1
|
Duran-Urriago A, Marzen S. Not so optimal: The evolution of mutual information in potassium voltage-gated channels. PLoS One 2023; 18:e0264424. [PMID: 36735679 PMCID: PMC9897580 DOI: 10.1371/journal.pone.0264424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Potassium voltage-gated (Kv) channels need to detect and respond to rapidly changing ionic concentrations in their environment. With an essential role in regulating electric signaling, they would be expected to be optimal sensors that evolved to predict the ionic concentrations. To explore these assumptions, we use statistical mechanics in conjunction with information theory to model how animal Kv channels respond to changes in potassium concentrations in their environment. By measuring mutual information in representative Kv channel types across a variety of environments, we find two things. First, under weak conditions, there is a gating charge that maximizes mutual information with the environment. Second, as Kv channels evolved, they have moved towards decreasing mutual information with the environment. This either suggests that Kv channels do not need to act as sensors of their environment or that Kv channels have other functionalities that interfere with their role as sensors of their environment.
Collapse
Affiliation(s)
| | - Sarah Marzen
- W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna Colleges, Claremont, CA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
3
|
Chen AY, Brooks BR, Damjanovic A. Determinants of conductance of a bacterial voltage-gated sodium channel. Biophys J 2021; 120:3050-3069. [PMID: 34214541 DOI: 10.1016/j.bpj.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
Through molecular dynamics (MD) and free energy simulations in electric fields, we examine the factors influencing conductance of bacterial voltage-gated sodium channel NavMs. The channel utilizes four glutamic acid residues in the selectivity filter (SF). Previously, we have shown, through constant pH and free energy calculations of pKa values, that fully deprotonated, singly protonated, and doubly protonated states are all feasible at physiological pH, depending on how many ions are bound in the SF. With 173 MD simulations of 450 or 500 ns and additional free energy simulations, we determine that the conductance is highest for the deprotonated state and decreases with each additional proton bound. We also determine that the pKa value of the four glutamic residues for the transition between deprotonated and singly protonated states is close to the physiological pH and that there is a small voltage dependence. The pKa value and conductance trends are in agreement with experimental work on bacterial Nav channels, which show a decrease in maximal conductance with lowering of pH, with pKa in the physiological range. We examine binding sites for Na+ in the SF, compare with previous work, and note a dependence on starting structures. We find that narrowing of the gate backbone to values lower than the crystal structure's backbone radius reduces the conductance, whereas increasing the gate radius further does not affect the conductance. Simulations with some amount of negatively charged lipids as opposed to purely neutral lipids increases the conductance, as do simulations at higher voltages.
Collapse
Affiliation(s)
- Ada Y Chen
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland; Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ana Damjanovic
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
4
|
Matsumura K, Yokogawa M, Osawa M. Peptide Toxins Targeting KV Channels. Handb Exp Pharmacol 2021; 267:481-505. [PMID: 34117930 DOI: 10.1007/164_2021_500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A number of peptide toxins isolated from animals target potassium ion (K+) channels. Many of them are particularly known to inhibit voltage-gated K+ (KV) channels and are mainly classified into pore-blocking toxins or gating-modifier toxins. Pore-blocking toxins directly bind to the ion permeation pores of KV channels, thereby physically occluding them. In contrast, gating-modifier toxins bind to the voltage-sensor domains of KV channels, modulating their voltage-dependent conformational changes. These peptide toxins are useful molecular tools in revealing the structure-function relationship of KV channels and have potential for novel treatments for diseases related to KV channels. This review focuses on the inhibition mechanism of pore-blocking and gating-modifier toxins that target KV channels.
Collapse
Affiliation(s)
- Kazuki Matsumura
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
5
|
Fortea E, Accardi A. A quantitative flux assay for the study of reconstituted Cl - channels and transporters. Methods Enzymol 2021; 652:243-272. [PMID: 34059284 DOI: 10.1016/bs.mie.2021.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The recent deluge of high-resolution structural information on membrane proteins has not been accompanied by a comparable increase in our ability to functionally interrogate these proteins. Current functional assays often are not quantitative or are performed in conditions that significantly differ from those used in structural experiments, thus limiting the mechanistic correspondence between structural and functional experiments. A flux assay to determine quantitatively the functional properties of purified and reconstituted Cl- channels and transporters in membranes of defined lipid compositions is described. An ion-sensitive electrode is used to measure the rate of Cl- efflux from proteoliposomes reconstituted with the desired protein and the fraction of vesicles containing at least one active protein. These measurements enable the quantitative determination of key molecular parameters such as the unitary transport rate, the fraction of proteins that are active, and the molecular mass of the transport protein complex. The approach is illustrated using CLC-ec1, a CLC-type H+/Cl- exchanger as an example. The assay enables the quantitative study of a wide range of Cl- transporting molecules and proteins whose activity is modulated by ligands, voltage, and membrane composition as well as the investigation of the effects of compounds that directly inhibit or activate the reconstituted transport systems. The present assay is readily adapted to the study of transport systems with diverse substrate specificities and molecular characteristics, and the necessary modifications needed are discussed.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States; Department of Biochemistry, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
6
|
Zubcevic L. TRP Channels, Conformational Flexibility, and the Lipid Membrane. J Membr Biol 2020; 253:299-308. [DOI: 10.1007/s00232-020-00127-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
7
|
Tao X, MacKinnon R. Molecular structures of the human Slo1 K + channel in complex with β4. eLife 2019; 8:51409. [PMID: 31815672 PMCID: PMC6934384 DOI: 10.7554/elife.51409] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Slo1 is a Ca2+- and voltage-activated K+ channel that underlies skeletal and smooth muscle contraction, audition, hormone secretion and neurotransmitter release. In mammals, Slo1 is regulated by auxiliary proteins that confer tissue-specific gating and pharmacological properties. This study presents cryo-EM structures of Slo1 in complex with the auxiliary protein, β4. Four β4, each containing two transmembrane helices, encircle Slo1, contacting it through helical interactions inside the membrane. On the extracellular side, β4 forms a tetrameric crown over the pore. Structures with high and low Ca2+ concentrations show that identical gating conformations occur in the absence and presence of β4, implying that β4 serves to modulate the relative stabilities of 'pre-existing' conformations rather than creating new ones. The effects of β4 on scorpion toxin inhibition kinetics are explained by the crown, which constrains access but does not prevent binding.
