1
|
Elias J, Sharma V, Archana G, Kumar GN. Cra-controlled antisense RNA-downregulation of isocitrate dehydrogenase in Escherichia coli. Arch Microbiol 2025; 207:105. [PMID: 40167800 DOI: 10.1007/s00203-025-04290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Catabolite repressor activator (Cra) protein (formerly called FruR) found in E. coli is known to regulate the expression of many genes positively and negatively in response to the intracellular levels of fructose-1-phosphate (F-1-P) and fructose-1,6-bisphopahate (F-1,6-bisP). In this paper, we report synthesis and characterization of a conditionally expressed antisense RNA corresponding to 101 bp of isocitrate dehydrogenase (icd) gene (as-icd) under Cra (FruR) responsive promoter fruB (PfruB as-icd construct denoted as pVS2K3) in E. coli K-12 derivative (DH5α) and E. coli B derivative (BL21) strains. Previous studies have shown that ICD mutants accumulated citrate intracellularly but failed to grow on glucose in absence of glutamate. Hence, a conditional downregulation of icd gene could be helpful in overcoming this lethality and also aid in understanding the flux towards citrate accumulation. Effect of pVS2K3 construct was monitored in E. coli DH5α and E. coli BL21 during growth on carbon sources wherein the fruB promoter is active (glucose) or repressed (glycerol). A 3-to 4-fold decrease in ICDH activity was observed in E. coli DH5α expressing pVS2K3 on glucose but no change in ICDH activity was observed in E. coli BL21 expressing pVS2K3 on glucose. This alteration could be attributed to the anomalous Cra regulation seen in E. coli B strain which could be a crucial factor while choosing PfruB promoter for expression studies.
Collapse
Affiliation(s)
- Jisha Elias
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India
- Medgenome Labs Ltd, Kailash Cancer Hospital and Research Centre, Goraj, Vadodara, Gujarat, 391760, India
| | - Vikas Sharma
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India.
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala Cantt-Jagadhari Road, P.O. Sambhalkha, Ambala, Haryana, 133101, India.
| | - G Archana
- Department of Microbiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India
| | - G Naresh Kumar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India.
| |
Collapse
|
2
|
Cao Y, Tsuzuki M, Kiba A, Hikichi Y, Zhang Y, Ohnishi K. Sucrose and malic acid in the tobacco plant induce hrp regulon in a phytopathogen Ralstonia pseudosolanacearum. J Bacteriol 2025; 207:e0027324. [PMID: 39902979 PMCID: PMC11925246 DOI: 10.1128/jb.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/05/2025] [Indexed: 02/06/2025] Open
Abstract
Genes encoding a type III secretion system in Ralstonia pseudosolanacearum are regulated by HrpB as an hrp regulon and induced only in plants. This study aimed to identify the plant signals that induce the hrp regulon and confirm the signal recognition mechanism. Signaling molecules that induce hrpB expression were screened using resting cells of the hrpB-lacZ reporter strain. Only the soluble fraction of smashed tobacco seedlings induced hrpB expression. The heated soluble fraction retained its hrpB-inducing activity, indicating that the signaling molecules were not proteins. When the soluble fraction was fractionated into acidic, neutral, and basic components, both the acidic and neutral fractions induced hrpB expression. As neutral compounds, sucrose, glucose, and fructose have been found to induce hrpB expression. Sucrose-induced hrpB expression was greatly reduced in the prhA mutant, indicating that the TonB-dependent receptor PrhA perceives sugars. Among the organic acids found in the acidic fractions, malic acid most efficiently induced hrpB expression, which was reduced by the mutation of a hybrid histidine kinase gene of a two-component system, rsc1598, indicating that Rsc1598 may sense malic acid. We demonstrated direct binding of Rsc1598 to malic acid using isothermal titration calorimetry.IMPORTANCESimilar to other Gram-negative plant pathogens, the type III secretion system (T3SS) is the most important virulence factor in Ralstonia pseudosolanacearum. The genes for the T3SS are regulated as an hrp regulon, activated only when the pathogen encounters the plants, indicating that the pathogen must sense plant signals. For the first time, we identified two signaling compounds, sucrose and malic acid, that are abundantly found in tobacco roots. The hrp operon was induced even in non-host plants, possibly because sucrose and malic acid are common in plants. We also found that R. pseudosolanacearum membrane proteins received sucrose and malic acid independently. As a next step, antagonists of signaling molecules can be screened.
