNA in growing D. dadantii cells decreases the expression of pel genes. Deletion of fis aggravates, whereas that of hns alleviates the negative impact of DNA relaxation on pel expression. We further show that H-NS and FIS directly bind the pelE promoter and that the response of D. dadantii pel genes to stresses that induce DNA relaxation is modulated, although to different extents, by H-NS and FIS. We infer that FIS acts as a repressor buffering the negative impact of DNA relaxation on pel gene transcription, whereas H-NS fine-tunes the response of virulence genes precluding their expression under suboptimal conditions of supercoiling. This novel dependence of H-NS effect on DNA topology expands our understanding of the role of NAPs in regulating the global bacterial gene expression and bacterial pathogenicity.
Collapse
|
35
|
Cagle CA, Shearer JES, Summers AO. Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins. MICROBIOLOGY-SGM 2011; 157:2841-2853. [PMID: 21778209 DOI: 10.1099/mic.0.046987-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The integrase IntI1 catalyses recombination of antibiotic-resistance gene cassettes in the integron, a widely found bacterial mobile element active in spreading antibiotic multi-resistance. We have previously shown that resistance cassette recombination rate and specificity depend on the amount of intracellular integrase. Here, we used in vivo and in vitro methods to examine convergent expression of the integrase promoter (P(int)) and of the cassette promoters (P(c) and P(2)) in the prototypical plasmid-borne class 1 integron, In2. Highly conserved P(int) has near consensus -10 and -35 hexamers for σ(70) RNA polymerase, but there are 11 naturally occurring arrangements of P(c) alone or combinations of the P(c)+P(2) cassette promoters (note that P(2) occurs with a 14 or 17 bp spacer). Using a bi-directional reporter vector, we found that P(int) is a strong promoter in vivo, but its expression is reduced by converging transcription from P(c) and P(2). In addition to cis-acting convergence control of integrase expression, the regulator site prediction program, prodoric 8.9, identified sites for global regulators FIS, LexA, IHF and H-NS in and near the integron promoters. In strains mutated in each global regulator, we found that: (1) FIS repressed integrase and cassette expression; (2) LexA repressed P(int) and P(2) with the 14 bp spacer version of P(2) and FIS was necessary for maximum LexA repression; (3) IHF activated P(int) when it faced the strong 17 bp spacer P(2) but did not elevate its expression versus LexA-repressed P(2) with the 14 bp spacer; and (4) H-NS repressed both P(int) and the 14 bp P(2) but activated the 17 bp P(2) cassette promoters. Mobility shift assays showed that FIS and IHF interact directly with the promoter regions and DNase I footprinting confirmed extensive protection by FIS of wild-type In2 integron promoter sequence. Thus, nucleoid-associated proteins, known to act directly in site-specific recombination, also control integron gene expression directly and possibly indirectly.
Collapse
Affiliation(s)
- Caran A Cagle
- Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA
| | - Julia E S Shearer
- Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA
| | - Anne O Summers
- Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA
| |
Collapse
|
36
|
Xiao B, Zhang H, Johnson RC, Marko JF. Force-driven unbinding of proteins HU and Fis from DNA quantified using a thermodynamic Maxwell relation. Nucleic Acids Res 2011; 39:5568-77. [PMID: 21427084 PMCID: PMC3141252 DOI: 10.1093/nar/gkr141] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining numbers of proteins bound to large DNAs is important for understanding their chromosomal functions. Protein numbers may be affected by physical factors such as mechanical forces generated in DNA, e.g. by transcription or replication. We performed single-DNA stretching experiments with bacterial nucleoid proteins HU and Fis, verifying that the force-extension measurements were in thermodynamic equilibrium. We, therefore, could use a thermodynamic Maxwell relation to deduce the change of protein number on a single DNA due to varied force. For the binding of both HU and Fis under conditions studied, numbers of bound proteins decreased as force was increased. Our experiments showed that most of the bound HU proteins were driven off the DNA at 6.3 pN for HU concentrations lower than 150 nM; our HU data were fit well by a statistical-mechanical model of protein-induced bending of DNA. In contrast, a significant amount of Fis proteins could not be forced off the DNA at forces up to 12 pN and Fis concentrations up to 20 nM. This thermodynamic approach may be applied to measure changes in numbers of a wide variety of molecules bound to DNA or other polymers. Force-dependent DNA binding by proteins suggests mechano-chemical mechanisms for gene regulation.