Collapse
Affiliation(s)
- Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, New York, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
8
|
Tao X, MacKinnon R. Cryo-EM structure of the KvAP channel reveals a non-domain-swapped voltage sensor topology. eLife 2019; 8:e52164. [PMID: 31755864 PMCID: PMC6882556 DOI: 10.7554/elife.52164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Conductance in voltage-gated ion channels is regulated by membrane voltage through structural domains known as voltage sensors. A single structural class of voltage sensor domain exists, but two different modes of voltage sensor attachment to the pore occur in nature: domain-swapped and non-domain-swapped. Since the more thoroughly studied Kv1-7, Nav and Cav channels have domain-swapped voltage sensors, much less is known about non-domain-swapped voltage-gated ion channels. In this paper, using cryo-EM, we show that KvAP from Aeropyrum pernix has non-domain-swapped voltage sensors as well as other unusual features. The new structure, together with previous functional data, suggests that KvAP and the Shaker channel, to which KvAP is most often compared, probably undergo rather different voltage-dependent conformational changes when they open.
Collapse
Affiliation(s)
- Xiao Tao
- Laboratory of Molecular Neurobiology and BiophysicsThe Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and BiophysicsThe Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
9
|
Tronin AY, Maciunas LJ, Grasty KC, Loll PJ, Ambaye HA, Parizzi AA, Lauter V, Geragotelis AD, Freites JA, Tobias DJ, Blasie JK. Voltage-Dependent Profile Structures of a Kv-Channel via Time-Resolved Neutron Interferometry. Biophys J 2019; 117:751-766. [PMID: 31378315 PMCID: PMC6712512 DOI: 10.1016/j.bpj.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
Abstract
Available experimental techniques cannot determine high-resolution three-dimensional structures of membrane proteins under a transmembrane voltage. Hence, the mechanism by which voltage-gated cation channels couple conformational changes within the four voltage sensor domains, in response to either depolarizing or polarizing transmembrane voltages, to opening or closing of the pore domain's ion channel remains unresolved. Single-membrane specimens, composed of a phospholipid bilayer containing a vectorially oriented voltage-gated K+ channel protein at high in-plane density tethered to the surface of an inorganic multilayer substrate, were developed to allow the application of transmembrane voltages in an electrochemical cell. Time-resolved neutron reflectivity experiments, enhanced by interferometry enabled by the multilayer substrate, were employed to provide directly the low-resolution profile structures of the membrane containing the vectorially oriented voltage-gated K+ channel for the activated, open and deactivated, closed states of the channel under depolarizing and hyperpolarizing transmembrane voltages applied cyclically. The profile structures of these single membranes were dominated by the voltage-gated K+ channel protein because of the high in-plane density. Importantly, the use of neutrons allowed the determination of the voltage-dependent changes in both the profile structure of the membrane and the distribution of water within the profile structure. These two key experimental results were then compared to those predicted by three computational modeling approaches for the activated, open and deactivated, closed states of three different voltage-gated K+ channels in hydrated phospholipid bilayer membrane environments. Of the three modeling approaches investigated, only one state-of-the-art molecular dynamics simulation that directly predicted the response of a voltage-gated K+ channel within a phospholipid bilayer membrane to applied transmembrane voltages by utilizing very long trajectories was found to be in agreement with the two key experimental results provided by the time-resolved neutron interferometry experiments.
Collapse
Affiliation(s)
- Andrey Y Tronin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lina J Maciunas
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kimberly C Grasty
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Haile A Ambaye
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Andre A Parizzi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Valeria Lauter
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - J Alfredo Freites
- Department of Chemistry, University of California Irvine, Irvine, California
| | - Douglas J Tobias
- Department of Chemistry, University of California Irvine, Irvine, California
| | - J Kent Blasie
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
McDonald SK, Levitz TS, Valiyaveetil FI. A Shared Mechanism for the Folding of Voltage-Gated K + Channels. Biochemistry 2019; 58:1660-1671. [PMID: 30793887 DOI: 10.1021/acs.biochem.9b00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we probe the folding of KvAP, a voltage-gated K+ (Kv) channel. The KvAP channel, though of archaebacterial origin, is structurally and functionally similar to eukaryotic Kv channels. An advantage of the KvAP channel is that it can be folded in vitro from an extensively unfolded state and the folding can be controlled by temperature. We utilize these properties of the KvAP channel to separately study the membrane insertion and the tetramerization stages during folding. We use two quantitative assays: a Cys PEGylation assay to monitor membrane insertion and a cross-linking assay to monitor tetramerization. We show that during folding the KvAP polypeptide is rapidly inserted into the lipid bilayer with a "native-like" topology. We identify a segment at the C-terminus that is important for multimerization of the KvAP channel. We show that this C-terminal domain forms a dimer, which raises the possibility that the tetramerization of the KvAP channel proceeds through a dimer of dimers pathway. Our studies show that the in vitro folding of the KvAP channel mirrors aspects of the cellular assembly pathway for voltage-gated K+ channels and therefore suggest that evolutionarily distinct Kv channels share a common folding pathway. The pathway for the folding and assembly of a Kv channel is of central importance as defects in this pathway have been implicated in the etiology of several disease states. Our studies indicate that the KvAP channel provides an experimentally tractable system for elucidating the folding mechanism of Kv channels.
