1
|
Ting ASY, Gan PT. Influence of coloured lights on growth and enzyme production of beneficial endophytic fungi. Int Microbiol 2024; 27:1405-1416. [PMID: 38277111 DOI: 10.1007/s10123-024-00486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The influence of light regulation on fungal growth and enzyme production was tested on endophytic isolates of Fusarium proliferatum (CCH), Colletotrichum boninense (PL1, PL9, OL2), Colletotrichum gloeosporiodes (OL3) and Colletotrichum siamense (PL3). The isolates were treated with blue, red, green, and yellow light, while white fluorescent light (12 h light/12 h dark photoperiod) and 24 h dark conditions were applied as control. Results revealed that coloured light treatments induced formation of circadian rings, while exposure to white light and dark conditions showed less pronounced circadian rings. Growth and sporulation of endophytes were not significantly influenced by light. By contrast, enzyme production was affected by coloured light treatments, notably with red (amylase), blue (cellulase) and yellow (cellulase, xylanase, L-asparaginase) light, resulting in lower enzyme levels for certain isolates. Under control conditions, enzyme production was relatively higher for amylase, cellulase, xylanase (for cultures incubated in the dark), and for L-asparaginase (for cultures incubated in white fluorescent light). Among the endophytic isolates, F. proliferatum (CCH) showed better response to coloured light treatment as higher sporulation and enzyme production was detected, although growth was significantly suppressed. On the contrary, C. gloeosporiodes (OL3) showed better growth but significantly lower enzyme production and sporulation when treated with the various coloured light. This study revealed that coloured light may have the potential to manipulate growth, sporulation and enzyme production in certain fungal species as strategies for fungal control or for harnessing of valuable enzymes.
Collapse
Affiliation(s)
- Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Peck Ting Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Gan PT, Lim YY, Ting ASY. Influence of light regulation on growth and enzyme production in rare endolichenic fungi. Folia Microbiol (Praha) 2023; 68:741-755. [PMID: 37022636 DOI: 10.1007/s12223-023-01050-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
The influence of light regulation on the growth and enzyme production of three endolichenic fungal isolates, i.e. Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), and Xylaria venustula (PH22), was determined. The isolates were exposed to blue, red, green, yellow, white fluorescent light (12 h light-12 h dark photoperiod) (test), and 24 h dark (control) conditions. Results revealed that the alternating light-dark conditions resulted in the formation of dark rings in most fungal isolates but was absent in PH22. Red light induced sporulation while yellow light elicited higher biomass in all isolates (0.19 ± 0.01 g, 0.07 ± 0.00 g, and 0.11 ± 0.00 g, for EF13, PH22, and EF5, respectively) as compared to incubation in the dark. Results also showed that blue light induced higher amylase activity in PH22 (15.31 ± 0.45 U/mL) and L-asparaginase activity in all isolates (0.45 ± 0.01 U/mL, 0.55 ± 0.39 U/mL, and 0.38 ± 0.01 U/mL, for EF13, PH22, and EF5, respectively) compared to both control conditions. Green light enhanced the production of xylanase (6.57 ± 0.42 U/mL, 10.64 ± 0.12 U/mL, and 7.55 ± 0.56 U/mL for EF13, PH22, and EF5, respectively) and cellulase (6.49 ± 0.48 U/mL, 9.57 ± 0.25 U/mL, and 7.28 ± 0.63 U/mL, for EF13, PH22, and EF5, respectively). In contrast, red light was the least effective light treatment as production of enzymes was the least, with lower levels of amylase, cellulase, xylanase, and L-asparaginase detected. To conclude, all three endolichenic fungi are light-responsive, with fungal growth regulated with the use of red light and yellow light, and manipulation of enzyme production via blue and green light.
Collapse
Affiliation(s)
- Peck Ting Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
3
|
Mohri M, Moghadam A, Burketova L, Ryšánek P. Genome-wide identification of the opsin protein in Leptosphaeria maculans and comparison with other fungi (pathogens of Brassica napus). Front Microbiol 2023; 14:1193892. [PMID: 37692395 PMCID: PMC10485269 DOI: 10.3389/fmicb.2023.1193892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 09/12/2023] Open
Abstract
The largest family of transmembrane receptors are G-protein-coupled receptors (GPCRs). These receptors respond to perceived environmental signals and infect their host plants. Family A of the GPCR includes opsin. However, there is little known about the roles of GPCRs in phytopathogenic fungi. We studied opsin in Leptosphaeria maculans, an important pathogen of oilseed rape (Brassica napus) that causes blackleg disease, and compared it with six other fungal pathogens of oilseed rape. A phylogenetic tree analysis of 31 isoforms of the opsin protein showed six major groups and six subgroups. All three opsin isoforms of L. maculans are grouped in the same clade in the phylogenetic tree. Physicochemical analysis revealed that all studied opsin proteins are stable and hydrophobic. Subcellular localization revealed that most isoforms were localized in the endoplasmic reticulum membrane except for several isoforms in Verticillium species, which were localized in the mitochondrial membrane. Most isoforms comprise two conserved domains. One conserved motif was observed across all isoforms, consisting of the BACTERIAL_OPSIN_1 domain, which has been hypothesized to have an identical sensory function. Most studied isoforms showed seven transmembrane helices, except for one isoform of V. longisporum and four isoforms of Fusarium oxysporum. Tertiary structure prediction displayed a conformational change in four isoforms of F. oxysporum that presumed differences in binding to other proteins and sensing signals, thereby resulting in various pathogenicity strategies. Protein-protein interactions and binding site analyses demonstrated a variety of numbers of ligands and pockets across all isoforms, ranging between 0 and 13 ligands and 4 and 10 pockets. According to the phylogenetic analysis in this study and considerable physiochemically and structurally differences of opsin proteins among all studied fungi hypothesized that this protein acts in the pathogenicity, growth, sporulation, and mating of these fungi differently.
