1
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W Wilson
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
2
|
Byun DP, Ritchie J, Jung Y, Holewinski R, Kim HR, Tagirasa R, Ivanic J, Weekley CM, Parker MW, Andresson T, Yoo E. Covalent Inhibition by a Natural Product-Inspired Latent Electrophile. J Am Chem Soc 2023; 145:11097-11109. [PMID: 37183434 PMCID: PMC10719761 DOI: 10.1021/jacs.3c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Strategies to target specific protein cysteines are critical to covalent probe and drug discovery. 3-Bromo-4,5-dihydroisoxazole (BDHI) is a natural product-inspired, synthetically accessible electrophilic moiety that has previously been shown to react with nucleophilic cysteines in the active site of purified enzymes. Here, we define the global cysteine reactivity and selectivity of a set of BDHI-functionalized chemical fragments using competitive chemoproteomic profiling methods. Our study demonstrates that BDHIs capably engage reactive cysteine residues in the human proteome and the selectivity landscape of cysteines liganded by BDHI is distinct from that of haloacetamide electrophiles. Given its tempered reactivity, BDHIs showed restricted, selective engagement with proteins driven by interactions between a tunable binding element and the complementary protein sites. We validate that BDHI forms covalent conjugates with glutathione S-transferase Pi (GSTP1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), emerging anticancer targets. BDHI electrophile was further exploited in Bruton's tyrosine kinase (BTK) inhibitor design using a single-step late-stage installation of the warhead onto acrylamide-containing compounds. Together, this study expands the spectrum of optimizable chemical tools for covalent ligand discovery and highlights the utility of 3-bromo-4,5-dihydroisoxazole as a cysteine-reactive electrophile.
Collapse
Affiliation(s)
- David P Byun
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jennifer Ritchie
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Yejin Jung
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ronald Holewinski
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biochemical Research, Frederick, Maryland 21702, United States
| | - Hong-Rae Kim
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Claire M Weekley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biochemical Research, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Nguyen TTT, Katt WP, Cerione RA. Alone and together: current approaches to targeting glutaminase enzymes as part of anti-cancer therapies. FUTURE DRUG DISCOVERY 2023; 4:FDD79. [PMID: 37009252 PMCID: PMC10051075 DOI: 10.4155/fdd-2022-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
Metabolic reprogramming is a major hallmark of malignant transformation in cancer, and part of the so-called Warburg effect, in which the upregulation of glutamine catabolism plays a major role. The glutaminase enzymes convert glutamine to glutamate, which initiates this pathway. Inhibition of different forms of glutaminase (KGA, GAC, or LGA) demonstrated potential as an emerging anti-cancer therapeutic strategy. The regulation of these enzymes, and the molecular basis for their inhibition, have been the focus of much recent research. This review will explore the recent progress in understanding the molecular basis for activation and inhibition of different forms of glutaminase, as well as the recent focus on combination therapies of glutaminase inhibitors with other anti-cancer drugs.
Collapse
Affiliation(s)
- Thuy-Tien T Nguyen
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Nguyen L, Schultz DC, Terzyan SS, Rezaei M, Songb J, Li C, You Y, Hanigan MH. Design and evaluation of novel analogs of 2-amino-4-boronobutanoic acid (ABBA) as inhibitors of human gamma-glutamyl transpeptidase. Bioorg Med Chem 2022; 73:116986. [PMID: 36208545 DOI: 10.1016/j.bmc.2022.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects. L-2-amino-4‑boronobutanoic acid (l-ABBA), a glutamate analog, is the most potent GGT1 inhibitor in vitro. In this study, we have solved the crystal structure of human GGT1 (hGGT1) with ABBA bound in the active site. The structure was interrogated to identify interactions between the enzyme and the inhibitor. Based on these data, a series of novel ABBA analogs were designed and synthesized. Their inhibitory activity against the hydrolysis and transpeptidation activities of hGGT1 were determined. The lead compounds were crystalized with hGGT1 and the structures solved. The kinetic data and structures of the complexes provide new insights into the critical role of protein structure dynamics in developing compounds for inhibition of hGGT1.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Simon S Terzyan
- Laboratory of Biomolecular Structure and Function, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Mohammad Rezaei
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Jinhua Songb
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Marie H Hanigan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
5
|
Yuan C, Wu M, Chen X, Li C, Zhang A, Lu W. Growth Performance and Hematological Changes in Growing Sika Deers Fed with Spent Mushroom Substrate of Pleurotus ostreatus. Animals (Basel) 2022; 12:ani12060765. [PMID: 35327162 PMCID: PMC8944863 DOI: 10.3390/ani12060765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary With the rapid development of the mushroom industry, a large number of spent mushroom substrate (SMS) has also been produced. SMS can be easily digested by ruminants and is suitable for feeding animals, such as cows, sheep, as well as deer. The results of this study show that the dietary spent mushroom substrate of Pleurotus ostreatus (SMS-MP) has no obvious effect on the physiological condition of growing sika deer, at the same time it can reduce the cost of feeding and avoid environmental pollution caused by improper disposal of SMS-MP. Abstract The purpose of this experiment is to expand the feed of growing sika deer and to explore the effects on growing sika deer of the spent mushroom substrate of Pleurotus ostreatus (SMS-MP). Twelve immature female growing sika deer were randomly assigned to four groups. The ratios of SMS-MP to replace concentration supplements were 0%, 10%, 20%, and 30%, respectively, and the growth performance, feed intake and apparent digestibility, serum biochemical indexes, blood physiological indexes, serum immune globulin and plasma amino acid of growing sika deer were measured. The results of the current study confirmed the applicability of SMS-MP as a feed ingredient in growing sika deer diets. There was no significant change in growth performance and hematology of growing sika deer when the concentrate supplement was replaced with 10–20% SMS-MP. However, replacing 30% of concentrate supplements with SMS-MP in the growing sika deer diet resulted in significantly decreased Hb and HCT levels. It can be concluded that, as a waste resource, adding a small amount of SMS-MP has no significant effect on the growth of sika deer, and at the same time can reduce the consumption of concentrate supplements, thereby improving the economic benefits of sika deer breeding.