Collapse
Affiliation(s)
- Botao Xiao
- Department of Physics and Astronomy, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
37
|
Rapid sequence scanning mutagenesis using in silico oligo design and the Megaprimer PCR of whole plasmid method (MegaWHOP). Methods Mol Biol 2010. [PMID: 20676980 DOI: 10.1007/978-1-60761-652-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A wide variety of random- and site-directed mutagenesis techniques have been developed to investigate the structure-function relationship in proteins and intergenic regions like promoter sequences. Similar techniques can be employed to optimize protein properties like enantioselectivity, substrate specificity, and stability in a directed evolution approach. Due to the tremendous genetic diversity that is created by common random-mutagenesis methods, directed evolution techniques usually require the time-consuming and cumbersome screening of large numbers of variants. A gene-scanning saturation-mutagenesis approach represents one efficient way to limit the screening effort by reducing the created genetic diversity. In structure/function studies often a similar method, e.g., alanine- or arginine-scanning mutagenesis, is used to probe the role of specific amino acids in a protein. Here, we present a standardized mutagenesis strategy that can speed up the process of scanning whole proteins for structure/function studies and, furthermore, allows for the fast and efficient generation of gene-scanning saturation-mutagenesis libraries to be used in the directed evolution of enzyme functions and properties. The described method uses automated computer-assisted oligonucleotide design, and a two-step PCR-mutagenesis protocol to amplify site-specifically mutated circular plasmids that can be directly transformed in Escherichia coli expression strains.
Collapse
|
38
|
Graham JS, Johnson RC, Marko JF. Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res 2010; 39:2249-59. [PMID: 21097894 PMCID: PMC3064784 DOI: 10.1093/nar/gkq1140] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The multistep kinetics through which DNA-binding proteins bind their targets are heavily studied, but relatively little attention has been paid to proteins leaving the double helix. Using single-DNA stretching and fluorescence detection, we find that sequence-neutral DNA-binding proteins Fis, HU and NHP6A readily exchange with themselves and with each other. In experiments focused on the Escherichia coli nucleoid-associated protein Fis, only a small fraction of protein bound to DNA spontaneously dissociates into protein-free solution. However, if Fis is present in solution, we find that a concentration-dependent exchange reaction occurs which turns over the bound protein, with a rate of kexch = 6 × 104 M−1s−1. The bacterial DNA-binding protein HU and the yeast HMGB protein NHP6A display the same phenomenon of protein in solution accelerating dissociation of previously bound labeled proteins as exchange occurs. Thus, solvated proteins can play a key role in facilitating removal and renewal of proteins bound to the double helix, an effect that likely plays a major role in promoting the turnover of proteins bound to DNA in vivo and, therefore, in controlling the dynamics of gene regulation.
Collapse
Affiliation(s)
- John S Graham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, USA.
| | | | | |
Collapse
|
39
|
Stella S, Cascio D, Johnson RC. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev 2010; 24:814-26. [PMID: 20395367 DOI: 10.1101/gad.1900610] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The bacterial nucleoid-associated protein Fis regulates diverse reactions by bending DNA and through DNA-dependent interactions with other control proteins and enzymes. In addition to dynamic nonspecific binding to DNA, Fis forms stable complexes with DNA segments that share little sequence conservation. Here we report the first crystal structures of Fis bound to high- and low-affinity 27-base-pair DNA sites. These 11 structures reveal that Fis selects targets primarily through indirect recognition mechanisms involving the shape of the minor groove and sequence-dependent induced fits over adjacent major groove interfaces. The DNA shows an overall curvature of approximately 65 degrees , and the unprecedented close spacing between helix-turn-helix motifs present in the apodimer is accommodated by severe compression of the central minor groove. In silico DNA structure models show that only the roll, twist, and slide parameters are sufficient to reproduce the changes in minor groove widths and recreate the curved Fis-bound DNA structure. Models based on naked DNA structures suggest that Fis initially selects DNA targets with intrinsically narrow minor grooves using the separation between helix-turn-helix motifs in the Fis dimer as a ruler. Then Fis further compresses the minor groove and bends the DNA to generate the bound structure.