Collapse
Affiliation(s)
- Marzieh Mohri
- Department of Plant Protection, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Lenka Burketova
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Pavel Ryšánek
- Department of Plant Protection, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
4
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Ruger-Herreros M, Nordzieke S, Vega-Álvarez C, Avalos J, Limón MC. Relation between CarS expression and activation of carotenogenesis by stress in Fusarium fujikuroi. Front Bioeng Biotechnol 2022; 10:1000129. [PMID: 36277400 PMCID: PMC9581392 DOI: 10.3389/fbioe.2022.1000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Fusarium fujikuroi, a model organism for secondary metabolism in fungi, produces carotenoids, terpenoid pigments with antioxidant activity. Previous results indicate that carotenoid synthesis in F. fujikuroi is stimulated by light or by different stress conditions and downregulated by a RING finger protein encoded by carS gene. Here, we have analyzed the effects of three stressors, nitrogen scarcity, heat shock, and oxidative stress. We compared them with the effect of light in the wild type, a carS mutant that overproduces carotenoids, and its complemented strain. The assayed stressors increase the synthesis of carotenoids in the three strains, but mRNA levels of structural genes of carotenogenesis, carRA and carB, are only enhanced in the presence of a functional carS gene. In the wild-type strain, the four conditions affect in different manners the mRNA levels of carS: greater in the presence of light, without significant changes in nitrogen starvation, and with patent decreases after heat shock or oxidative stress, suggesting different activation mechanisms. The spores of the carS mutant are more resistant to H2O2 than those of the wild type; however, the mutant shows a greater H2O2 sensitivity at the growth level, which may be due to the participation of CarS in the regulation of genes with catalase domains, formerly described. A possible mechanism of regulation by heat stress has been found in the alternative splicing of the intron of the carS gene, located close to its 3' end, giving rise to the formation of a shorter protein. This action could explain the inducing effect of the heat shock, but not of the other inducing conditions, which may involve other mechanisms of action on the CarS regulator, either transcriptionally or post-transcriptionally.
Collapse
Affiliation(s)
| | | | | | | | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
6
|
La Greca M, Chen JL, Schubert L, Kozuch J, Berneiser T, Terpitz U, Heberle J, Schlesinger R. The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis. Front Mol Biosci 2022; 9:826990. [PMID: 35281268 PMCID: PMC8913941 DOI: 10.3389/fmolb.2022.826990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.
Collapse
Affiliation(s)
- Mariafrancesca La Greca
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Tim Berneiser
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger,
| |
Collapse
|
7
|
Brancini GTP, Hallsworth JE, Corrochano LM, Braga GÚL. Photobiology of the keystone genus Metarhizium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112374. [PMID: 34954528 DOI: 10.1016/j.jphotobiol.2021.112374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
8
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
9
|
Parra-Rivero O, Paes de Barros M, Prado MDM, Gil JV, Hornero-Méndez D, Zacarías L, Rodrigo MJ, Limón MC, Avalos J. Neurosporaxanthin Overproduction by Fusarium fujikuroi and Evaluation of Its Antioxidant Properties. Antioxidants (Basel) 2020; 9:E528. [PMID: 32560158 PMCID: PMC7346100 DOI: 10.3390/antiox9060528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
Neurosporaxanthin (NX) is a carboxylic carotenoid produced by some filamentous fungi, including species of the genera Neurospora and Fusarium. NX biosynthetic genes and their regulation have been thoroughly investigated in Fusarium fujikuroi, an industrial fungus used for gibberellin production. In this species, carotenoid-overproducing mutants, affected in the regulatory gene carS, exhibit an upregulated expression of the NX pathway. Based on former data on a stimulatory effect of nitrogen starvation on carotenoid biosynthesis, we developed culture conditions with carS mutants allowing the production of deep-pigmented mycelia. With this method, we obtained samples with ca. 8 mg NX/g dry mass, in turn the highest concentration for this carotenoid described so far. NX-rich extracts obtained from these samples were used in parallel with carS-complemented NX-poor extracts obtained under the same conditions, to check the antioxidant properties of this carotenoid in in vitro assays. NX-rich extracts exhibited higher antioxidant capacity than NX-poor extracts, either when considering their quenching activity against [O2(1g)] in organic solvent (singlet oxygen absorption capacity (SOAC) assays) or their scavenging activity against different free radicals in aqueous solution and in liposomes. These results make NX a promising carotenoid as a possible feed or food additive, and encourage further studies on its chemical properties.