Collapse
Affiliation(s)
| | | | | | | | - Aiwu Zhang
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (W.L.)
| | - Wenfa Lu
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (W.L.)
| |
Collapse
|
6
|
Shen YA, Chen CL, Huang YH, Evans EE, Cheng CC, Chuang YJ, Zhang C, Le A. Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Curr Opin Chem Biol 2021; 62:64-81. [PMID: 33721588 PMCID: PMC8570367 DOI: 10.1016/j.cbpa.2021.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Targeting glutamine catabolism has been attracting more research attention on the development of successful cancer therapy. Catalytic enzymes such as glutaminase (GLS) in glutaminolysis, a series of biochemical reactions by which glutamine is converted to glutamate and then alpha-ketoglutarate, an intermediate of the tricarboxylic acid (TCA) cycle, can be targeted by small molecule inhibitors, some of which are undergoing early phase clinical trials and exhibiting promising safety profiles. However, resistance to glutaminolysis targeting treatments has been observed, necessitating the development of treatments to combat this resistance. One option is to use synergy drug combinations, which improve tumor chemotherapy's effectiveness and diminish drug resistance and side effects. This review will focus on studies involving the glutaminolysis pathway and diverse combination therapies with therapeutic implications.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Hsuan Huang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Emily Elizabeth Evans
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Chia Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jie Chuang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
8
|
Sano C, Itoh T, Phumsombat P, Hayashi J, Wakayama M, Hibi T. Mutagenesis and structure-based analysis of the role of Tryptophan525 of γ-glutamyltranspeptidase from Pseudomonas nitroreducens. Biochem Biophys Res Commun 2020; 534:286-291. [PMID: 33288198 DOI: 10.1016/j.bbrc.2020.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is a ubiquitous enzyme that catalyzes the hydrolysis of the γ-glutamyl linkage of γ-glutamyl compounds and the transfer of their γ-glutamyl moiety to acceptor substrates. Pseudomonas nitroreducens GGT (PnGGT) is used for the industrial synthesis of theanine, thus it is important to determine the structural basis of hydrolysis and transfer reactions and identify the acceptor site of PnGGT to improve the efficient of theanine synthesis. Our previous structural studies of PnGGT have revealed that crucial interactions between three amino acid residues, Trp385, Phe417, and Trp525, distinguish PnGGT from other GGTs. Here we report the role of Trp525 in PnGGT based on site-directed mutagenesis and structural analyses. Seven mutant variants of Trp525 were produced (W525F, W525V, W525A, W525G, W525S, W525D, and W525K), with substitution of Trp525 by nonaromatic residues resulting in dramatically reduced hydrolysis activity. All Trp525 mutants exhibited significantly increased transfer activity toward hydroxylamine with hardly any effect on acceptor substrate preference. The crystal structure of PnGGT in complex with the glutamine antagonist, 6-diazo-5-oxo-l-norleucine, revealed that Trp525 is a key residue limiting the movement of water molecules within the PnGGT active site.
Collapse
Affiliation(s)
- Chiharu Sano
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Putthapong Phumsombat
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Junji Hayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| |
Collapse
|
9
|
Oliva F, Flores-Canales JC, Pieraccini S, Morelli CF, Sironi M, Schiøtt B. Simulating Multiple Substrate-Binding Events by γ-Glutamyltransferase Using Accelerated Molecular Dynamics. J Phys Chem B 2020; 124:10104-10116. [PMID: 33112625 DOI: 10.1021/acs.jpcb.0c06907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
γ-Glutamyltransferase (GGT) is an enzyme that uses γ-glutamyl compounds as substrates and catalyzes their transfer to a water molecule or an acceptor substrate with varied physiological function in bacteria, plants, and animals. Crystal structures of GGT are known for different species and in different states of the chemical reaction; however, the structural dynamics of the substrate binding to the catalytic site of GGT are unknown. Here, we modeled Escherichia coli GGT's glutamine binding by using a swarm of accelerated molecular dynamics (aMD) simulations. Characterization of multiple binding events identified three structural binding motifs composed of polar residues in the binding pocket that govern glutamine binding into the active site. Simulated open and closed conformations of a lid-loop protecting the binding cavity suggest its role as a gating element by allowing or blocking substrates entry into the binding pocket. Partially open states of the lid-loop are accessible within thermal fluctuations, while the estimated free energy cost of a complete open state is 2.4 kcal/mol. Our results suggest that both specific electrostatic interactions and GGT conformational dynamics dictate the molecular recognition of substrate-GGT complexes.