Collapse
Affiliation(s)
- Sarah K McDonald
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Talya S Levitz
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| |
Collapse
|
11
|
Zhang XC, Li H. Interplay between the electrostatic membrane potential and conformational changes in membrane proteins. Protein Sci 2019; 28:502-512. [PMID: 30549351 DOI: 10.1002/pro.3563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
Transmembrane electrostatic membrane potential is a major energy source of the cell. Importantly, it determines the structure as well as function of charge-carrying membrane proteins. Here, we discuss the relationship between membrane potential and membrane proteins, in particular whether the conformation of these proteins is integrally connected to the membrane potential. Together, these concepts provide a framework for rationalizing the types of conformational changes that have been observed in membrane proteins and for better understanding the electrostatic effects of the membrane potential on both reversible as well as unidirectional dynamic processes of membrane proteins.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Vasquez HG, Zocchi G. Analog control with two Artificial Axons. BIOINSPIRATION & BIOMIMETICS 2018; 14:016017. [PMID: 30523907 DOI: 10.1088/1748-3190/aaf123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The artificial axon is a recently introduced synthetic assembly of supported lipid bilayers and voltage gated ion channels, displaying the basic electrophysiology of nerve cells. Here we demonstrate the use of two artificial axons as control elements to achieve a simple task. Namely, we steer a remote control car towards a light source, using the sensory input dependent firing rate of the axons as the control signal for turning left or right. We present the result in the form of the analysis of a movie of the car approaching the light source. In general terms, with this work we pursue a constructivist approach to exploring the nexus between machine language at the nerve cell level and behavior.
Collapse
Affiliation(s)
- Hector G Vasquez
- Department of Physics and Astronomy, University of California, Los Angeles, CA, United States of America
| | | |
Collapse
|
13
|
Abstract
Ion channels are essential for cellular signaling. Voltage-gated ion channels (VGICs) are the largest and most extensively studied superfamily of ion channels. They possess modular structural features such as voltage-sensing domains that encircle and form mechanical connections with the pore-forming domains. Such features are intimately related to their function in sensing and responding to changes in the membrane potential. In the present work, we discuss the thermodynamic mechanisms of the VGIC superfamily, including the two-state gating mechanism, sliding-rocking mechanism of the voltage sensor, subunit cooperation, lipid-infiltration mechanism of inactivation, and the relationship with their structural features.
Collapse
|
14
|
Time-Resolved Neutron Interferometry and the Mechanism of Electromechanical Coupling in Voltage-Gated Ion Channels. Methods Enzymol 2018. [PMID: 29673535 DOI: 10.1016/bs.mie.2018.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mechanism of electromechanical coupling for voltage-gated ion channels (VGICs) involved in neurological signal transmission, primarily Nav- and Kv-channels, remains unresolved. Anesthetics have been shown to directly impact this mechanism, at least for Kv-channels. Molecular dynamics computer simulations can now predict the structures of VGICs embedded within a hydrated phospholipid bilayer membrane as a function of the applied transmembrane voltage, but significant assumptions are still necessary. Nevertheless, these simulations are providing new insights into the mechanism of electromechanical coupling at the atomic level in 3-D. We show that time-resolved neutron interferometry can be used to investigate directly the profile structure of a VGIC, vectorially oriented within a single hydrated phospholipid bilayer membrane at the solid-liquid interface, as a function of the applied transmembrane voltage in the absence of any assumptions or potentially perturbing modifications of the VGIC protein and/or the host membrane. The profile structure is a projection of the membrane's 3-D structure onto the membrane normal and, in the absence of site-directed deuterium labeling, is provided at substantially lower spatial resolution than the atomic level. Nevertheless, this novel approach can be used to directly test the validity of the predictions from molecular dynamics simulations. We describe the key elements of our novel experimental approach, including why each is necessary and important to providing the essential information required for this critical comparison of "simulation" vs "experiment." In principle, the approach could be extended to higher spatial resolution and to include the effects of anesthetics on the electromechanical coupling mechanism in VGICs.
Collapse
|
15
|
Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel. Sci Rep 2016; 6:37303. [PMID: 27853286 PMCID: PMC5112519 DOI: 10.1038/srep37303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022] Open
Abstract
Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.
Collapse
|
16
|
Lau CHY, King GF, Mobli M. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels. Sci Rep 2016; 6:34333. [PMID: 27677715 PMCID: PMC5039624 DOI: 10.1038/srep34333] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023] Open
Abstract
Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating, and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.
Collapse
Affiliation(s)
- Carus H Y Lau
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
18
|
Vijayvergiya V, Acharya S, Poulos J, Schmidt J. Single channel and ensemble hERG conductance measured in droplet bilayers. Biomed Microdevices 2015; 17:12. [PMID: 25653065 DOI: 10.1007/s10544-014-9919-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The human ether-a-go-go related gene (hERG) encodes the potassium channel Kv11.1, which plays a key role in the cardiac action potential and has been implicated in cardiac disorders as well as a number of off-target pharmaceutical interactions. The electrophysiology of this channel has been predominantly studied using patch clamp, but lipid bilayers have the potential to offer some advantages, including apparatus simplicity, ease of use, and the ability to control the membrane and solution compositions. We made membrane preparations from hERG-expressing cells and measured them using droplet bilayers, allowing measurement of channel ensemble currents and 13.5 pS single channel currents. These currents were ion selective and were blockable by E-4031 and dofetilide in a dose-dependent manner, allowing determination of IC50 values of 17 nM and 9.65 μM for E-4031 and dofetilide, respectively. We also observed time- and voltage- dependent currents following step changes in applied potential that were similar to previously reported patch clamp measurements.
Collapse
Affiliation(s)
- Viksita Vijayvergiya
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
19
|
Ozawa SI, Kimura T, Nozaki T, Harada H, Shimada I, Osawa M. Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin. Sci Rep 2015; 5:14226. [PMID: 26382304 PMCID: PMC4585561 DOI: 10.1038/srep14226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/20/2015] [Indexed: 01/24/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels play crucial roles in nerve and muscle action potentials. Voltage-sensing domains (VSDs) of Kv channels sense changes in the transmembrane potential, regulating the K+-permeability across the membrane. Gating modifier toxins, which have been used for the functional analyses of Kv channels, inhibit Kv channels by binding to VSD. However, the structural basis for the inhibition remains elusive. Here, fluorescence and NMR analyses of the interaction between VSD derived from KvAP channel and its gating modifier toxin, VSTx1, indicate that VSTx1 recognizes VSD under depolarized condition. We identified the VSD-binding residues of VSTx1 and their proximal residues of VSD by the cross-saturation (CS) and amino acid selective CS experiments, which enabled to build a docking model of the complex. These results provide structural basis for the specific binding and inhibition of Kv channels by gating modifier toxins.