Collapse
Affiliation(s)
- Yuzhu Cao
- The United Graduate School of Agricultural Sciences, Ehime University, Ehime, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| |
Collapse
|
3
|
Li M, Wang Y, Wang Q, Yang L, Liu S, Li G, Song Z, Huang C, Kang L, Zhang Y, Wang T, Kong L, Li S. A Mutant of Africa Swine Fever Virus Protein p72 Enhances Antibody Production and Regulates the Production of Cytokines. Viruses 2025; 17:194. [PMID: 40006949 PMCID: PMC11860850 DOI: 10.3390/v17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
African swine fever virus (ASFV) is a severe threat to the global pig industry, and domestic pigs mostly develop severe clinical manifestations upon viral invasion. Currently, there is no available vaccine against ASFV. Its capsid structural protein p72 is one of the immuno-dominant proteins. In this study, we unexpectedly obtained a p72 mutant protein (p72∆377-428) which deleted the aa 377-428 within p72 and had stable and high expression in E. coli. Using SWISS-MODEL 1.0 software, the prediction showed that p72∆377-428 was quite distinct from the wild-type p72 protein in structure. p72∆377-428 induced stronger antibody production in mice on day 42 and 56 post immunization and could recognize ASFV-infected swine sera. p72∆377-428 reduced IFN-γ production in the splenocytes from p72∆377-428-immunized mice and p72∆377-428-treated swine macrophages compared to p72. p72∆377-428 also decreased the production of pro-inflammatory cytokine genes, including IL-1β, IL-6, and IL-12, compared to p72 in mice. Further, we found that p72∆377-428 reduced the induction of pro-inflammatory cytokine genes by inhibiting AKT phosphorylation and HIF1α expression. Taken together, these findings have implications for immunological function and the corresponding mechanism of ASFV p72, and our study indicates that p72∆377-428 could serve as a novel candidate for ASFV vaccines and diagnostic reagents.
Collapse
Affiliation(s)
- Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Quansheng Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Lingdi Yang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Shiguo Liu
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Guangzhi Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Ziqi Song
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Chulu Huang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Lumei Kang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
- Center for Laboratory Animal Science, Nanchang University, Nanchang 330031, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang 330029, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Sha Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| |
Collapse
|
4
|
Wood NA, Gopinath T, Shin K, Marassi FM. In situ NMR reveals a pH sensor motif in an outer membrane protein that drives bacterial vesicle production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634179. [PMID: 39896486 PMCID: PMC11785132 DOI: 10.1101/2025.01.21.634179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The outer membrane vesicles (OMVs) produced by diderm bacteria have important roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella enterica Typhimurium (STm) activates OMV biogenesis inside the acidic vacuoles of host cells by upregulating the expression of the outer membrane (OM) protein PagC, one of the most robustly activated genes in a host environment. Here, we used solid-state nuclear magnetic resonance (NMR) and electron microscopy (EM), with native bacterial OMVs, to demonstrate that three histidines, essential for the OMV biogenic function of PagC, constitute a key pH-sensing motif. The NMR spectra of PagC in OMVs show that they become protonated around pH 6, and His protonation is associated with specific perturbations of select regions of PagC. The use of bacterial OMVs is an essential aspect of this work enabling NMR structural studies in the context of the physiological environment. PagC expression upregulates OMV production in E. coli, replicating its function in STm. Moreover, the presence of PagC drives a striking aggregation of OMVs and increases bacterial cell pellicle formation at acidic pH, pointing to a potential role as an adhesin active in biofilm formation. The data provide experimental evidence for a pH-dependent mechanism of OMV biogenesis and aggregation driven by an outer membrane protein.