Collapse
Affiliation(s)
- Stefano Stella
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, 90095-1737, USA
| | | | | |
Collapse
|
40
|
Role of decreased levels of Fis histone-like protein in Crohn's disease-associated adherent invasive Escherichia coli LF82 bacteria interacting with intestinal epithelial cells. J Bacteriol 2010; 192:1832-43. [PMID: 20118249 DOI: 10.1128/jb.01679-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The interaction of Crohn's disease (CD)-associated adherent-invasive Escherichia coli (AIEC) strain LF82 with intestinal epithelial cells depends on surface appendages, such as type 1 pili and flagella. Histone-like proteins operate as global regulators to control the expression of these virulence factors. We evaluated the role of histone-like proteins in AIEC reference strain LF82 during infection of intestinal epithelial cells, Intestine-407, and observed that the fis mRNA level was decreased. The role of Fis in AIEC LF82 was determined by studying the phenotype of an LF82 fis::Km mutant. This was the first mutant of strain LF82 that has been described thus far that is unable to express flagellin but still able to produce type 1 pili. The cyclic-di-GMP pathway linking flagella and type 1 pilus expression is not involved in Fis-mediated regulation, and we identified in the present study Fis-binding sites located upstream of the fimE gene and in the intergenic region between fimB and nanC of the fim operon encoding type 1 pili. The major consequence of decreased Fis expression in AIEC bacteria in contact with host cells is a direct downregulation of fimE expression, leading to the preferential ON phase of the fimS element. Thus, by maintaining type 1 pilus expression, AIEC bacteria, which interact with the gut mucosa, have greater ability to colonize and to induce inflammation in CD patients.
Collapse
|
41
|
Saldaña Z, Xicohtencatl-Cortes J, Avelino F, Phillips AD, Kaper JB, Puente JL, Girón JA. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol 2009; 11:992-1006. [PMID: 19187284 DOI: 10.1111/j.1462-2920.2008.01824.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Curli are adhesive fimbriae of Escherichia coli and Salmonella enterica. Expression of curli (csgA) and cellulose (bcsA) is co-activated by the transcriptional activator CsgD. In this study, we investigated the contribution of curli and cellulose to the adhesive properties of enterohaemorragic (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) O127:H6. While single mutations in csgA, csgD or bcsA in EPEC and EHEC had no dramatic effect on cell adherence, double csgAbcsA mutants were significantly less adherent than the single mutants or wild-type strains to human colonic HT-29 epithelial cells or to cow colon tissue in vitro. Overexpression of csgD (carried on plasmid pCP994) in a csgD mutant, but not in the single csgA or bscA mutants, led to significant increase in adherence and biofilm formation in EPEC and EHEC, suggesting that synchronized over-production of curli and cellulose enhances bacterial adherence. In line with this finding, csgD transcription was activated significantly in the presence of cultured epithelial cells as compared with growth in tissue culture medium. Analysis of the influence of virulence and global regulators in the production of curli in EPEC identified Fis (factor for inversion stimulation) as a, heretofore unrecognized, negative transcriptional regulator of csgA expression. An EPEC E2348/69Deltafis produced abundant amounts of curli whereas a double fis/csgD mutant yielded no detectable curli production. Our data suggest that curli and cellulose act in concert to favour host colonization, biofilm formation and survival in different environments.