Collapse
Affiliation(s)
- Shin-ichiro Ozawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomomi Kimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Nozaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitomi Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
20
|
Kitjaruwankul S, Boonamnaj P, Fuklang S, Supunyabut C, Sompornpisut P. Shaping the Water Crevice To Accommodate the Voltage Sensor in a Down Conformation: A Molecular Dynamics Simulation Study. J Phys Chem B 2015; 119:6516-24. [DOI: 10.1021/acs.jpcb.5b00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunan Kitjaruwankul
- Graduate
School of Nanoscience and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panisak Boonamnaj
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunit Fuklang
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chirayut Supunyabut
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornthep Sompornpisut
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015; 467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037, Marburg, Germany
| | | | | |
Collapse
|
22
|
Perry MD, Wong S, Ng CA, Vandenberg JI. Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels. ACTA ACUST UNITED AC 2014; 142:275-88. [PMID: 23980196 PMCID: PMC3753607 DOI: 10.1085/jgp.201310975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kv11.1 channels are critical for the maintenance of a normal heart rhythm. The flow of potassium ions through these channels is controlled by two voltage-regulated gates, termed "activation" and "inactivation," located at opposite ends of the pore. Crucially in Kv11.1 channels, inactivation gating occurs much more rapidly, and over a distinct range of voltages, compared with activation gating. Although it is clear that the fourth transmembrane segments (S4), within each subunit of the tetrameric channel, are important for controlling the opening and closing of the activation gate, their role during inactivation gating is much less clear. Here, we use rate equilibrium free energy relationship (REFER) analysis to probe the contribution of the S4 "voltage-sensor" helix during inactivation of Kv11.1 channels. Contrary to the important role that charged residues play during activation gating, it is the hydrophobic residues (Leu529, Leu530, Leu532, and Val535) that are the key molecular determinants of inactivation gating. Within the context of an interconnected multi-domain model of Kv11.1 inactivation gating, our REFER analysis indicates that the S4 helix and the S4-S5 linker undergo a conformational rearrangement shortly after that of the S5 helix and S5P linker, but before the S6 helix. Combining REFER analysis with double mutant cycle analysis, we provide evidence for a hydrophobic interaction between residues on the S4 and S5 helices. Based on a Kv11.1 channel homology model, we propose that this hydrophobic interaction forms the basis of an intersubunit coupling between the voltage sensor and pore domain that is an important mediator of inactivation gating.
Collapse
Affiliation(s)
- Matthew D Perry
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | | | | | | |
Collapse
|
23
|
Tronin A, Nordgren CE, Strzalka JW, Kuzmenko I, Worcester DL, Lauter V, Freites JA, Tobias DJ, Blasie JK. Direct evidence of conformational changes associated with voltage gating in a voltage sensor protein by time-resolved X-ray/neutron interferometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4784-4796. [PMID: 24697545 PMCID: PMC4007984 DOI: 10.1021/la500560w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 06/03/2023]
Abstract
The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na(+), K(+)) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD's profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD's atomic-level 3-D structure.
Collapse
Affiliation(s)
- Andrey
Y. Tronin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - C. Erik Nordgren
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph W. Strzalka
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ivan Kuzmenko
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - David L. Worcester
- Department
of Physiology & Biophysics, University
of California Irvine, Irvine, California 92697, United States
| | - Valeria Lauter
- Spallation
Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - J. Alfredo Freites
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Douglas J. Tobias
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - J. Kent Blasie
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Faure É, Thompson C, Blunck R. Do lipids show state-dependent affinity to the voltage-gated potassium channel KvAP? J Biol Chem 2014; 289:16452-61. [PMID: 24742679 DOI: 10.1074/jbc.m113.537134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As all integral membrane proteins, voltage-gated ion channels are embedded in a lipid matrix that regulates their channel behavior either by physicochemical properties or by direct binding. Because manipulation of the lipid composition in cells is difficult, we investigated the influence of different lipids on purified KvAP channels reconstituted in planar lipid bilayers of known composition. Lipids developed two distinct and independent effects on the KvAP channels; lipids interacting with the pore lowered the energy barriers for the final transitions, whereas voltage sensor-bound lipids shifted the midpoint of activation dependent on their electrostatic charge. Above all, the midpoint of activation was determined only by those lipids the channels came in contact with first after purification and can seemingly only be exchanged if the channel resides in the open state. The high affinity of the bound lipids to the binding site has implications not only on our understanding of the gating mechanism but also on the general experimental design of any lipid dependence study.
Collapse
Affiliation(s)
- Élise Faure
- Groupe d'étude des protéines membranaires (GÉPROM), Université de Montréal, Montréal CH3C 3J7, Canada Physiology
| | - Christine Thompson
- Groupe d'étude des protéines membranaires (GÉPROM), Université de Montréal, Montréal CH3C 3J7, CanadaFrom the Departments of Physics and
| | - Rikard Blunck
- Groupe d'étude des protéines membranaires (GÉPROM), Université de Montréal, Montréal CH3C 3J7, Canada Physiology, From the Departments of Physics and
| |
Collapse
|
25
|
Syeda R, Santos JS, Montal M. Lipid bilayer modules as determinants of K+ channel gating. J Biol Chem 2013; 289:4233-43. [PMID: 24362039 DOI: 10.1074/jbc.m113.530055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The crystal structure of the sensorless pore module of a voltage-gated K(+) (Kv) channel showed that lipids occupy a crevice between subunits. We asked if individual lipid monolayers of the bilayer embody independent modules linked to channel gating modulation. Functional studies using single channel current recordings of the sensorless pore module reconstituted in symmetric and asymmetric lipid bilayers allowed us to establish the deterministic role of lipid headgroup on gating. We discovered that individual monolayers with headgroups that coat the bilayer-aqueous interface with hydroxyls stabilize the channel open conformation. The hydroxyl need not be at a terminal position and the effect is not dependent on the presence of phosphate or net charge on the lipid headgroup. Asymmetric lipid bilayers allowed us to determine that phosphoglycerides with glycerol or inositol on the extracellular facing monolayer stabilize the open conformation of the channel. This indirect effect is attributed to a change in water structure at the membrane interface. By contrast, inclusion of the positively charged lysyl-dioleoyl-phosphatidylglycerol exclusively on the cytoplasmic facing monolayer of the bilayer increases drastically the probability of finding the channel open. Such modulation is mediated by a π-cation interaction between Phe-19 of the pore module and the lysyl moiety anchored to the phosphatidylglycerol headgroup. The new findings imply that the specific chemistry of the lipid headgroup and its selective location in either monolayer of the bilayer dictate the stability of the open conformation of a Kv pore module in the absence of voltage-sensing modules.