Collapse
Affiliation(s)
- Nicholas A Wood
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| | - Tata Gopinath
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| | - Kyungsoo Shin
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| | - Francesca M. Marassi
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| |
Collapse
|
5
|
Horwitz EK, Strobel HM, Haiso J, Meyer JR. More evolvable bacteriophages better suppress their host. Evol Appl 2024; 17:e13742. [PMID: 38975285 PMCID: PMC11224127 DOI: 10.1111/eva.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The number of multidrug-resistant strains of bacteria is increasing rapidly, while the number of new antibiotic discoveries has stagnated. This trend has caused a surge in interest in bacteriophages as anti-bacterial therapeutics, in part because there is near limitless diversity of phages to harness. While this diversity provides an opportunity, it also creates the dilemma of having to decide which criteria to use to select phages. Here we test whether a phage's ability to coevolve with its host (evolvability) should be considered and how this property compares to two previously proposed criteria: fast reproduction and thermostability. To do this, we compared the suppressiveness of three phages that vary by a single amino acid yet differ in these traits such that each strain maximized two of three characteristics. Our studies revealed that both evolvability and reproductive rate are independently important. The phage most able to suppress bacterial populations was the strain with high evolvability and reproductive rate, yet this phage was unstable. Phages varied due to differences in the types of resistance evolved against them and their ability to counteract resistance. When conditions were shifted to exaggerate the importance of thermostability, one of the stable phages was most suppressive in the short-term, but not over the long-term. Our results demonstrate the utility of biological therapeutics' capacities to evolve and adjust in action to resolve complications like resistance evolution. Furthermore, evolvability is a property that can be engineered into phage therapeutics to enhance their effectiveness.
Collapse
Affiliation(s)
- Elijah K. Horwitz
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hannah M. Strobel
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jason Haiso
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Justin R. Meyer
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Beganovic S, Wittmann C. Medical properties, market potential, and microbial production of golden polyketide curcumin for food, biomedical, and cosmetic applications. Curr Opin Biotechnol 2024; 87:103112. [PMID: 38518404 DOI: 10.1016/j.copbio.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Curcumin, a potent plant polyketide in turmeric, has gained recognition for its outstanding health benefits, including anti-inflammatory, antioxidant, and anticancer effects. Classical turmeric farming, which is widely used to produce curcumin, is linked to deforestation, soil degradation, excessive water use, and reduced biodiversity. In recent years, the microbial synthesis of curcumin has been achieved and optimized through novel strategies, offering increased safety, improved sustainability, and the potential to revolutionize production. Here, we discuss recent breakthroughs in microbial engineering and fermentation techniques, as well as their capacity to increase the yield, purity, and cost-effectiveness of curcumin production. The utilization of microbial systems not only addresses supply chain limitations but also helps meet the growing demand for curcumin in various industries, including pharmaceuticals, foods, and cosmetics.
Collapse
Affiliation(s)
- Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Germany
| | | |
Collapse
|
7
|
Cerna‐Vargas JP, Krell T. Exploring solute binding proteins in Pseudomonas aeruginosa that bind to γ-aminobutyrate and 5-aminovalerate and their role in activating sensor kinases. Microbiologyopen 2024; 13:e1415. [PMID: 38780167 PMCID: PMC11113362 DOI: 10.1002/mbo3.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The standard method of receptor activation involves the binding of signals or signal-loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 μM, respectively), followed by 5-aminovalerate (KD = 30 and 1.6 μM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 μM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5-aminovaleric acid (KD = 2.9 μM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two-hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA-specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.