Collapse
Affiliation(s)
- Obdulia Parra-Rivero
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| | - Marcelo Paes de Barros
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, Rua Galvão Bueno 868, São Paulo SP 01506-000, Brazil
| | - María del Mar Prado
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| | - José-Vicente Gil
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
- Food Technology Area, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Dámaso Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain;
| | - Lorenzo Zacarías
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
| | - María J. Rodrigo
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| |
Collapse
|
10
|
Miao L, Chi S, Wu M, Liu Z, Li Y. Deregulation of phytoene-β-carotene synthase results in derepression of astaxanthin synthesis at high glucose concentration in Phaffia rhodozyma astaxanthin-overproducing strain MK19. BMC Microbiol 2019; 19:133. [PMID: 31202260 PMCID: PMC6570914 DOI: 10.1186/s12866-019-1507-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Background A major obstacle to industrial-scale astaxanthin production by the yeast Phaffia rhodozyma is the strong inhibitory effect of high glucose concentration on astaxanthin synthesis. We investigated, for the first time, the mechanism of the regulatory effect of high glucose (> 100 g/L) at the metabolite and transcription levels. Results Total carotenoid, β-carotene, and astaxanthin contents were greatly reduced in wild-type JCM9042 at high (110 g/L) glucose; in particular, β-carotene content at 24–72 h was only 14–17% of that at low (40 g/L) glucose. The inhibitory effect of high glucose on astaxanthin synthesis appeared to be due mainly to repression of lycopene-to-β-carotene and β-carotene-to-astaxanthin steps in the pathway. Expression of carotenogenic genes crtE, pbs, and ast was also strongly inhibited by high glucose; such inhibition was mediated by creA, a global negative regulator of carotenogenic genes which is strongly induced by glucose. In contrast, astaxanthin-overproducing, glucose metabolic derepression mutant strain MK19 displayed de-inhibition of astaxanthin synthesis at 110 g/L glucose; this de-inhibition was due mainly to deregulation of pbs and ast expression, which in turn resulted from low creA expression. Failure of glucose to induce the genes reg1 and hxk2, which maintain CreA activity, also accounts for the fact that astaxanthin synthesis in MK19 was not repressed at high glucose. Conclusion We conclude that astaxanthin synthesis in MK19 at high glucose is enhanced primarily through derepression of carotenogenic genes (particularly pbs), and that this process is mediated by CreA, Reg1, and Hxk2 in the glucose signaling pathway.
Collapse
Affiliation(s)
- Lili Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Shuang Chi
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mengru Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zhipei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
11
|
Panzer S, Brych A, Batschauer A, Terpitz U. Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps. Front Microbiol 2019; 10:735. [PMID: 31024506 PMCID: PMC6467936 DOI: 10.3389/fmicb.2019.00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.
Collapse
Affiliation(s)
- Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Annika Brych
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| |
Collapse
|
12
|
Thind TS, Schilder AC. Understanding photoreception in fungi and its role in fungal development with focus on phytopathogenic fungi. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42360-018-0025-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 2018; 70:62-93. [PMID: 29679619 DOI: 10.1016/j.plipres.2018.04.004] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.
Collapse
Affiliation(s)
| | - Javier Avalos
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Albert Boronat
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lourdes Gomez-Gomez
- Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Damaso Hornero-Mendez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain
| | - M Carmen Limon
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio J Meléndez-Martínez
- Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain
| | | | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria J Rodrigo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarias
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, Universitat de Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
14
|
HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi. Sci Rep 2018; 8:605. [PMID: 29330515 PMCID: PMC5766585 DOI: 10.1038/s41598-017-19103-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022] Open
Abstract
The dynamics of early fungal development and its interference with physiological signals and environmental factors is yet poorly understood. Especially computational analysis tools for the evaluation of the process of early spore germination and germ tube formation are still lacking. For the time-resolved analysis of conidia germination of the filamentous ascomycete Fusarium fujikuroi we developed a straightforward toolbox implemented in ImageJ. It allows for processing of microscopic acquisitions (movies) of conidial germination starting with drift correction and data reduction prior to germling analysis. From the image time series germling related region of interests (ROIs) are extracted, which are analysed for their area, circularity, and timing. ROIs originating from germlings crossing other hyphae or the image boundaries are omitted during analysis. Each conidium/hypha is identified and related to its origin, thus allowing subsequent categorization. The efficiency of HyphaTracker was proofed and the accuracy was tested on simulated germlings at different signal-to-noise ratios. Bright-field microscopic images of conidial germination of rhodopsin-deficient F. fujikuroi mutants and their respective control strains were analysed with HyphaTracker. Consistent with our observation in earlier studies the CarO deficient mutant germinated earlier and grew faster than other, CarO expressing strains.