Collapse
Affiliation(s)
- Ruhma Syeda
- From the Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | | | | |
Collapse
|
26
|
Abstract
Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.
Collapse
Affiliation(s)
- Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
D'Avanzo N, McCusker EC, Powl AM, Miles AJ, Nichols CG, Wallace BA. Differential lipid dependence of the function of bacterial sodium channels. PLoS One 2013; 8:e61216. [PMID: 23579615 PMCID: PMC3620320 DOI: 10.1371/journal.pone.0061216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/08/2013] [Indexed: 12/13/2022] Open
Abstract
The lipid bilayer is important for maintaining the integrity of cellular compartments and plays a vital role in providing the hydrophobic and charged interactions necessary for membrane protein structure, conformational flexibility and function. To directly assess the lipid dependence of activity for voltage-gated sodium channels, we compared the activity of three bacterial sodium channel homologues (NaChBac, NavMs, and NavSp) by cumulative (22)Na(+) uptake into proteoliposomes containing a 3∶1 ratio of 1-palmitoyl 2-oleoyl phosphatidylethanolamine and different "guest" glycerophospholipids. We observed a unique lipid profile for each channel tested. NavMs and NavSp showed strong preference for different negatively-charged lipids (phosphatidylinositol and phosphatidylglycerol, respectively), whilst NaChBac exhibited a more modest variation with lipid type. To investigate the molecular bases of these differences we used synchrotron radiation circular dichroism spectroscopy to compare structures in liposomes of different composition, and molecular modeling and electrostatics calculations to rationalize the functional differences seen. We then examined pore-only constructs (with voltage sensor subdomains removed) and found that in these channels the lipid specificity was drastically reduced, suggesting that the specific lipid influences on voltage-gated sodium channels arise primarily from their abilities to interact with the voltage-sensing subdomains.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Physiology and GEPROM (Group d'étude des Proteins Membranaires), Université de Montréal, Montréal, Québec, Canada
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Emily C. McCusker
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Andrew M. Powl
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Andrew J. Miles
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Colin G. Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (CN); (BW)
| | - B. A. Wallace
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (CN); (BW)
| |
Collapse
|
28
|
Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 2013; 38:151-9. [PMID: 23403214 DOI: 10.1016/j.tibs.2013.01.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
The major facilitator superfamily (MFS) is one of the largest groups of secondary active transporters conserved from bacteria to humans. MFS proteins selectively transport a wide spectrum of substrates across biomembranes and play a pivotal role in multiple physiological processes. Despite intense investigation, only seven MFS proteins from six subfamilies have been structurally elucidated. These structures were captured in distinct states during a transport cycle involving alternating access to binding sites from either side of the membrane. This review discusses recent progress in MFS structure analysis and focuses on the molecular basis for substrate binding, co-transport coupling, and alternating access.
Collapse
Affiliation(s)
- Nieng Yan
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Zhang X, Yan N. The conformational shifts of the voltage sensing domains between Na(v)Rh and Na(v)Ab. Cell Res 2012; 23:444-7. [PMID: 23147793 DOI: 10.1038/cr.2012.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Faure É, Starek G, McGuire H, Bernèche S, Blunck R. A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels. J Biol Chem 2012; 287:40091-8. [PMID: 23019337 DOI: 10.1074/jbc.m112.415497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.
Collapse
Affiliation(s)
- Élise Faure
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
31
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
32
|
Horng TL, Lin TC, Liu C, Eisenberg B. PNP Equations with Steric Effects: A Model of Ion Flow through Channels. J Phys Chem B 2012; 116:11422-41. [DOI: 10.1021/jp305273n] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tzyy-Leng Horng
- Department of Applied Mathematics, Feng Chia University, 100 Wen-Hwa Road, Taichung, Taiwan
40724
| | - Tai-Chia Lin
- Department of Mathematics, Taida Institute for Mathematical
Sciences (TIMS), No. 1, Sec. 4, National Taiwan University, Roosevelt Road, Taipei 106, Taiwan
| | - Chun Liu
- Department of Mathematics, Pennsylvania State University University Park, Pennsylvania 16802,
United States
| | - Bob Eisenberg
- Department of Molecular Biophysics and Physiology, Rush University, 1653 West Congress Parkway, Chicago,
Illinois 60612, United States
| |
Collapse
|
33
|
Morris CE, Juranka PF, Joós B. Perturbed voltage-gated channel activity in perturbed bilayers: implications for ectopic arrhythmias arising from damaged membrane. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:245-56. [PMID: 22846437 DOI: 10.1016/j.pbiomolbio.2012.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/31/2022]
Abstract
The ceaseless opening and closing of the voltage-gated channels (VGCs) underlying cardiac rhythmicity is controlled, in each VGC, by four mobile voltage sensors embedded in bilayer. Every action potential necessitates extensive packing/repacking of voltage sensor domains with adjacent interacting lipid molecules. This renders VGC activity mechanosensitive (MS), i.e., energetically sensitive to the bilayer's mechanical state. Irreversible perturbations of sarcolemmal bilayer such as those associated with ischemia, reperfusion, inflammation, cortical-cytoskeleton abnormalities, bilayer-disrupting toxins, diet aberrations, etc, should therefore perturb VGC activity. Disordered/fluidized bilayer states that facilitate voltage sensor repacking, and thus make VGC opening too easy could, therefore, explain VGC-leakiness in these conditions. To study this in membrane patches we impose mechanical blebbing injury during pipette aspiration-induced membrane stretch, a process that modulates VGC activity irreversibly (plastic regime) and then, eventually, reversibly (elastic regime). Because of differences in sensor-to-gate coupling among different VGCs, their responses to stretch fall into two major categories, MS-Speed, MS-Number, exemplified by Nav and Cav channels. For particular VGCs in perturbed bilayers, leak mechanisms depend on whether or not the rate-limiting voltage-dependent step is MS. Mode-switch transitions might also be mechanosensitive and thus play a role. Incorporated mathematically in axon models, plastic-regime Nav responses elicit ectopic firing behaviors typical of peripheral neuropathies. In cardiomyocytes with mild bleb damage, Nav and/or Cav leaks from irreversible MS modulation (MS-Speed, MS-Number, respectively) could, similarly, foster ectopic arrhythmias. Where pathologically leaky VGCs reside in damaged bilayer, peri-channel bilayer disorder/fluidity conditions could be an important "target feature" for anti-arrhythmic VGC drugs.