Collapse
Affiliation(s)
- Zeus Saldaña
- Department of Immunobiology, University of Arizona, 1501 N. Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Teras R, Jakovleva J, Kivisaar M. Fis negatively affects binding of Tn4652 transposase by out-competing IHF from the left end of Tn4652. MICROBIOLOGY-SGM 2009; 155:1203-1214. [PMID: 19332822 DOI: 10.1099/mic.0.022830-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transposition activity in bacteria is generally maintained at a low level. The activity of mobile DNA elements can be controlled by bacterially encoded global regulators. Regulation of transposition of Tn4652 in Pseudomonas putida is one such example. Activation of transposition of Tn4652 in starving bacteria requires the stationary-phase sigma factor RpoS and integration host factor (IHF). IHF plays a dual role in Tn4652 translocation by activating transcription of the transposase gene tnpA of the transposon and facilitating TnpA binding to the inverted repeats of the transposon. Our previous results have indicated that besides IHF some other P. putida-encoded global regulator(s) might bind to the ends of Tn4652 and regulate transposition activity. In this study, employing a DNase I footprint assay we have identified a binding site of P. putida Fis (factor for inversion stimulation) centred 135 bp inside the left end of Tn4652. Our results of gel mobility shift and DNase I footprint studies revealed that Fis out-competes IHF from the left end of Tn4652, thereby abolishing the binding of TnpA. Thus, the results obtained in this study indicate that the transposition of Tn4652 is regulated by the cellular amount of P. putida global regulators Fis and IHF.
Collapse
Affiliation(s)
- Riho Teras
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Julia Jakovleva
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| |
Collapse
|
43
|
Half-Site DNA sequence and spacing length contributions to PrrA binding to PrrA site 2 of RSP3361 in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2009; 191:4353-64. [PMID: 19411326 DOI: 10.1128/jb.00244-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The consensus DNA binding sequence for PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, is poorly defined. We have performed mutational analysis of PrrA site 2, of the RSP3361 gene, to which PrrA binds in vitro (J. M. Eraso and S. Kaplan, J. Bacteriol. 191:4341-4352, 2009), to further define the consensus sequence for DNA binding. Two half-sites of equal length, containing 6 nucleotides each, were required for PrrA binding to this DNA sequence. Systematic nucleotide substitutions in both inverted half-sites led to a decrease in binding affinity of phosphorylated PrrA in vitro, the level of which was dependent on the substitution. The reduced binding affinities were confirmed by competition experiments and led to proportional decreases in the expression of lacZ transcriptional fusions to the RSP3361 gene in vivo. The 5-nucleotide spacer region between the half-sites was found to be optimal for PrrA binding to the wild-type half-sites, as shown by decreased PrrA DNA binding affinities to synthetic DNA sequences without spacer regions or with spacer regions ranging from 1 to 10 nucleotides. The synthetic spacer region alleles also showed decreased gene expression in vivo when analyzed using lacZ transcriptional fusions. We have studied three additional DNA sequences to which PrrA binds in vitro. They are located in the regulatory regions of genes positively regulated by PrrA and contain spacer regions with 5 or 8 nucleotides. We demonstrate that PrrA can bind in vitro to DNA sequences with different lengths in the spacer regions between the half-sites.
Collapse
|
44
|
Pul Ü, Lux B, Wurm R, Wagner R. Effect of upstream curvature and transcription factors H-NS and LRP on the efficiency of Escherichia coli rRNA promoters P1 and P2 – a phasing analysis. Microbiology (Reading) 2008; 154:2546-2558. [DOI: 10.1099/mic.0.2008/018408-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ümit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Bianca Lux
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Reinhild Wurm
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Rolf Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Husnain SI, Thomas MS. Downregulation of the Escherichia coli guaB promoter by FIS. MICROBIOLOGY-SGM 2008; 154:1729-1738. [PMID: 18524927 PMCID: PMC2885671 DOI: 10.1099/mic.0.2008/016774-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli guaB promoter (PguaB) regulates transcription of two genes, guaB and guaA, that are required for the synthesis of guanosine 5′-monophosphate (GMP), a precursor for the synthesis of guanine nucleoside triphosphates. Transcription from PguaB increases as a function of increasing cellular growth rate, and this is referred to as growth rate-dependent control (GRDC). Here we investigated the role of the factor for inversion stimulation (FIS) in the regulation of this promoter. The results showed that there are three binding sites for FIS centred near positions −11, +8 and +29 relative to the guaB transcription start site. Binding of FIS to these sites results in repression of PguaB in vitro but not in vivo. Deletion of the fis gene results in increased PguaB activity in vivo, but GRDC of PguaB is maintained.