Collapse
Affiliation(s)
- Francesco Oliva
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Jose C Flores-Canales
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Stefano Pieraccini
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Carlo F Morelli
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Maurizio Sironi
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies. Genes (Basel) 2019; 11:genes11010007. [PMID: 31861815 PMCID: PMC7016576 DOI: 10.3390/genes11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Functional (meta) genomics allows the high-throughput identification of functional genes in a premise-free way. However, it is still difficult to perform Sanger sequencing for high GC DNA templates, which hinders the functional genomic exploration of a high GC genomic library. Here, we developed a procedure to resolve this problem by coupling the Sanger and PacBio sequencing strategies. Identification of cadmium (Cd) resistance genes from a small-insert high GC genomic library was performed to test the procedure. The library was generated from a high GC (75.35%) bacterial genome. Nineteen clones that conferred Cd resistance to Escherichia coli subject to Sanger sequencing directly. The positive clones were in parallel subject to in vivo amplification in host cells, from which recombinant plasmids were extracted and linearized by selected restriction endonucleases. PacBio sequencing was performed to obtain the full-length sequences. As the identities, partial sequences from Sanger sequencing were aligned to the full-length sequences from PacBio sequencing, which led to the identification of seven unique full-length sequences. The unique sequences were further aligned to the full genome sequence of the source strain. Functional screening showed that the identified positive clones were all able to improve Cd resistance of the host cells. The functional genomic procedure developed here couples the Sanger and PacBio sequencing methods and overcomes the difficulties in PCR approaches for high GC DNA. The procedure can be a promising option for the high-throughput sequencing of functional genomic libraries, and realize a cost-effective and time-efficient identification of the positive clones, particularly for high GC genetic materials.
Collapse
|
12
|
Liu T, Yan QL, Feng L, Ma XC, Tian XG, Yu ZL, Ning J, Huo XK, Sun CP, Wang C, Cui JN. Isolation of γ-Glutamyl-Transferase Rich-Bacteria from Mouse Gut by a Near-Infrared Fluorescent Probe with Large Stokes Shift. Anal Chem 2018; 90:9921-9928. [DOI: 10.1021/acs.analchem.8b02118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Qiu-Long Yan
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xiao-Chi Ma
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Zhen-Long Yu
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Jing Ning
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Cheng-Peng Sun
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Jing-Nan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Calvio C, Romagnuolo F, Vulcano F, Speranza G, Morelli CF. Evidences on the role of the lid loop of γ-glutamyltransferases (GGT) in substrate selection. Enzyme Microb Technol 2018; 114:55-62. [DOI: 10.1016/j.enzmictec.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
|
14
|
Jahn SC, Smeltz MG, Hu Z, Rowland-Faux L, Zhong G, Lorenzo RJ, Cisneros KV, Stacpoole PW, James MO. Regulation of dichloroacetate biotransformation in rat liver and extrahepatic tissues by GSTZ1 expression and chloride concentration. Biochem Pharmacol 2018; 152:236-243. [PMID: 29626439 DOI: 10.1016/j.bcp.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2018] [Indexed: 01/14/2023]
Abstract
Biotransformation of dichloroacetate (DCA) to glyoxylate by hepatic glutathione transferase zeta 1 (GSTZ1) is considered the principal determinant of the rate of plasma clearance of the drug. However, several other organismal and subcellular factors are also known to influence DCA metabolism. We utilized a female rat model to study these poorly understood processes. Rats aged 4 weeks (young) and 42-52 weeks (adult) were used to model children and adults, respectively. Hepatic chloride concentrations, which influence the rate of GSTZ1 inactivation by DCA, were lower in rat than in human tissues and rats did not show the age dependence previously seen in humans. We found GSTZ1 expression and activity in rat brain, heart, and kidney cell-free homogenates that were age-dependent. GSTZ1 expression in brain was higher in young rats than adult rats, whereas cardiac and renal GSTZ1 expression levels were higher in adult than young rats. GSTZ1 activity with DCA could not be measured accurately in kidney cell-free homogenates due to rapid depletion of glutathione by γ-glutamyl transpeptidase. Following oral administration of DCA, 100 mg/kg, to rats, GSTZ1 expression and activity were reduced in all rat tissues, but chloride concentrations were not affected. Together, these data extend our understanding of factors that determine the in vivo kinetics of DCA.
Collapse
Affiliation(s)
- Stephan C Jahn
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Marci G Smeltz
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Zhiwei Hu
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Laura Rowland-Faux
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Guo Zhong
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Ryan J Lorenzo
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Katherine V Cisneros
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Peter W Stacpoole
- Department of Medicine, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
15
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
16
|
Kumari S, Pal RK, Gupta R, Goel M. High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility. Protein J 2017; 36:7-16. [PMID: 28120227 DOI: 10.1007/s10930-017-9693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gamma glutamyl transpeptidase, (GGT) is a ubiquitous protein which plays a central role in glutathione metabolism and has myriad clinical implications. It has been shown to be a virulence factor for pathogenic bacteria, inhibition of which results in reduced colonization potential. However, existing inhibitors are effective but toxic and therefore search is on for novel inhibitors, which makes it imperative to understand the interactions of various inhibitors with the protein in substantial detail. High resolution structures of protein bound to different inhibitors can serve this purpose. Gamma glutamyl transpeptidase from Bacillus licheniformis is one of the model systems that have been used to understand the structure-function correlation of the protein. The structures of the native protein (PDB code 4OTT), of its complex with glutamate (PDB code 4OTU) and that of its precursor mimic (PDB code 4Y23) are available, although at moderate/low resolution. In the present study, we are reporting the preliminary analysis of, high resolution X-ray diffraction data collected for the co-crystals of B. licheniformis, Gamma glutamyl transpeptidase, with its inhibitor, Acivicin. Crystals belong to the orthorhombic space group P212121 and diffract X-ray to 1.45 Å resolution. This is the highest resolution data reported for all GGT structures available till now. The use of SUMO fused expression system enhanced yield of the target protein in the soluble fraction, facilitating recovery of protein with high purity. The preliminary analysis of this data set shows clear density for the inhibitor, acivicin, in the protein active site.