Collapse
|
34
|
Wang W, van Veen HW. Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP. PLoS One 2012; 7:e38715. [PMID: 22761697 PMCID: PMC3380022 DOI: 10.1371/journal.pone.0038715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H(+)(Na(+)) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by components of the proton-motive force, the mutations also influence the energetics of transport.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hendrik W. van Veen
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Bähring R, Barghaan J, Westermeier R, Wollberg J. Voltage sensor inactivation in potassium channels. Front Pharmacol 2012; 3:100. [PMID: 22654758 PMCID: PMC3358694 DOI: 10.3389/fphar.2012.00100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 12/15/2022] Open
Abstract
In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and the pore gate (P-gate), located externally in the selectivity filter. How the voltage sensor moves and how tightly it interacts with these two gates on its way to adopt a relaxed conformation when the membrane is depolarized may critically determine the mode of Kv channel inactivation. In certain Kv channels, voltage sensor movement leads to a tight interaction with the P-gate, which may cause conformational changes that render the selectivity filter non-conductive (“P/C-type inactivation”). Other Kv channels may preferably undergo inactivation from pre-open closed-states during voltage sensor movement, because the voltage sensor temporarily uncouples from the A-gate. For this behavior, known as “preferential” closed-state inactivation, we introduce the term “A/C-type inactivation”. Mechanistically, P/C- and A/C-type inactivation represent two forms of “voltage sensor inactivation.”
Collapse
Affiliation(s)
- Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf Hamburg, Germany
| | | | | | | |
Collapse
|
36
|
Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J, Wang J, Clapham DE, Yan N. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 2012; 486:130-4. [PMID: 22678295 DOI: 10.1038/nature11054] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/16/2012] [Indexed: 01/04/2023]
Abstract
Voltage-gated sodium (Na(v)) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Na(v) channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Na(v) channels, exemplified by the Na(+)-selective channel of bacteria (NaChBac), provides a useful model system for structure-function analysis. Here we report the crystal structure of Na(v)Rh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05 Å resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr 178 and Leu 179 constitute an inner site within the selectivity filter where a hydrated Ca(2+) resides in the crystal structure. The outer mouth of the Na(+) selectivity filter, defined by Ser 181 and Glu 183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that Na(v)Rh is in an 'inactivated' conformation. Comparison of Na(v)Rh with Na(v)Ab reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Eddy MT, Ong TC, Clark L, Teijido O, van der Wel PCA, Garces R, Wagner G, Rostovtseva TK, Griffin RG. Lipid dynamics and protein-lipid interactions in 2D crystals formed with the β-barrel integral membrane protein VDAC1. J Am Chem Soc 2012; 134:6375-87. [PMID: 22435461 PMCID: PMC3333839 DOI: 10.1021/ja300347v] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We employ a combination of (13)C/(15)N magic angle spinning (MAS) NMR and (2)H NMR to study the structural and functional consequences of different membrane environments on VDAC1 and, conversely, the effect of VDAC1 on the structure of the lipid bilayer. MAS spectra reveal a well-structured VDAC1 in 2D crystals of dimyristoylphosphatidylcholine (DMPC) and diphytanoylphosphatidylcholine (DPhPC), and their temperature dependence suggests that the VDAC structure does not change conformation above and below the lipid phase transition temperature. The same data show that the N-terminus remains structured at both low and high temperatures. Importantly, functional studies based on electrophysiological measurements on these same samples show fully functional channels, even without the presence of Triton X-100 that has been found necessary for in vitro-refolded channels. (2)H solid-state NMR and differential scanning calorimetry were used to investigate the dynamics and phase behavior of the lipids within the VDAC1 2D crystals. (2)H NMR spectra indicate that the presence of protein in DMPC results in a broad lipid phase transition that is shifted from 19 to ~27 °C and show the existence of different lipid populations, consistent with the presence of both annular and bulk lipids in the functionally and structurally homogeneous samples.
Collapse
Affiliation(s)
- Matthew T. Eddy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ta-Chung Ong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsay Clark
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oscar Teijido
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick C. A. van der Wel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Garces
- Department of Biological and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Gerhard Wagner
- Department of Biological and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Tatiana K. Rostovtseva
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Langford SJ, Latter MJ, Wilman BE, Bhosale SV. Biologically Derived Supramolecular Materials. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Brohawn SG, del Mármol J, MacKinnon R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 2012; 335:436-41. [PMID: 22282805 PMCID: PMC3329120 DOI: 10.1126/science.1213808] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRAAK channels, members of the two-pore domain K(+) (potassium ion) channel family K2P, are expressed almost exclusively in the nervous system and control the resting membrane potential. Their gating is sensitive to polyunsaturated fatty acids, mechanical deformation of the membrane, and temperature changes. Physiologically, these channels appear to control the noxious input threshold for temperature and pressure sensitivity in dorsal root ganglia neurons. We present the crystal structure of human TRAAK at a resolution of 3.8 angstroms. The channel comprises two protomers, each containing two distinct pore domains, which create a two-fold symmetric K(+) channel. The extracellular surface features a helical cap, 35 angstroms tall, that creates a bifurcated pore entryway and accounts for the insensitivity of two-pore domain K(+) channels to inhibitory toxins. Two diagonally opposed gate-forming inner helices form membrane-interacting structures that may underlie this channel's sensitivity to chemical and mechanical properties of the cell membrane.