Collapse
Affiliation(s)
- Jean Paul Cerna‐Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones CientíficasParque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de AlarcónMadridSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
8
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
9
|
da Costa Rodrigues T, Zorzete P, Miyaji EN, Gonçalves VM. Novel method for production and purification of untagged pneumococcal surface protein A from clade 1. Appl Microbiol Biotechnol 2024; 108:281. [PMID: 38570417 PMCID: PMC10990985 DOI: 10.1007/s00253-024-13098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Streptococcus pneumoniae can cause diseases with high mortality and morbidity. The licensed vaccines are based on capsular polysaccharides and induce antibodies with low cross reactivity, leading to restricted coverage of serotypes. For surpassing this limitation, new pneumococcal vaccines are needed for induction of broader protection. One important candidate is the pneumococcal surface protein A (PspA), which can be classified in 6 clades and 3 families. We have reported an efficient process for production and purification of untagged recombinant PspA from clade 4 (PspA4Pro). We now aim to obtain a highly pure recombinant PspA from clade 1 (PspA1) to be included, together with PspA4Pro, in a vaccine formulation to broaden response against pneumococci. The vector pET28a-pspA1 was constructed and used to transform Escherichia coli BL21(DE3) strain. One clone with high production of PspA1 was selected and adapted to high-density fermentation (HDF) medium. After biomass production in 6 L HDF using a bioreactor, the purification was defined after testing 3 protocols. During the batch bioreactor cultivation, plasmid stability remained above 90% and acetate formation was not detected. The final protein purification process included treatment with a cationic detergent after lysis, anion exchange chromatography, cryoprecipitation, cation exchange chromatography, and multimodal chromatography. The final purification process showed PspA1 purity of 93% with low endotoxin content and an overall recovery above 20%. The novel established process can be easily scaled-up and proved to be efficient to obtain a highly pure untagged PspA1 for inclusion in vaccine formulations. KEY POINTS: • Purification strategy for recombinant PspA1 from Streptococcus pneumoniae • Downstream processing for untagged protein antigens, the case of PspA1 • Purification strategy for PspA variants relies on buried amino acids in their sequences.
Collapse
Affiliation(s)
- Tasson da Costa Rodrigues
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Patricia Zorzete
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Eliane Namie Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Viviane Maimoni Gonçalves
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Kay EJ, Dooda MK, Bryant JC, Reid AJ, Wren BW, Troutman JM, Jorgenson MA. Engineering Escherichia coli for increased Und-P availability leads to material improvements in glycan expression technology. Microb Cell Fact 2024; 23:72. [PMID: 38429691 PMCID: PMC10908060 DOI: 10.1186/s12934-024-02339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Manoj K Dooda
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Joseph C Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA
| | - Amanda J Reid
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jerry M Troutman
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA.
| |
Collapse
|
12
|
Ascensao JA, Denk J, Lok K, Yu Q, Wetmore KM, Hallatschek O. Rediversification following ecotype isolation reveals hidden adaptive potential. Curr Biol 2024; 34:855-867.e6. [PMID: 38325377 PMCID: PMC10911448 DOI: 10.1016/j.cub.2024.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about whether communities can regenerate ecological diversity following ecotype removal or extinction and how the rediversified communities would compare to the original ones. Here, we show that simple two-ecotype communities from the E. coli long-term evolution experiment (LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexisting via negative frequency-dependent selection. Communities separated by more than 30,000 generations of evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of growth traits with the ecotype it replaces. However, the rediversified community is also different from the original community in ways relevant to the mechanism of ecotype coexistence-for example, in stationary phase response and survival. We found substantial variation in the transcriptional states between the two original ecotypes, whereas the differences within the rediversified community were comparatively smaller, although the rediversified community showed unique patterns of differential expression. Our results suggest that evolution may leave room for alternative diversification processes even in a maximally reduced community of only two strains. We hypothesize that the presence of alternative evolutionary pathways may be even more pronounced in communities of many species where there are even more potential niches, highlighting an important role for perturbations, such as species removal, in evolving ecological communities.