Collapse
|
15
|
Adam A, Deimel S, Pardo-Medina J, García-Martínez J, Konte T, Limón MC, Avalos J, Terpitz U. Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus-Plant Interaction. Int J Mol Sci 2018; 19:ijms19010215. [PMID: 29324661 PMCID: PMC5796164 DOI: 10.3390/ijms19010215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.
Collapse
Affiliation(s)
- Alexander Adam
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
| | - Stephan Deimel
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
| | - Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Jorge García-Martínez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Tilen Konte
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Sl-1000 Ljubljana, Slovenia;
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
- Correspondence: ; Tel.: +49-931-31-84226
| |
Collapse
|
16
|
Wang Z, Wang J, Li N, Li J, Trail F, Dunlap JC, Townsend JP. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 2017; 27:216-232. [PMID: 29134709 DOI: 10.1111/mec.14425] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023]
Abstract
Understanding the genetic basis of the switch from asexual to sexual lifestyles in response to sometimes rapid environmental changes is one of the major challenges in fungal ecology. Light appears to play a critical role in the asexual-sexual switch-but fungal genomes harbour diverse light sensors. Fungal opsins are homologous to bacterial green-light-sensory rhodopsins, and their organismal functions in fungi have not been well understood. Three of these opsin-like proteins were widely distributed across fungal genomes, but homologs of the Fusarium opsin-like protein CarO were present only in plant-associated fungi. Key amino acids, including potential retinal binding sites, functionally diverged on the phylogeny of opsins. This diversification of opsin-like proteins could be correlated with life history-associated differences among fungi in their expression and function during morphological development. In Neurospora crassa and related species, knockout of the opsin NOP-1 led to a phenotype in the regulation of the asexual-sexual switch, modulating response to both light and oxygen conditions. Sexual development commenced early in ∆nop-1 strains cultured in unsealed plates under constant blue and white light. Furthermore, comparative transcriptomics showed that the expression of nop-1 is light-dependent and that the ∆nop-1 strain abundantly expresses genes involved in oxidative stress response, genes enriched in NAD/NADP binding sites, genes with functions in proton transmembrane movement and catalase activity, and genes involved in the homeostasis of protons. Based on these observations, we contend that light and oxidative stress regulate the switch via light-responsive and ROS pathways in model fungus N. crassa and other fungi.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Junrui Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Program in Microbiology, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Zhang X, Gao Y, Yin Y, Cai M, Zhou X, Zhang Y. Regulation of different polyketide biosynthesis by green light in an endophytic fungus of mangrove leaf. 3 Biotech 2017; 7:363. [PMID: 29043115 DOI: 10.1007/s13205-017-0996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/23/2017] [Indexed: 12/15/2022] Open
Abstract
Light is an important environmental signal for many organisms. The light response reports of fungi usually focus on blue light and red light. Although the green light sensor has also been found in several fungi, the knowledge of the green light response in fungi is very limited. Halorosellinia sp. (No. 1403) is a light-sensitive endophytic fungus of mangrove leaf. In this study, we explored the specific effects of monochromatic blue light, red light, and green light on polyketides biosynthesis in Halorosellinia sp. (No. 1403), respectively. The major polyketides produced in Halorosellinia sp. (No. 1403) are octaketides (1403C and 1403R) and heptaketide (griseofulvin). All monochromatic light enhanced octaketide biosynthesis and inhibited heptaketide biosynthesis to some extent compared with the dark condition. Most prominently, the total production of octaketides was increased by 76%, and the production of heptaketide was decreased by 73% under green light in bioreactor. Therefore, green light can not only influence the secondary metabolism in fungi, but also it can influence different biosynthetic pathways in different ways. We speculate that the significant effect of green light on mangrove leaf endophytic fungus Halorosellinia sp. (No. 1403) may be a kind of environmental adaptation to plant photosynthesis.
Collapse
|
18
|
Avalos J, Pardo-Medina J, Parra-Rivero O, Ruger-Herreros M, Rodríguez-Ortiz R, Hornero-Méndez D, Limón MC. Carotenoid Biosynthesis in Fusarium. J Fungi (Basel) 2017; 3:E39. [PMID: 29371556 PMCID: PMC5715946 DOI: 10.3390/jof3030039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023] Open
Abstract
Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusariumaquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin's chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.
Collapse
Affiliation(s)
- Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Obdulia Parra-Rivero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Macarena Ruger-Herreros
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Roberto Rodríguez-Ortiz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
- Present Address: CONACYT-Instituto de Neurobiología-UNAM, Juriquilla, Querétaro 076230, Mexico.
| | - Dámaso Hornero-Méndez
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
19
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
20
|
Wang L, Dai Y, Chen W, Shao Y, Chen F. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9506-9514. [PMID: 27998068 DOI: 10.1021/acs.jafc.6b04056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light is a crucial environmental signal for fungi. In this work, the effects of different light intensities and colors on biomass, Monascus pigments (MPs) and citrinin production of Monascus ruber M7 were investigated. We have demonstrated that low intensity of blue light (500 lx) decreased Monascus biomass, increased MPs accumulation via upregulation of MpigA, MpigB, and MpigJ genes expression, but had no significant influence on citrinin production. High intensity of blue light (1500 lx) decreased citrinin accumulation but had no significant influence on biomass and MPs production after 14 days cultivation. Low intensity of green light (500 lx) stimulated citrinin production via upregulation of pksCT, mrl1, mrl2, and ctnA genes expression. One putative red light photoreceptor and two putative green light photoreceptors were identified in M. ruber M7. These observations will not only guide the practical production of Monascus but also contribute to our understanding light effects on Monascus.