Collapse
Affiliation(s)
- Shobha Kumari
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Ravi Kant Pal
- National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
17
|
Terzyan SS, Cook PF, Heroux A, Hanigan MH. Structure of 6-diazo-5-oxo-norleucine-bound human gamma-glutamyl transpeptidase 1, a novel mechanism of inactivation. Protein Sci 2017; 26:1196-1205. [PMID: 28378915 PMCID: PMC5441403 DOI: 10.1002/pro.3172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/26/2023]
Abstract
Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM-1 min-1 and the Ki was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.
Collapse
Affiliation(s)
- Simon S. Terzyan
- Laboratory of Biomolecular Structure and FunctionUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| | - Paul F. Cook
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahoma73019
| | - Annie Heroux
- Energy Sciences Directorate/Photon Science DivisionBrookhaven National LaboratoryUptonNew York11973
| | - Marie H. Hanigan
- Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| |
Collapse
|
18
|
Oliveira de Souza J, Dawson A, Hunter WN. An Improved Model of the Trypanosoma brucei CTP Synthetase Glutaminase Domain-Acivicin Complex. ChemMedChem 2017; 12:577-579. [PMID: 28333400 PMCID: PMC5413811 DOI: 10.1002/cmdc.201700118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/21/2017] [Indexed: 11/17/2022]
Abstract
The natural product acivicin inhibits the glutaminase activity of cytidine triphosphate (CTP) synthetase and is a potent lead compound for drug discovery in the area of neglected tropical diseases, specifically trypanosomaisis. A 2.1-Å-resolution crystal structure of the acivicin adduct with the glutaminase domain from Trypanosoma brucei CTP synthetase has been deposited in the RCSB Protein Data Bank (PDB) and provides a template for structure-based approaches to design new inhibitors. However, our assessment of that data identified deficiencies in the model. We now report an improved and corrected inhibitor structure with changes to the chirality at one position, the orientation and covalent structure of the isoxazoline moiety, and the location of a chloride ion in an oxyanion binding site that is exploited during catalysis. The model is now in agreement with established chemical principles and allows an accurate description of molecular recognition of the ligand and the mode of binding in a potentially valuable drug target.
Collapse
Affiliation(s)
- Juliana Oliveira de Souza
- Division of Biological Chemistry and Drug DiscoveryCollege of Life SciencesUniversity of DundeeDundeeDD1 5EHScotlandUK
| | - Alice Dawson
- Division of Biological Chemistry and Drug DiscoveryCollege of Life SciencesUniversity of DundeeDundeeDD1 5EHScotlandUK
| | - William N. Hunter
- Division of Biological Chemistry and Drug DiscoveryCollege of Life SciencesUniversity of DundeeDundeeDD1 5EHScotlandUK
| |
Collapse
|
19
|
Bolz C, Bach NC, Meyer H, Müller G, Dawidowski M, Popowicz G, Sieber SA, Skerra A, Gerhard M. Comparison of enzymatic properties and small molecule inhibition of γ-glutamyltranspeptidases from pathogenic and commensal bacteria. Biol Chem 2017; 398:341-357. [PMID: 27636829 DOI: 10.1515/hsz-2016-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori infects the stomach of 50% of the population worldwide, thus causing chronic gastritis. Although this infection can be cured by antibiotic treatment, therapeutic options are increasingly limited due to the development of resistances. The γ-glutamyl-transpeptidase (gGT) of H. pylori (HpgGT) is a virulence factor important for colonization and contributes to bacterial immune evasion. Therefore, this enzyme is a potential target for developing new anti-infectives. As species specificity of such compounds is required in order to avoid off-target or adverse effects, comparative analysis of the gGTs from different organisms is a prerequisite for drug development. To allow detailed biochemical and enzymatic characterization, recombinant gGTs from five different bacteria as well as Homo sapiens were characterized and compared. Investigation of the enzymatic activity, the binding modes of known inhibitors to the catalytic center, and a high resolution X-ray structure of the HpgGT provided a starting point for the identification of new inhibitory substances targeting HpgGT. Inhibitors with Ki values in the nm to mm range were identified and their binding modes were analyzed by mass spectrometry. The results of this study provide a basis for the development of species-specific lead compounds with anti-infective potential by effectively inhibiting HpgGT.
Collapse
|
20
|
Phosphonate-based irreversible inhibitors of human γ-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity. Bioorg Med Chem 2016; 24:5340-5352. [PMID: 27622749 DOI: 10.1016/j.bmc.2016.08.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 11/22/2022]
Abstract
γ-Glutamyl transpeptidase (GGT, EC 2.3.2.2) that catalyzes the hydrolysis and transpeptidation of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione metabolism and is an attractive pharmaceutical target. We report here the evaluation of a phosphonate-based irreversible inhibitor, 2-amino-4-{[3-(carboxymethyl)phenoxy](methoyl)phosphoryl}butanoic acid (GGsTop) and its analogues as a mechanism-based inhibitor of human GGT. GGsTop is a stable compound, but inactivated the human enzyme significantly faster than the other phosphonates, and importantly did not inhibit a glutamine amidotransferase. The structure-activity relationships, X-ray crystallography with Escherichia coli GGT, sequence alignment and site-directed mutagenesis of human GGT revealed a critical electrostatic interaction between the terminal carboxylate of GGsTop and the active-site residue Lys562 of human GGT for potent inhibition. GGsTop showed no cytotoxicity toward human fibroblasts and hepatic stellate cells up to 1mM. GGsTop serves as a non-toxic, selective and highly potent irreversible GGT inhibitor that could be used for various in vivo as well as in vitro biochemical studies.