Collapse
Affiliation(s)
- Seyyed I Husnain
- F Floor, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S Thomas
- F Floor, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
46
|
Shao Y, Feldman-Cohen LS, Osuna R. Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. J Mol Biol 2008; 380:327-39. [PMID: 18514225 DOI: 10.1016/j.jmb.2008.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Fis (factor for inversion stimulation) is a nucleoid-associated protein in Escherichia coli and other bacteria that stimulates certain site-specific DNA recombination events, alters DNA topology, and serves as a global gene regulator. DNA binding is central to the functions of Fis and involves a helix-turn-helix DNA binding motif located in the carboxy-terminal region. Specific DNA binding is observed at a number of sites exhibiting poorly related sequences. Such interactions require four critical base pairs positioned -7, -3, +3, and +7 nucleotides relative to the central nucleotide of a 15-bp core-binding site. To further understand how Fis interacts with DNA, we identified the positions of 14 DNA phosphates (based on ethylation interference assays) that are required for Fis binding. These are the 5' phosphates of the nucleotides at positions -8, -7, -6, +1, +2, +3, and +4 relative to the central nucleotide on both DNA strands. Another five phosphates located in the flanking regions from positions +10 through +14 can serve as additional contact sites. Using a combination of biochemical approaches and various mutant Fis proteins, we probed possible interactions between several key Fis residues and DNA bases or phosphates within a high-affinity binding site. We provide evidence in support of interactions between the R85 Fis residue and a highly conserved guanine at position -7 and between T87 and the critical base pairs at -3 and +3. In addition, we present evidence in support of interactions between N84 and the phosphate 5' to the base at +4, between R89 and the -7 phosphate, between T87 and the +3 and +4 phosphates, and between K90 and the +3 phosphate. This work provides functional evidence for some of the most critical interactions between Fis and DNA required for a high binding affinity and demonstrates the large contribution made by numerous phosphates to the stability of the Fis-DNA complex.
Collapse
Affiliation(s)
- Yongping Shao
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
47
|
Grainger DC, Goldberg MD, Lee DJ, Busby SJW. Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol Microbiol 2008; 68:1366-77. [PMID: 18452510 DOI: 10.1111/j.1365-2958.2008.06253.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dps is a nucleoid-associated protein that plays a major role in condensation of the Escherichia coli chromosome in stationary phase. Here we show that two other nucleoid-associated proteins, Fis and H-NS, can bind at the dps gene promoter and downregulate its activity. Both Fis and H-NS selectively repress the dps promoter, preventing transcription initiation by RNA polymerase containing sigma(70), the housekeeping sigma factor, but not by RNA polymerase containing sigma(38), the stationary-phase sigma factor. Fis represses by trapping RNA polymerase containing sigma(70) at the promoter. In contrast, H-NS functions by displacing RNA polymerase containing sigma(70), but not RNA polymerase containing sigma(38). Dps levels are known to be very low in exponentially growing cells and rise sharply as cells enter stationary phase. Conversely, Fis levels are high in growing cells but fall to nearly zero in stationary-phase cells. Our data suggest a simple model to explain how the Dps-dependent super-compaction of the folded chromosome is triggered as cell growth ceases.
Collapse
Affiliation(s)
- David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | |
Collapse
|
48
|
Schnetz K. Fine-tuned growth phase control of dps, encoding a DNA protection protein, by FIS and H-NS. Mol Microbiol 2008; 68:1345-7. [PMID: 18433444 DOI: 10.1111/j.1365-2958.2008.06266.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dps, a ferritin-like DNA-binding protein, protects bacterial DNA against oxidative stress and hyper-compacts the nucleoid into a crystalline-like structure. In Escherichia coli, transcription of dps from a single promoter is directed by sigma S-RNA polymerase in stationary phase and by sigma 70-RNA polymerase in fast-dividing cells exposed to oxidative stress. In this issue of Molecular Microbiology, Grainger and co-workers demonstrate that the nucleoid-associated proteins, FIS and H-NS, control sigma factor selection at the dps promoter by a novel mechanism. The finding suggests a simple mechanism of growth phase control of Dps production and has implications for the response to oxidative stress by pathogenic enterobacteria.
Collapse
Affiliation(s)
- Karin Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|