Collapse
Affiliation(s)
- Stephen G Brohawn
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
40
|
Vargas E, Bezanilla F, Roux B. In search of a consensus model of the resting state of a voltage-sensing domain. Neuron 2012; 72:713-20. [PMID: 22153369 DOI: 10.1016/j.neuron.2011.09.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
Abstract
Voltage-sensing domains (VSDs) undergo conformational changes in response to the membrane potential and are the critical structural modules responsible for the activation of voltage-gated channels. Structural information about the key conformational states underlying voltage activation is currently incomplete. Through the use of experimentally determined residue-residue interactions as structural constraints, we determine and refine a model of the Kv channel VSD in the resting conformation. The resulting structural model is in broad agreement with results that originate from various labs using different techniques, indicating the emergence of a consensus for the structural basis of voltage sensing.
Collapse
Affiliation(s)
- Ernesto Vargas
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
41
|
Palmitoylation influences the function and pharmacology of sodium channels. Proc Natl Acad Sci U S A 2011; 108:20213-8. [PMID: 22123950 DOI: 10.1073/pnas.1108497108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Palmitoylation is a common lipid modification known to regulate the functional properties of various proteins and is a vital step in the biosynthesis of voltage-activated sodium (Nav) channels. We discovered a mutation in an intracellular loop of rNav1.2a (G1079C), which results in a higher apparent affinity for externally applied PaurTx3 and ProTx-II, two voltage sensor toxins isolated from tarantula venom. To explore whether palmitoylation of the introduced cysteine underlies this observation, we compared channel susceptibility to a range of animal toxins in the absence and presence of 2-Br-palmitate, a palmitate analog that prevents palmitate incorporation into proteins, and found that palmitoylation contributes to the increased affinity of PaurTx3 and ProTx-II for G1079C. Further investigations with 2-Br-palmitate revealed that palmitoylation can regulate the gating and pharmacology of wild-type (wt) rNav1.2a. To identify rNav1.2a palmitoylation sites contributing to these phenomena, we substituted three endogenous cysteines predicted to be palmitoylated and found that the gating behavior of this triple cysteine mutant is similar to wt rNav1.2a treated with 2-Br-palmitate. As with chemically depalmitoylated rNav1.2a channels, this mutant also exhibits an increased susceptibility for PaurTx3. Additional mutagenesis experiments showed that palmitoylation of one cysteine in particular (C1182) primarily influences PaurTx3 sensitivity and may enhance the inactivation process of wt rNav1.2a. Overall, our results demonstrate that lipid modifications are capable of altering the gating and pharmacological properties of rNav1.2a.
Collapse
|
42
|
Devaraneni PK, Devereaux JJ, Valiyaveetil FI. In vitro folding of KvAP, a voltage-gated K+ channel. Biochemistry 2011; 50:10442-50. [PMID: 22044112 DOI: 10.1021/bi2012965] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this contribution, we report in vitro folding of the archaebacterial voltage-gated K(+) channel, K(v)AP. We show that in vitro folding of the K(v)AP channel from the extensively unfolded state requires lipid vesicles and that the refolded channel is biochemically and functionally similar to the native channel. The in vitro folding process is slow at room temperature, and the folding yield depends on the composition of the lipid bilayer. The major factor influencing refolding is temperature, and almost quantitative refolding of the K(v)AP channel is observed at 80 °C. To differentiate between insertion into the bilayer and folding within the bilayer, we developed a cysteine protection assay. Using this assay, we demonstrate that insertion of the unfolded protein into the bilayer is relatively fast at room temperature and independent of lipid composition, suggesting that temperature and bilayer composition influence folding within the bilayer. Further, we demonstrate that in vitro folding provides an effective method for obtaining high yields of the native channel. Our studies suggest that the K(v)AP channel provides a good model system for investigating the folding of a multidomain integral membrane protein.
Collapse
Affiliation(s)
- Prasanna K Devaraneni
- The Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | | | | |
Collapse
|
43
|
Grigoryan G, Moore DT, DeGrado WF. Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Annu Rev Biochem 2011; 80:211-37. [PMID: 21548783 DOI: 10.1146/annurev-biochem-091008-152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.
Collapse
Affiliation(s)
- Gevorg Grigoryan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
44
|
Aimon S, Manzi J, Schmidt D, Poveda Larrosa JA, Bassereau P, Toombes GES. Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLoS One 2011; 6:e25529. [PMID: 21998666 PMCID: PMC3188570 DOI: 10.1371/journal.pone.0025529] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated ion channels are key players in cellular excitability. Recent studies suggest that their behavior can depend strongly on the membrane lipid composition and physical state. In vivo studies of membrane/channel and channel/channel interactions are challenging as membrane properties are actively regulated in living cells, and are difficult to control in experimental settings. We developed a method to reconstitute functional voltage-gated ion channels into cell-sized Giant Unilamellar Vesicles (GUVs) in which membrane composition, tension and geometry can be controlled. First, a voltage-gated potassium channel, KvAP, was purified, fluorescently labeled and reconstituted into small proteoliposomes. Small proteoliposomes were then converted into GUVs via electroformation. GUVs could be formed using different lipid compositions and buffers containing low (5 mM) or near-physiological (100 mM) salt concentrations. Protein incorporation into GUVs was characterized with quantitative confocal microscopy, and the protein density of GUVs was comparable to the small proteoliposomes from which they were formed. Furthermore, patch-clamp measurements confirmed that the reconstituted channels retained potassium selectivity and voltage-gated activation. GUVs containing functional voltage-gated ion channels will allow the study of channel activity, distribution and diffusion while controlling membrane state, and should prove a powerful tool for understanding how the membrane modulates cellular excitability.