Collapse
|
21
|
Pinto A, Tamborini L, Cullia G, Conti P, De Micheli C. Inspired by Nature: The 3-Halo-4,5-dihydroisoxazole Moiety as a Novel Molecular Warhead for the Design of Covalent Inhibitors. ChemMedChem 2015; 11:10-4. [PMID: 26607551 DOI: 10.1002/cmdc.201500496] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/10/2022]
Abstract
Over the past few decades, there has been an increasing interest in the development of covalent enzyme inhibitors. As it was recently re-emphasized, the selective, covalent binding of a drug to the desired target can increase efficiency and lower the inhibitor concentration required to achieve a therapeutic effect. In this context, the naturally occurring antibiotic acivicin, and in particular its 3-chloro-4,5-dihydroisoxazole scaffold, has provided a wealth of inspiration to medicinal chemists and chemical biologists alike. In this Concept, to underline the great potentiality that the 3-halo-4,5-dihydroisoxazole warhead has in drug discovery, we present a number of examples, grouped by their potential biological activity and targets, in which this scaffold has been fruitfully used to develop novel biologically active compounds. Through these examples, we show that the 3-halo-4,5-dihydroisoxazole moiety represents an outstanding warhead with high potential for the design of novel covalent enzyme inhibitors.
Collapse
Affiliation(s)
- Andrea Pinto
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133, Milano, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133, Milano, Italy
| | - Gregorio Cullia
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133, Milano, Italy
| | - Carlo De Micheli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133, Milano, Italy.
| |
Collapse
|
22
|
Verma VV, Gupta R, Goel M. "Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies". Biol Direct 2015; 10:49. [PMID: 26370226 PMCID: PMC4568574 DOI: 10.1186/s13062-015-0080-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/02/2015] [Indexed: 01/25/2023] Open
Abstract
Background γ-glutamyltranspeptidase (GGT) is a bi-substrate enzyme conserved in all three domains of life. It catalyzes the cleavage and transfer of γ-glutamyl moiety of glutathione to either water (hydrolysis) or substrates like peptides (transpeptidation). GGTs exhibit great variability in their enzyme kinetics although the mechanism of catalysis is conserved. Recently, GGT has been shown to be a virulence factor in microbes like Helicobacter pylori and Bacillus anthracis. In mammalian cells also, GGT inhibition prior to chemotherapy has been shown to sensitize tumors to the therapy. Therefore, lately both bacterial and eukaryotic GGTs have emerged as potential drug targets, but the efforts directed towards finding suitable inhibitors have not yielded any significant results yet. We propose that delineating the residues responsible for the functional diversity associated with these proteins could help in design of species/clade specific inhibitors. Results In the present study, we have carried out phylogenetic analysis on a set of 47 GGT-like proteins to address the functional diversity. These proteins segregate into various subfamilies, forming separate clades on the tree. Sequence conservation and motif prediction studies show that even though most of the highly conserved residues have been characterized biochemically in previous studies, a significant number of novel putative sites and motifs are discovered that vary in a clade specific manner. Many of the putative sites predicted during the functional divergence type I and type II analysis, lie close to the known catalytic residues and line the walls of the substrate binding cavity, reinforcing their role in modulating the substrate specificity, catalytic rates and stability of this protein. Conclusion The study offers interesting insights into the evolution of GGT-like proteins in pathogenic vs. non-pathogenic bacteria, archaea and eukaryotes. Our analysis delineates residues that are highly specific to each GGT subfamily. We propose that these sites not only explain the differences in stability and catalytic variability of various GGTs but can also aid in design of specific inhibitors against particular GGTs. Thus, apart from the commonly used in-silico inhibitor screening approaches, evolutionary analysis identifying the functional divergence hotspots in GGT proteins could augment the structure based drug design approaches. Reviewers This article was reviewed by Andrei Osterman, Christine Orengo, and Srikrishna Subramanian. For complete reports, see the Reviewers’ reports section Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0080-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ved Vrat Verma
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India.
| | - Rani Gupta
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India.
| | - Manisha Goel
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
23
|
Khavrutskii IV, Legler PM, Friedlander AM, Wallqvist A. A reaction path study of the catalysis and inhibition of the Bacillus anthracis CapD γ-glutamyl transpeptidase. Biochemistry 2014; 53:6954-67. [PMID: 25334088 DOI: 10.1021/bi500623c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CapD enzyme of Bacillus anthracis is a γ-glutamyl transpeptidase from the N-terminal nucleophile hydrolase superfamily that covalently anchors the poly-γ-D-glutamic acid (pDGA) capsule to the peptidoglycan. The capsule hinders phagocytosis of B. anthracis by host cells and is essential for virulence. The role CapD plays in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known, and a covalent inhibitor, capsidin, has been identified, the mechanisms of CapD catalysis and inhibition are poorly understood. Here, we used a computational approach to map out the reaction steps involved in CapD catalysis and inhibition. We found that the rate-limiting step of either CapD catalysis or inhibition was a concerted asynchronous formation of the tetrahedral intermediate with a barrier of 22-23 kcal/mol. However, the mechanisms of these reactions differed for the two amides. The formation of the tetrahedral intermediate with pDGA was substrate-assisted with two proton transfers. In contrast, capsidin formed the tetrahedral intermediate in a conventional way with one proton transfer. Interestingly, capsidin coupled a conformational change in the catalytic residue of the tetrahedral intermediate to stretching of the scissile amide bond. Furthermore, capsidin took advantage of iminol-amide tautomerism of its diacetamide moiety to convert the tetrahedral intermediate to the acetylated CapD. As evidence of the promiscuous nature of CapD, the enzyme cleaved the amide bond of capsidin by attacking it on the opposite side compared to pDGA.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command , Fort Detrick, Maryland 21702, United States
| | | | | | | |
Collapse
|
24
|
Kreuzer J, Bach NC, Forler D, Sieber SA. Target discovery of acivicin in cancer cells elucidates its mechanism of growth inhibition†Electronic supplementary information (ESI) available: Synthesis, cloning, protein expression, purification and biochemical assays. See DOI: 10.1039/c4sc02339k. Chem Sci 2014; 6:237-245. [PMID: 25580214 PMCID: PMC4285139 DOI: 10.1039/c4sc02339k] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Using a chemical proteomic strategy we analyzed the targets of acivicin and provided a mechanistic explanation for its inhibition of cancer cell growth.