Collapse
Affiliation(s)
- Liling Wang
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, Hubei Province, PR China
- College of Life Science, Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Tarim University , Alar 843300, Xinjiang, China
| | - Yang Dai
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, Hubei Province, PR China
| | - Wanping Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University , Ministry of Education, Wuhan 430070, Hubei Province, PR China
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, Hubei Province, PR China
| | - Yanchun Shao
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University , Ministry of Education, Wuhan 430070, Hubei Province, PR China
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, Hubei Province, PR China
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University , Ministry of Education, Wuhan 430070, Hubei Province, PR China
- National Key Laboratory of Agro-Microbiology, Huazhong Agricultural University , Wuhan 430070, Hubei Province, PR China
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, Hubei Province, PR China
| |
Collapse
|
21
|
Ahrazem O, Gómez-Gómez L, Rodrigo MJ, Avalos J, Limón MC. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int J Mol Sci 2016; 17:E1781. [PMID: 27792173 PMCID: PMC5133782 DOI: 10.3390/ijms17111781] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/17/2022] Open
Abstract
Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María J Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain.
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
22
|
Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J. The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response. Front Microbiol 2016; 6:1504. [PMID: 26779159 PMCID: PMC4703900 DOI: 10.3389/fmicb.2015.01504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022] Open
Abstract
Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are absent from the genomes of animals and most higher plants, indicating that sop1 is a potential drug target for disease control of S. sclerotiorum.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Cuicui Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
23
|
Díaz-Sánchez V, Limón MC, Schaub P, Al-Babili S, Avalos J. A RALDH-like enzyme involved in Fusarium verticillioides development. Fungal Genet Biol 2015; 86:20-32. [PMID: 26688466 DOI: 10.1016/j.fgb.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 01/30/2023]
Abstract
Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β-carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lackof CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.
Collapse
Affiliation(s)
- Violeta Díaz-Sánchez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - M Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Patrick Schaub
- Faculty of Biology, Albert-Ludwigs University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Salim Al-Babili
- Center for Desert Agriculture, BESE Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain.
| |
Collapse
|
24
|
García-Martínez J, Brunk M, Avalos J, Terpitz U. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 2015; 5:7798. [PMID: 25589426 PMCID: PMC4295100 DOI: 10.1038/srep07798] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 12/29/2022] Open
Abstract
Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO(-) mutant and carO(+) control strains showed a faster development of light-exposed carO(-) germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Michael Brunk
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, D-97074 Würzburg, Germany
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
25
|
Fuller KK, Loros JJ, Dunlap JC. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 2014; 61:275-88. [PMID: 25323429 DOI: 10.1007/s00294-014-0451-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA,
| | | | | |
Collapse
|
26
|
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that relay signals from the external environment inside the cell, allowing an organism to adapt to its surroundings. They are known to detect a vast array of ligands, including sugars, amino acids, pheromone peptides, nitrogen sources, oxylipins, and light. Despite their prevalence in fungal genomes, very little is known about the functions of filamentous fungal GPCRs. Here we present the first full-genome assessment of fungal GPCRs through characterization of null mutants of all 15 GPCRs encoded by the aflatoxin-producing fungus Aspergillus flavus. All strains were assessed for growth, development, ability to produce aflatoxin, and response to carbon sources, nitrogen sources, stress agents, and lipids. Most GPCR mutants were aberrant in one or more response processes, possibly indicative of cross talk in downstream signaling pathways. Interestingly, the biological defects of the mutants did not correspond with assignment to established GPCR classes; this is likely due to the paucity of data for characterized fungal GPCRs. Many of the GPCR transcripts were differentially regulated under various conditions as well. The data presented here provide an extensive overview of the full set of GPCRs encoded by A. flavus and provide a framework for analysis in other fungal species. Aspergillus flavus is an opportunistic pathogen of crops and animals, including humans, and it produces a carcinogenic toxin called aflatoxin. Because of this, A. flavus accounts for food shortages and economic losses in addition to sickness and death. Effective means of combating this pathogen are needed to mitigate its deleterious effects. G protein-coupled receptors (GPCRs) are often used as therapeutic targets due to their signal specificity, and it is estimated that half of all drugs target GPCRs. In fungi such as A. flavus, GPCRs are likely necessary for sensing the changes in the environment, including food sources, developmental signals, stress agents, and signals from other organisms. Therefore, elucidating their functions in A. flavus could identify ideal receptors against which to develop antagonists.
Collapse
|
27
|
Avalos J, Carmen Limón M. Biological roles of fungal carotenoids. Curr Genet 2014; 61:309-24. [PMID: 25284291 DOI: 10.1007/s00294-014-0454-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 01/28/2023]
Abstract
Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.