Collapse
Affiliation(s)
- Joao A Ascensao
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Jonas Denk
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kristen Lok
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- Present affiliation: Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - QinQin Yu
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Present affiliation: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Kelly M Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Oskar Hallatschek
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Höhmann S, Briol TA, Ihle N, Frick O, Schmid A, Bühler B. Glycolate as alternative carbon source for Escherichia coli. J Biotechnol 2024; 381:76-85. [PMID: 38190849 DOI: 10.1016/j.jbiotec.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
The physiology of different Escherichia coli stains was analyzed for growth with glycolate as a potentially promising sustainable sole source of carbon and energy. Different E. coli strains showed large differences regarding lag phases after provision of glycolate. Whereas E. coli W showed fast adaptation, E. coli BW25113, JM101, and BL21 (DE3) needed extensive time for adaption (up to 30 generations) until the attainable µmax was reached, which, at 30 °C, amounted to 0.20-0.25 h-1 for all strains. The overexpression of genes encoding glycolate degradation did neither overcome the need for adaptation of E. coli BL21 (DE3) nor improve growth of E. coli W. Rather, high level expression of proteins involved in uptake and initial degradation steps had an adverse effect on growth. Overall, the results show a promising capacity of E. coli strains for growth on glycolate.
Collapse
Affiliation(s)
- Sonja Höhmann
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nadine Ihle
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Oliver Frick
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
14
|
Frézal L, Saglio M, Zhang G, Noble L, Richaud A, Félix MA. Genome-wide association and environmental suppression of the mortal germline phenotype of wild C. elegans. EMBO Rep 2023; 24:e58116. [PMID: 37983674 PMCID: PMC10702804 DOI: 10.15252/embr.202358116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie Saglio
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Gaotian Zhang
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Luke Noble
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
15
|
Wang X, Xu K, Tan Y, Yu S, Zhao X, Zhou J. Deep Learning-Assisted Design of Novel Promoters in Escherichia coli. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300184. [PMID: 38099247 PMCID: PMC10716054 DOI: 10.1002/ggn2.202300184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Indexed: 12/17/2023]
Abstract
Deep learning (DL) approaches have the ability to accurately recognize promoter regions and predict their strength. Here, the potential for controllably designing active Escherichia coli promoter is explored by combining multiple deep learning models. First, "DRSAdesign," which relies on a diffusion model to generate different types of novel promoters is created, followed by predicting whether they are real or fake and strength. Experimental validation showed that 45 out of 50 generated promoters are active with high diversity, but most promoters have relatively low activity. Next, "Ndesign," which relies on generating random sequences carrying functional -35 and -10 motifs of the sigma70 promoter is introduced, and their strength is predicted using the designed DL model. The DL model is trained and validated using 200 and 50 generated promoters, and displays Pearson correlation coefficients of 0.49 and 0.43, respectively. Taking advantage of the DL models developed in this work, possible 6-mers are predicted as key functional motifs of the sigma70 promoter, suggesting that promoter recognition and strength prediction mainly rely on the accommodation of functional motifs. This work provides DL tools to design promoters and assess their functions, paving the way for DL-assisted metabolic engineering.