Acivicin is a natural product with diverse biological activities. Several decades ago its clinical application in cancer treatment was explored but failed due to unacceptable toxicity. The causes behind the desired and undesired biological effects have never been elucidated and only limited information about acivicin-specific targets is available. In order to elucidate the target spectrum of acivicin in more detail we prepared functionalized derivatives and applied them for activity based proteomic profiling (ABPP) in intact cancer cells. Target deconvolution by quantitative mass spectrometry (MS) revealed a preference for specific aldehyde dehydrogenases. Further in depth target validation confirmed that acivicin inhibits ALDH4A1 activity by binding to the catalytic site. In accordance with this, downregulation of ALDH4A1 by siRNA resulted in a severe inhibition of cell growth and might thus provide an explanation for the cytotoxic effects of acivicin.
Collapse
Affiliation(s)
- Johannes Kreuzer
- Center for Integrated Protein Science CIPSM , Institute of Advanced Studies IAS , Department Chemie , Lehrstuhl für Organische Chemie II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany . ; ; Tel: +49 8928913302
| | - Nina C Bach
- Center for Integrated Protein Science CIPSM , Institute of Advanced Studies IAS , Department Chemie , Lehrstuhl für Organische Chemie II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany . ; ; Tel: +49 8928913302
| | - Daniel Forler
- Bayer HealthCare Bayer Pharma AG , Müllerstr. 178 , 13353 Berlin , Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science CIPSM , Institute of Advanced Studies IAS , Department Chemie , Lehrstuhl für Organische Chemie II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany . ; ; Tel: +49 8928913302
| |
Collapse
|
25
|
Lin LL, Chen YY, Chi MC, Merlino A. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: Opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1523-9. [DOI: 10.1016/j.bbapap.2014.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/12/2014] [Accepted: 04/21/2014] [Indexed: 12/21/2022]
|
26
|
Ida T, Suzuki H, Fukuyama K, Hiratake J, Wada K. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:607-14. [PMID: 24531494 PMCID: PMC3940202 DOI: 10.1107/s1399004713031222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/14/2013] [Indexed: 12/23/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp2 hybridization to Thr403 Oγ, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.
Collapse
Affiliation(s)
- Tomoyo Ida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hideyuki Suzuki
- Division of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
27
|
Nakajima M, Watanabe B, Han L, Shimizu BI, Wada K, Fukuyama K, Suzuki H, Hiratake J. Glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of γ-glutamyl transpeptidase for probing cysteinyl-glycine binding site. Bioorg Med Chem 2013; 22:1176-94. [PMID: 24411479 DOI: 10.1016/j.bmc.2013.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 12/29/2022]
Abstract
γ-Glutamyl transpeptidase (GGT) catalyzing the cleavage of γ-glutamyl bond of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione homeostasis. Defining its Cys-Gly binding site is extremely important not only in defining the physiological function of GGT, but also in designing specific and effective inhibitors for pharmaceutical purposes. Here we report the synthesis and evaluation of a series of glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of human and Escherichia coli GGTs to probe the structural and stereochemical preferences in the Cys-Gly binding site. Both enzymes were inhibited strongly and irreversibly by the peptidyl phosphorus esters with a good leaving group (phenoxide). Human GGT was highly selective for l-aliphatic amino acid such as l-2-aminobutyrate (l-Cys mimic) at the Cys binding site, whereas E. coli GGT significantly preferred l-Phe mimic at this site. The C-terminal Gly and a l-amino acid analogue at the Cys binding site were necessary for inhibition, suggesting that human GGT was highly selective for glutathione (γ-Glu-l-Cys-Gly), whereas E. coli GGT are not selective for glutathione, but still retained the dipeptide (l-AA-Gly) binding site. The diastereoisomers with respect to the chiral phosphorus were separated. Both GGTs were inactivated by only one of the stereoisomers with the same stereochemistry at phosphorus. The strict recognition of phosphorus stereochemistry gave insights into the stereochemical course of the catalyzed reaction. Ion-spray mass analysis of the inhibited E. coli GGT confirmed the formation of a 1:1 covalent adduct with the catalytic subunit (small subunit) with concomitant loss of phenoxide, leaving the peptidyl moiety that presumably occupies the Cys-Gly binding site. The peptidyl phosphonate inhibitors are highly useful as a ligand for X-ray structural analysis of GGT for defining hitherto unidentified Cys-Gly binding site to design specific inhibitors.
Collapse
Affiliation(s)
- Mado Nakajima
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Liyou Han
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bun-Ichi Shimizu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hideyuki Suzuki
- Division of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
28
|
Castellano I, Merlino A. Gamma-Glutamyl Transpeptidases: Structure and Function. GAMMA-GLUTAMYL TRANSPEPTIDASES 2013. [DOI: 10.1007/978-3-0348-0682-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Castellano I, Merlino A. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications. Cell Mol Life Sci 2012; 69:3381-94. [PMID: 22527720 PMCID: PMC11115026 DOI: 10.1007/s00018-012-0988-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.