Collapse
Affiliation(s)
- Javier Avalos
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080, Seville, Spain,
| | | |
Collapse
|
28
|
Light-mediated participation of the VIVID-like protein of Fusarium fujikuroi VvdA in pigmentation and development. Fungal Genet Biol 2014; 71:9-20. [DOI: 10.1016/j.fgb.2014.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 01/24/2023]
|
29
|
|
30
|
The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme. EUKARYOTIC CELL 2013; 12:1305-14. [PMID: 23893079 DOI: 10.1128/ec.00084-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.
Collapse
|
31
|
Rodríguez-Ortiz R, Limón MC, Avalos J. Functional analysis of the carS gene of Fusarium
fujikuroi. Mol Genet Genomics 2013; 288:157-73. [DOI: 10.1007/s00438-013-0739-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/11/2013] [Indexed: 12/27/2022]
|
32
|
Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 2013; 79:2777-88. [PMID: 23417004 DOI: 10.1128/aem.03110-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DASH (Drosophila, Arabidopsis, Synechocystis, human) cryptochromes (cry-DASHs) constitute a subgroup of the photolyase cryptochrome family with diverse light-sensing roles, found in most taxonomical groups. The genome of Fusarium fujikuroi, a phytopathogenic fungus with a rich secondary metabolism, contains a gene encoding a putative cry-DASH, named CryD. The expression of the cryD gene is induced by light in the wild type, but not in mutants of the "white collar" gene wcoA. Targeted ΔcryD mutants show light-dependent phenotypic alterations, including changes in morphology and pigmentation, which disappear upon reintroduction of a wild-type cryD allele. In addition to microconidia, the colonies of the ΔcryD mutants produced under illumination and nitrogen starvation large septated spores called macroconidia, absent in wild-type colonies. The ΔcryD mutants accumulated similar amounts of carotenoids to the control strain under constant illumination, but produced much larger amounts of bikaverin under nitrogen starvation, indicating a repressing role for CryD in this biosynthetic pathway. Additionally, a moderate photoinduction of gibberellin production was exhibited by the wild type but not by the ΔcryD mutants. The phenotypic alterations of the ΔcryD mutants were only noticeable in the light, as expected from the low expression of cryD in the dark, but did not correlate with mRNA levels for structural genes of the bikaverin or gibberellin biosynthetic pathways, suggesting the participation of CryD in posttranscriptional regulatory mechanisms. This is the first report on the participation of a cry-DASH protein in the regulation of fungal secondary metabolism.
Collapse
|
33
|
Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 2012; 78:7258-66. [PMID: 22865073 DOI: 10.1128/aem.01552-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus Fusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other Fusarium strains, we have identified the F. fujikuroi orthologue, called fusA. The participation of fusA in fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the fusA mRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the fusA gene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, the fusA mutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions in Fusarium oxysporum. The fusA mutants, however, are not affected in their capacities to grow on plant tissues.
Collapse
|
34
|
Heller J, Ruhnke N, Espino JJ, Massaroli M, Collado IG, Tudzynski P. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:802-16. [PMID: 22352714 DOI: 10.1094/mpmi-11-11-0299] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) BcSak1 of Botrytis cinerea is activated upon exposure to H(2)O(2) and, hence, might be involved in coping with oxidative stress during infection. However, beside osmotic and oxidative stress sensitivity, Δbcsak1 mutants have a pleiotropic phenotype, as they do not produce conidia and are unable to penetrate unwounded host tissue. In this study, the role of BcSak1 was investigated in the stress response and during infection of French beans by Botrytis cinerea. Using a macroarray approach, it was shown that BcSak1 is only marginally involved in the specific oxidative stress response. In fact, the induction of several genes after oxidative stress treatment is BcSak1-dependent, but most of these genes are also induced under conditions of osmotic stress. The majority of genes regulated by BcSak1 are not involved in the stress response at all. Using a translational fusion of BcSak1 to green fluorescent protein, it was shown clearly that the localization of this MAPK depends on the type of stress being applied; it associates rapidly to the nucleus only under osmotic stress. Therefore, a model is proposed in which BcSak1 acts in the cytosol by activation of one or more transcription factors under oxidative stress and, at the same time, it reacts to osmotic stress by migrating to the nucleus. Interestingly, the MAPK is also involved in the regulation of secondary metabolism, as the major phytotoxins secreted by this fungus are reduced in the Δbcsak1 deletion mutant. Experiments done in planta underlined the essential role of BcSak1 in the early stages of infection, when it translocates to the nucleus and then changes to cytosolic distribution during hyphal growth within the tissue.