Collapse
Affiliation(s)
- Sophie Aimon
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| | - John Manzi
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| | - Daniel Schmidt
- Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, New York, United States of America
| | | | - Patricia Bassereau
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| | - Gilman E. S. Toombes
- Unité Mixte de Recherche (UMR) 168, Physico-Chimie Curie, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
45
|
Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. Conservation of lipid functions in cytochrome bc complexes. J Mol Biol 2011; 414:145-62. [PMID: 21978667 DOI: 10.1016/j.jmb.2011.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022]
Abstract
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b(6)f and bc(1) complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b(6)f complex with those in bc(1) shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b(6)f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc(1) complex. The specific identity of lipids is different in b(6)f and bc(1) complexes: b(6)f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc(1) complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b(6)f, as well as eicosane in C. reinhardtii, are unique to the b(6)f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b(6)f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
46
|
Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 2011; 50:6295-300. [PMID: 21696149 DOI: 10.1021/bi200770q] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cells can respond to mechanical stress by gating mechanosensitive ion channels (MSCs). The cloning of Piezo1, a eukaryotic cation selective MSC, defines a new system for studying mechanical transduction at the cellular level. Because Piezo1 has electrophysiological properties similar to those of endogenous cationic MSCs that are selectively inhibited by the peptide GsMTx4, we tested whether the peptide targets Piezo1 activity. Extracellular GsMTx4 at micromolar concentrations reversibly inhibited ∼80% of the mechanically induced current of outside-out patches from transfected HEK293 cells. The inhibition was voltage insensitive, and as seen with endogenous MSCs, the mirror image d enantiomer inhibited like the l. The rate constants for binding and unbinding based on Piezo1 current kinetics provided association and dissociation rates of 7.0 × 10(5) M(-1) s(-1) and 0.11 s(-1), respectively, and a K(D) of ∼155 nM, similar to values previously reported for endogenous MSCs. Consistent with predicted gating modifier behavior, GsMTx4 produced an ∼30 mmHg rightward shift in the pressure-gating curve and was active on closed channels. In contrast, streptomycin, a nonspecific inhibitor of cationic MSCs, showed the use-dependent inhibition characteristic of open channel block. The peptide did not block currents of the mechanical channel TREK-1 on outside-out patches. Whole-cell Piezo1 currents were also reversibly inhibited by GsMTx4, and although the off rate was nearly identical to that of outside-out patches, differences were observed for the on rate. The ability of GsMTx4 to target the mechanosensitivity of Piezo1 supports the use of this channel in high-throughput screens for pharmacological agents and diagnostic assays.
Collapse
Affiliation(s)
- Chilman Bae
- Center for Single Molecule Biophysics, Department of Physiology and Biophysics, 301 Cary Hall, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
47
|
Verma R, Malik C, Azmi S, Srivastava S, Ghosh S, Ghosh JK. A synthetic S6 segment derived from KvAP channel self-assembles, permeabilizes lipid vesicles, and exhibits ion channel activity in bilayer lipid membrane. J Biol Chem 2011; 286:24828-41. [PMID: 21592970 DOI: 10.1074/jbc.m110.209676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KvAP is a voltage-gated tetrameric K(+) channel with six transmembrane (S1-S6) segments in each monomer from the archaeon Aeropyrum pernix. The objective of the present investigation was to understand the plausible role of the S6 segment, which has been proposed to form the inner lining of the pore, in the membrane assembly and functional properties of KvAP channel. For this purpose, a 22-residue peptide, corresponding to the S6 transmembrane segment of KvAP (amino acids 218-239), and a scrambled peptide (S6-SCR) with rearrangement of only hydrophobic amino acids but without changing its composition were synthesized and characterized structurally and functionally. Although both peptides bound to the negatively charged phosphatidylcholine/phosphatidylglycerol model membrane with comparable affinity, significant differences were observed between these peptides in their localization, self-assembly, and aggregation properties onto this membrane. S6-SCR also exhibited reduced helical structures in SDS micelles and phosphatidylcholine/phosphatidylglycerol lipid vesicles as compared with the S6 peptide. Furthermore, the S6 peptide showed significant membrane-permeabilizing capability as evidenced by the release of calcein from the calcein-entrapped lipid vesicles, whereas S6-SCR showed much weaker efficacy. Interestingly, although the S6 peptide showed ion channel activity in the bilayer lipid membrane, despite having the same amino acid composition, S6-SCR was significantly inactive. The results demonstrated sequence-specific structural and functional properties of the S6 wild type peptide. The selected S6 segment is probably an important structural element that could play an important role in the membrane interaction, membrane assembly, and functional property of the KvAP channel.
Collapse
Affiliation(s)
- Richa Verma
- Molecular and Structural Biology Division, Central Drug Research Institute, Council of Scientific and Industrial Research, Chattar Manzil Palace, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
48
|
Wee CL, Chetwynd A, Sansom MSP. Membrane insertion of a voltage sensor helix. Biophys J 2011; 100:410-9. [PMID: 21244837 DOI: 10.1016/j.bpj.2010.12.3682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
Abstract
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.
Collapse
Affiliation(s)
- Chze Ling Wee
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
49
|
Wang A, Zocchi G. Artificial modulation of the gating behavior of a K+ channel in a KvAP-DNA chimera. PLoS One 2011; 6:e18598. [PMID: 21526187 PMCID: PMC3079724 DOI: 10.1371/journal.pone.0018598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/06/2011] [Indexed: 11/19/2022] Open
Abstract
We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Giovanni Zocchi
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Control of a final gating charge transition by a hydrophobic residue in the S2 segment of a K+ channel voltage sensor. Proc Natl Acad Sci U S A 2011; 108:6444-9. [PMID: 21464282 DOI: 10.1073/pnas.1103397108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is now well established that the voltage-sensor domains present in voltage-gated ion channels and some phosphatases operate by transferring several charged residues (gating charges), mainly arginines located in the S4 segment, across the electric field. The conserved phenylalanine F(290) located in the S2 segment of the Shaker K channel is an aromatic residue thought to interact with all the four gating arginines carried by the S4 segment and control their transfer [Tao X, et al. (2010) Science 328:67-73]. In this paper we study the possible interaction of the gating charges with this residue by directly detecting their movement with gating current measurements in 12 F(290) mutants. Most mutations do not significantly alter the first approximately 80-90% of the gating charge transfer nor the kinetics of the gating currents during activation. The effects of the F(290) mutants are (i) the modification of a final activation transition accounting for approximately 10-20% of the total charge, similar to the effect of the ILT mutant [Ledwell JL, et al. (1999) J Gen Physiol 113:389-414] and (ii) the modification of the kinetics of the gating charge movement during deactivation. These effects are well correlated with the hydrophobicity of the substituted residue, showing that a hydrophobic residue at position 290 controls the energy barrier of the final gating transition. Our results suggest that F(290) controls the transfer of R(371), the fourth gating charge, during gating while not affecting the movement of the other three gating arginines.
Collapse
|