Collapse
Affiliation(s)
- Immacolata Castellano
- Institute of Protein Biochemistry, CNR, via Pietro Castellino 111, 80131 Naples, Italy
- Present Address: Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples ‘Federico II’, Complesso Universitario di Monte Sant’Angelo, via cintia, 80126 Naples, Italy
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, 80100 Naples, Italy
| |
Collapse
|
30
|
Hu X, Legler PM, Khavrutskii I, Scorpio A, Compton JR, Robertson KL, Friedlander AM, Wallqvist A. Probing the donor and acceptor substrate specificity of the γ-glutamyl transpeptidase. Biochemistry 2012; 51:1199-212. [PMID: 22257032 DOI: 10.1021/bi200987b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γ-Glutamyl transpeptidase (GGT) is a two-substrate enzyme that plays a central role in glutathione metabolism and is a potential target for drug design. GGT catalyzes the cleavage of γ-glutamyl donor substrates and the transfer of the γ-glutamyl moiety to an amine of an acceptor substrate or water. Although structures of bacterial GGT have revealed details of the protein-ligand interactions at the donor site, the acceptor substrate site is relatively undefined. The recent identification of a species-specific acceptor site inhibitor, OU749, suggests that these inhibitors may be less toxic than glutamine analogues. Here we investigated the donor and acceptor substrate preferences of Bacillus anthracis GGT (CapD) and applied computational approaches in combination with kinetics to probe the structural basis of the enzyme's substrate and inhibitor binding specificities and compare them with human GGT. Site-directed mutagenesis studies showed that the R432A and R520S variants exhibited 6- and 95-fold decreases in hydrolase activity, respectively, and that their activity was not stimulated by the addition of the l-Cys acceptor substrate, suggesting an additional role in acceptor binding and/or catalysis of transpeptidation. Rat GGT (and presumably HuGGT) has strict stereospecificity for L-amino acid acceptor substrates, while CapD can utilize both L- and D-acceptor substrates comparably. Modeling and kinetic analysis suggest that R520 and R432 allow two alternate acceptor substrate binding modes for L- and D-acceptors. R432 is conserved in Francisella tularensis, Yersinia pestis, Burkholderia mallei, Helicobacter pylori and Escherichia coli, but not in human GGT. Docking and MD simulations point toward key residues that contribute to inhibitor and acceptor substrate binding, providing a guide to designing novel and specific GGT inhibitors.
Collapse
Affiliation(s)
- Xin Hu
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, United States.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pica A, Russo Krauss I, Castellano I, Rossi M, La Cara F, Graziano G, Sica F, Merlino A. Exploring the unfolding mechanism of γ-glutamyltranspeptidases: the case of the thermophilic enzyme from Geobacillus thermodenitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:571-7. [PMID: 22322192 DOI: 10.1016/j.bbapap.2012.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
γ-glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are generally synthesized as precursor proteins, which undergo an intra-molecular autocatalytic cleavage yielding a large and a small subunit. In this study, circular dichroism and intrinsic fluorescence measurements have been used to investigate the structural features and the temperature- and guanidinium hydrochloride (GdnHCl)-induced unfolding of the mature form of the γ-GT from Geobacillus thermodenitrificans (GthGT) and that of its T353A mutant, which represents a mimic of the precursor protein. Data indicate that a) the mutant and the mature GthGT have a different secondary structure content and a slightly different exposure of hydrophobic regions, b) the thermal unfolding processes of both GthGT forms occur through a three-state model, characterized by a stable intermediate species, whereas chemical denaturations proceed through a single transition, c) both GthGT forms exhibit remarkable stability against temperature, but they do not display a strong resistance to the denaturing action of GdnHCl. These findings suggest that electrostatic interactions significantly contribute to the protein stability and that both the precursor and the mature form of GthGT assume compact and stable conformations to resist to the extreme temperatures where G. thermodenidrificans lives. Owing to its thermostability and unique catalytic properties, GthGT is an excellent candidate to be used as a glutaminase in food industry.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Joyce-Brady M, Hiratake J. Inhibiting Glutathione Metabolism in Lung Lining Fluid as a Strategy to Augment Antioxidant Defense. ACTA ACUST UNITED AC 2011; 7:71-78. [PMID: 22485086 PMCID: PMC3319921 DOI: 10.2174/157340811796575308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 12/22/2022]
Abstract
Glutathione is abundant in the lining fluid that bathes the gas exchange surface of the lung. On the one hand glutathione in this extracellular pool functions in antioxidant defense to protect cells and proteins in the alveolar space from oxidant injury; on the other hand, it functions as a source of cysteine to maintain cellular glutathione and protein synthesis. These seemingly opposing functions are regulated through metabolism by gamma-glutamyl transferase (GGT, EC 2.3.2.2). Even under normal physiologic conditions, lung lining fluid (LLF) contains a concentrated pool of GGT activity exceeding that of whole lung by about 7-fold and indicating increased turnover of glutathione at the epithelial surface of the lung. With oxidant stress LLF GGT activity is amplified even further as glutathione turnover is accelerated to meet the increased demands of cells for cysteine. Mouse models of GGT deficiency confirmed this biological role of LLF GGT activity and revealed the robust expansiveness and antioxidant capacity of the LLF glutathione pool in the absence of metabolism. Acivicin, an irreversible inhibitor of GGT, can be utilized to augment LLF fluid glutathione content in normal mice and novel GGT inhibitors have now been defined that provide advantages over acivicin. Inhibiting LLF GGT activity is a novel strategy to selectively augment the extracellular LLF glutathione pool. The enhanced antioxidant capacity can maintain lung epithelial cell integrity and barrier function under oxidant stress.