Collapse
Affiliation(s)
- Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Shangyang Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
16
|
Guo X, Ma Y, Wang H, Yin H, Shi X, Chen Y, Gao G, Sun L, Wang J, Wang Y, Fan D. Status and developmental trends in recombinant collagen preparation technology. Regen Biomater 2023; 11:rbad106. [PMID: 38173768 PMCID: PMC10761200 DOI: 10.1093/rb/rbad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineering technologies. These technological advancements have profound implications across diverse areas such as regenerative medicine, organ replacement, tissue engineering, cosmetics and more. Thus, recombinant collagen and its preparation methodologies rooted in genetically engineered cells mark pivotal milestones in medical product research. This article provides a comprehensive overview of the current genetic engineering technologies and methods used in the production of recombinant collagen, as well as the conventional production process and quality control detection methods for this material. Furthermore, the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies, envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yiqin Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Daidi Fan
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
17
|
Yang Y, Oldenkott B, Ramanathan S, Lesch E, Takenaka M, Schallenberg-Rüdinger M, Knoop V. DYW cytidine deaminase domains have a long-range impact on RNA recognition by the PPR array of chimeric plant C-to-U RNA editing factors and strongly affect target selection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:840-854. [PMID: 37565789 DOI: 10.1111/tpj.16412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
The protein factors for the specific C-to-U RNA editing events in plant mitochondria and chloroplasts possess unique arrays of RNA-binding pentatricopeptide repeats (PPRs) linked to carboxy-terminal cytidine deaminase DYW domains via the extension motifs E1 and E2. The E1 and E2 motifs have distant similarities to tetratricopeptide repeats known to mediate protein-protein interactions but their precise function is unclear. Here, we investigate the tolerance of PPR56 and PPR65, two functionally characterized RNA editing factors of the moss Physcomitrium patens, for the creation of chimeras by variably replacing their C-terminal protein regions. Making use of a heterologous RNA editing assay system in Escherichia coli we find that heterologous DYW domains can strongly restrict or widen the spectrum of off-targets in the bacterial transcriptome for PPR56. Surprisingly, our data suggest that these changes are not only caused by the preference of a given heterologous DYW domain for the immediate sequence environment of the cytidine to be edited but also by a long-range impact on the nucleotide selectivity of the upstream PPRs.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Oldenkott
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Shyam Ramanathan
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
18
|
Qin J, Hong Y, Morona R, Totsika M. O antigen biogenesis sensitises Escherichia coli K-12 to bile salts, providing a plausible explanation for its evolutionary loss. PLoS Genet 2023; 19:e1010996. [PMID: 37792901 PMCID: PMC10578602 DOI: 10.1371/journal.pgen.1010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Escherichia coli K-12 is a model organism for bacteriology and has served as a workhorse for molecular biology and biochemistry for over a century since its first isolation in 1922. However, Escherichia coli K-12 strains are phenotypically devoid of an O antigen (OAg) since early reports in the scientific literature. Recent studies have reported the presence of independent mutations that abolish OAg repeating-unit (RU) biogenesis in E. coli K-12 strains from the same original source, suggesting unknown evolutionary forces have selected for inactivation of OAg biogenesis during the early propagation of K-12. Here, we show for the first time that restoration of OAg in E. coli K-12 strain MG1655 synergistically sensitises bacteria to vancomycin with bile salts (VBS). Suppressor mutants surviving lethal doses of VBS primarily contained disruptions in OAg biogenesis. We present data supporting a model where the transient presence and accumulation of lipid-linked OAg intermediates in the periplasmic leaflet of the inner membrane interfere with peptidoglycan sacculus biosynthesis, causing growth defects that are synergistically enhanced by bile salts. Lastly, we demonstrate that continuous bile salt exposure of OAg-producing MG1655 in the laboratory, can recreate a scenario where OAg disruption is selected for as an evolutionary fitness benefit. Our work thus provides a plausible explanation for the long-held mystery of the selective pressure that may have led to the loss of OAg biogenesis in E. coli K-12; this opens new avenues for exploring long-standing questions on the intricate network coordinating the synthesis of different cell envelope components in Gram-negative bacteria.