Collapse
Affiliation(s)
- Jens Heller
- Institut fuer Biologie und Biotechnologie def Pflanzen, Westf. Wilhelms-Universitaet, Muenster, Germany
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J. The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J 2011; 278:3164-76. [PMID: 21749649 DOI: 10.1111/j.1742-4658.2011.08242.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurosporaxanthin (β-apo-4'-carotenoic acid) biosynthesis has been studied in detail in the fungus Fusarium fujikuroi. The genes and enzymes for this biosynthetic pathway are known until the last enzymatic step, the oxidation of the aldehyde group of its precursor, β-apo-4'-carotenal. On the basis of sequence homology to Neurospora crassa YLO-1, which mediates the formation of apo-4'-lycopenoic acid from the corresponding aldehyde substrate, we cloned the carD gene of F. fujikuroi and investigated the activity of the encoded enzyme. In vitro assays performed with heterologously expressed protein showed the formation of neurosporaxanthin and other apocarotenoid acids from the corresponding apocarotenals. To confirm this function in vivo, we generated an Escherichia coli strain producing β-apo-4'-carotenal, which was converted into neurosporaxanthin upon expression of carD. Moreover, the carD function was substantiated by its targeted disruption in a F. fujikuroi carotenoid-overproducing strain, which resulted in the loss of neurosporaxanthin and the accumulation of β-apo-4'-carotenal, its derivative β-apo-4'-carotenol, and minor amounts of other carotenoids. Intermediates accumulated in the ΔcarD mutant suggest that the reactions leading to neurosporaxanthin in Neurospora and Fusarium are different in their order. In contrast to ylo-1 in N. crassa, carD mRNA content is enhanced by light, but to a lesser extent than other enzymatic genes of the F. fujikuroi carotenoid pathway. Furthermore, carD mRNA levels were higher in carotenoid-overproducing mutants, supporting a functional role for CarD in F. fujikuroi carotenogenesis. With the genetic and biochemical characterization of CarD, the whole neurosporaxanthin biosynthetic pathway of F. fujikuroi has been established.
Collapse
Affiliation(s)
- Violeta Díaz-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | |
Collapse
|
37
|
Fan Y, Solomon P, Oliver RP, Brown LS. Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1457-66. [PMID: 21791197 DOI: 10.1016/j.bbabio.2011.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/09/2023]
Abstract
Eukaryotic microbial rhodopsins are widespread bacteriorhodopsin-like proteins found in many lower eukaryotic groups including fungi. Many fungi contain multiple rhodopsins, some significantly diverged from the original bacteriorhodopsin template. Although few fungal rhodopsins have been studied biophysically, both fast-cycling light-driven proton pumps and slow-cycling photosensors have been found. The purpose of this study was to characterize photochemically a new subgroup of fungal rhodopsins, the so-called auxiliary group. The study used the two known rhodopsin genes from the fungal wheat pathogen, Phaeosphaeria nodorum. One of the genes is a member of the auxiliary group while the other is highly similar to previously characterized proton-pumping Leptosphaeria rhodopsin. Auxiliary rhodopsin genes from a range of species form a distinct group with a unique primary structure and are located in carotenoid biosynthesis gene cluster. Amino acid conservation pattern suggests that auxiliary rhodopsins retain the transmembrane core of bacteriorhodopsins, including all residues important for proton transport, but have unique polar intramembrane residues. Spectroscopic characterization of the two yeast-expressed Phaeosphaeria rhodopsins showed many similarities: absorption spectra, conformation of the retinal chromophore, fast photocycling, and carboxylic acid protonation changes. It is likely that both Phaeosphaeria rhodopsins are proton-pumping, at least in vitro. We suggest that auxiliary rhodopsins have separated from their ancestors fairly recently and have acquired the ability to interact with as yet unidentified transducers, performing a photosensory function without changing their spectral properties and basic photochemistry.
Collapse
Affiliation(s)
- Ying Fan
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | |
Collapse
|
38
|
Miao L, Chi S, Tang Y, Su Z, Yin T, Guan G, Li Y. Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain. FEMS Yeast Res 2010; 11:192-201. [PMID: 21155970 DOI: 10.1111/j.1567-1364.2010.00705.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An astaxanthin-overproducing (∼1000 μg g(-1)) strain of Phaffia rhodozyma, termed MK19, was established through 1-methyl-3-nitro-1-nitrosoguanidine and Co60 mutagenesis from wild-type JCM9042 (merely 35-67 μg g(-1)). The total fatty acid content of MK19 was much lower than that of the wild type. Possible causes of the astaxanthin increase were studied at the gene expression level. The expression of the carotenogenic genes crtE, crtI, pbs, and ast, which are responsible for astaxanthin biosynthesis from geranylgeranyl pyrophosphate, was highly induced at the mRNA level, leading to excessive astaxanthin accumulation. In contrast, transcription levels of the genes (hmgs, hmgr, idi, mvk, mpd, fps), responsible for the initial steps in the terpenoid pathway, were essentially the same in wild type and MK19. Although fatty acid and total ergosterol content were reduced by 40-70 mg g(-1) and 760.3 μg g(-1) , respectively, in MK19 as compared with the wild type, but the transcription levels of rate-limiting genes in fatty acid and ergosterol pathways such as acc and sqs were similar. Because fatty acids and ergosterol are two branch pathways of astaxanthin biosynthesis in P. rhodozyma, our findings indicate that enhancement of astaxanthin in MK19 results from decreased fatty acid and ergosterol biosynthesis, leading to precursor accumulation, and transfer to the astaxanthin pathway. Strengthening of the mevalonate pathway is suggested as a promising metabolic engineering approach for further astaxanthin enhancement in MK19.