Collapse
Affiliation(s)
- Martin Joyce-Brady
- The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
33
|
|
34
|
Williams K, Cullati S, Sand A, Biterova EI, Barycki JJ. Crystal structure of acivicin-inhibited gamma-glutamyltranspeptidase reveals critical roles for its C-terminus in autoprocessing and catalysis. Biochemistry 2010; 48:2459-67. [PMID: 19256527 DOI: 10.1021/bi8014955] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori gamma-glutamyltranspeptidase (HpGT) is a general gamma-glutamyl hydrolase and a demonstrated virulence factor. The enzyme confers a growth advantage to the bacterium, providing essential amino acid precursors by initiating the degradation of extracellular glutathione and glutamine. HpGT is a member of the N-terminal nucleophile (Ntn) hydrolase superfamily and undergoes autoprocessing to generate the active form of the enzyme. Acivicin is a widely used gamma-glutamyltranspeptidase inhibitor that covalently modifies the enzyme, but its precise mechanism of action remains unclear. The time-dependent inactivation of HpGT exhibits a hyperbolic dependence on acivicin concentration with k(max) = 0.033 +/- 0.006 s(-1) and K(I) = 19.7 +/- 7.2 microM. Structure determination of acivicin-modified HpGT (1.7 A; R(factor) = 17.9%; R(free) = 20.8%) demonstrates that acivicin is accommodated within the gamma-glutamyl binding pocket of the enzyme. The hydroxyl group of Thr 380, the catalytic nucleophile in the autoprocessing and enzymatic reactions, displaces chloride from the acivicin ring to form the covalently linked complex. Within the acivicin-modified HpGT structure, the C-terminus of the protein becomes ordered with Phe 567 positioned over the active site. Substitution or deletion of Phe 567 leads to a >10-fold reduction in enzymatic activity, underscoring its importance in catalysis. The mobile C-terminus is positioned by several electrostatic interactions within the C-terminal region, most notably a salt bridge between Arg 475 and Glu 566. Mutational analysis reveals that Arg 475 is critical for the proper placement of the C-terminal region, the Tyr 433 containing loop, and the proposed oxyanion hole.
Collapse
Affiliation(s)
- Kristin Williams
- Department of Biochemistry, University of Nebraska, 1901 Vine Street, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | |
Collapse
|
35
|
Wada K, Irie M, Suzuki H, Fukuyama K. Crystal structure of the halotolerant gamma-glutamyltranspeptidase from Bacillus subtilis in complex with glutamate reveals a unique architecture of the solvent-exposed catalytic pocket. FEBS J 2010; 277:1000-9. [PMID: 20088880 DOI: 10.1111/j.1742-4658.2009.07543.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
gamma-Glutamyltranspeptidase (GGT; EC 2.3.2.2), an enzyme found in organisms from bacteria to mammals and plants, plays a central role in glutathione metabolism. Structural studies of GGTs from Escherichia coli and Helicobacter pylori have revealed detailed molecular mechanisms of catalysis and maturation. In these two GGTs, highly conserved residues form the catalytic pockets, conferring the ability of the loop segment to shield the bound gamma-glutamyl moiety from the solvent. Here, we have examined the Bacillus subtilis GGT, which apparently lacks the amino acids corresponding to the lid-loop that are present in mammalian and plant GGTs as well as in most bacterial GGTs. Another remarkable feature of B. subtilis GGT is its salt tolerance; it retains 86% of its activity even in 3 m NaCl. To better understand these characteristics of B. subtilis GGT, we determined its crystal structure in complex with glutamate, a product of the enzymatic reaction, at 1.95 A resolution. This structure revealed that, unlike the E. coli and H. pylori GGTs, the catalytic pocket of B. subtilis GGT has no segment that covers the bound glutamate; consequently, the glutamate is exposed to solvent. Furthermore, calculation of the electrostatic potential showed that strong acidic patches were distributed on the surface of the B. subtilis GGT, even under high-salt conditions, and this may allow the protein to remain in the hydrated state and avoid self-aggregation. The structural findings presented here have implications for the molecular mechanism of GGT.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
| | | | | | | |
Collapse
|
36
|
|
37
|
Vergauwen B, Dudycz LW, Dansercoer A, Devreese B. A direct spectrophotometric gamma-glutamyltransferase inhibitor screening assay targeting the hydrolysis-only mode. Biochem Biophys Res Commun 2009; 380:591-6. [PMID: 19285006 DOI: 10.1016/j.bbrc.2009.01.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Gamma-glutamyltransferase (GGT, E.C. 2.3.2.2) catalyzes the hydrolysis and transpeptidation of extracellular glutathione. Due to its central role in maintaining mammalian glutathione homeostasis, GGT is now believed to be a valuable drug target for a variety of life-threatening diseases, such as cancer. Unfortunately, however, effective tools for screening GGT inhibitors are still lacking. We report here the synthesis and evaluation of an alpha-phenylthio-containing glutathione peptide mimic that eliminates thiophenol upon GGT-catalyzed hydrolysis of the gamma-glutamyl peptide bond. The concurrent, real-time spectrophotometric quantification of the released thiophenol using Ellman's reagent creates a GGT assay format that is simple, robust, and highly sensitive. The versatility of the assay has been demonstrated by its application to the kinetic characterization of equine kidney GGT, and enzyme inhibition assays. The ability of the glutathione mimic to behave as an excellent donor substrate (exhibiting Michaelis-Menten kinetics with a K(m) of 11.3+/-0.5 microM and a k(cat) of 90.1+/-0.8 nmol mg(-1)min(-1)), coupled to the assay's ability to study the hydrolysis-only mode of the GGT-catalyzed reaction, make our approach amenable to high-throughput drug screening platforms.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|