Collapse
Affiliation(s)
- Lili Miao
- State Key Laboratories for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 2010; 64:585-610. [PMID: 20533875 DOI: 10.1146/annurev.micro.112408.134000] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light is one of the most important environmental factors for orientation of almost all organisms on Earth. Whereas light sensing is of crucial importance in plants to optimize light-dependent energy conservation, in nonphotosynthetic organisms, the synchronization of biological clocks to the length of a day is an important function. Filamentous fungi may use the light signal as an indicator for the exposure of hyphae to air and adapt their physiology to this situation or induce morphogenetic pathways. Although a yes/no decision appears to be sufficient for the light-sensing function in fungi, most species apply a number of different, wavelength-specific receptors. The core of all receptor types is a chromophore, a low-molecular-weight organic molecule, such as flavin, retinal, or linear tetrapyrrols for blue-, green-, or red-light sensing, respectively. Whereas the blue-light response in fungi is one of the best-studied light responses, all other light-sensing mechanisms are less well studied or largely unknown. The discovery of phytochrome in bacteria and fungi in recent years not only advanced the scientific field significantly, but also had great impact on our view of the evolution of phytochrome-like photoreceptors.
Collapse
Affiliation(s)
- Julio Rodriguez-Romero
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Microbiology, D-76187 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
40
|
Avalos J, Estrada AF. Regulation by light in Fusarium. Fungal Genet Biol 2010; 47:930-8. [PMID: 20460165 DOI: 10.1016/j.fgb.2010.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 01/05/2023]
Abstract
The genus Fusarium stands out as research model for pathogenesis and secondary metabolism. Light stimulates the production of some Fusarium metabolites, such as the carotenoids, and in many species it influences the production of asexual spores and sexual fruiting bodies. As found in other fungi with well-known photoresponses, the Fusarium genomes contain several genes for photoreceptors, among them a set of White Collar (WC) proteins, a cryptochrome, a photolyase, a phytochrome and two presumably photoactive opsins. The mutation of the opsin genes produced no apparent phenotypic alterations, but the loss of the only WC-1 orthologous protein eliminated the photoinduced expression of the photolyase and opsin genes. In contrast to other carotenogenic species, lack of the WC photoreceptor did not impede the light-induced accumulation of carotenoids, but produced alterations in conidiation, animal pathogenicity and nitrogen-regulated secondary metabolism. The regulation and functional role of other Fusarium photoreceptors is currently under investigation.
Collapse
Affiliation(s)
- Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41080 Seville, Spain.
| | | |
Collapse
|
41
|
Idnurm A, Verma S, Corrochano LM. A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 2010; 47:881-92. [PMID: 20451644 DOI: 10.1016/j.fgb.2010.04.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 12/21/2022]
Abstract
Virtually all organisms exposed to light are capable of sensing this environmental signal. In recent years the photoreceptors that mediate the ability of fungi to "see" have been identified in diverse species, and increasingly characterized. The small sizes of fungal genomes and ease in genetic and molecular biology manipulations make this kingdom ideal amongst the eukaryotes for understanding photosensing. The most widespread and conserved photosensory protein in the fungi is White collar 1 (WC-1), a flavin-binding photoreceptor that functions with WC-2 as a transcription factor complex. Other photosensory proteins in fungi include opsins, phytochromes and cryptochromes whose roles in fungal photobiology are not fully resolved and their distribution in the fungi requires further taxon sampling. Additional unknown photoreceptors await discovery. This review discusses the effects of light on fungi and the evolutionary processes that may have shaped the ability of species to sense and respond to this signal.
Collapse
Affiliation(s)
- Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
42
|
Bikaverin production and applications. Appl Microbiol Biotechnol 2010; 87:21-9. [PMID: 20376635 DOI: 10.1007/s00253-010-2551-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 12/25/2022]
Abstract
Bikaverin is a reddish pigment produced by different fungal species, most of them from the genus Fusarium, with antibiotic properties against certain protozoa and fungi. Chemically, bikaverin is a polyketide with a tetracyclic benzoxanthone structure, resulting from the activity of a specific class I multifunctional polyketide synthase and subsequent group modifications introduced by a monooxygenase and an O-methyltransferase. In some fungi, bikaverin is found with smaller amounts of a precursor molecule, called norbikaverin. Production of these metabolites by different fungal species depends on culture conditions, but it is mainly affected by nitrogen availability and pH. Regulation of the pathway has been investigated in special detail in the gibberellin-producing fungus Fusarium fujikuroi, whose genes and enzymes responsible for bikaverin production have been recently characterized. In this fungus, the synthesis is induced by nitrogen starvation and acidic pH, and it is favored by other factors, such as aeration, sulfate and phosphate starvation, or sucrose availability. Some of these inducing agents increase mRNA levels of the enzymatic genes, organized in a coregulated cluster. The biological properties of bikaverin include antitumoral activity against different cancer cell lines. The diverse biological activities and the increasing information on the biochemical and genetic basis of its production make bikaverin a metabolite of increasing biotechnological interest.
Collapse
|