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular & Biomedical Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Leasure CS, Grunenwald CM, Choby JE, Sauer JD, Skaar EP. Maintenance of heme homeostasis in Staphylococcus aureus through post-translational regulation of glutamyl-tRNA reductase. J Bacteriol 2023; 205:e0017123. [PMID: 37655914 PMCID: PMC10521356 DOI: 10.1128/jb.00171-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen responsible for a variety of infections including skin and soft tissue infections, endocarditis, and sepsis. The combination of increasing antibiotic resistance in this pathogen and the lack of an efficacious vaccine underscores the importance of understanding how S. aureus maintains metabolic homeostasis in a variety of environments, particularly during infection. Within the host, S. aureus must regulate cellular levels of the cofactor heme to support enzymatic activities without encountering heme toxicity. Glutamyl tRNA reductase (GtrR), the enzyme catalyzing the first committed step in heme synthesis, is an important regulatory node of heme synthesis in Bacteria, Archaea, and Plantae. In many organisms, heme status negatively regulates the abundance of GtrR, controlling flux through the heme synthesis pathway. We identified two residues within GtrR, H32 and R214, that are important for GtrR-heme binding. However, in strains expressing either GtrRH32A or GtrRR214A, heme homeostasis was not perturbed, suggesting an alternative mechanism of heme synthesis regulation occurs in S. aureus. In this regard, we report that heme synthesis is regulated through phosphorylation and dephosphorylation of GtrR by the serine/threonine kinase Stk1 and the phosphatase Stp1, respectively. Taken together, these results suggest that the mechanisms governing staphylococcal heme synthesis integrate both the availability of heme and the growth status of the cell. IMPORTANCE Staphylococcus aureus represents a significant threat to human health. Heme is an iron-containing enzymatic cofactor that can be toxic at elevated levels. During infection, S. aureus must control heme levels to replicate and survive within the hostile host environment. We identified residues within a heme biosynthetic enzyme that are critical for heme binding in vitro; however, abrogation of heme binding is not sufficient to perturb heme homeostasis within S. aureus. This marks a divergence from previously reported mechanisms of heme-dependent regulation of the highly conserved enzyme glutamyl tRNA reductase (GtrR). Additionally, we link cell growth arrest to the modulation of heme levels through the post-translational regulation of GtrR by the kinase Stk1 and the phosphatase Stp1.
Collapse
Affiliation(s)
- Catherine S. Leasure
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caroline M. Grunenwald
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacob E. Choby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Mineev KS, Chernykh MA, Motov VV, Prudnikova DA, Pavlenko DM, Kuzmenkov AI, Peigneur S, Tytgat J, Vassilevski AA. A scorpion toxin affecting sodium channels shows double cis-trans isomerism. FEBS Lett 2023; 597:2358-2368. [PMID: 37501371 DOI: 10.1002/1873-3468.14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Scorpion α-toxins (α-NaTx) inhibiting the inactivation of voltage-gated sodium channels (Nav ) are a well-studied family of small proteins. We previously showed that the structure of α-NaTx specificity module responsible for selective Nav binding is governed by an interplay between the nest and niche protein motifs. Here, we report the solution structure of the toxin Lqq4 from the venom of the scorpion Leiurus quinquestriatus. Unexpectedly, we find that this toxin presents an ensemble of long-lived structurally distinct states. We unequivocally assign these states to the alternative configurations (cis-trans isomers) of two peptide bonds: V56-P57 and C17-G18; neither of the cis isomers has been described in α-NaTx so far. We argue that the native conformational space of α-NaTx is wider than assumed previously.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Chernykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav V Motov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria A Prudnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniil M Pavlenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Belgium
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
21
|
Yang Y, Ritzenhofen K, Otrzonsek J, Xie J, Schallenberg-Rüdinger M, Knoop V. Beyond a PPR-RNA recognition code: Many aspects matter for the multi-targeting properties of RNA editing factor PPR56. PLoS Genet 2023; 19:e1010733. [PMID: 37603555 PMCID: PMC10482289 DOI: 10.1371/journal.pgen.1010733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/06/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023] Open
Abstract
The mitochondrial C-to-U RNA editing factor PPR56 of the moss Physcomitrium patens is an RNA-binding pentatricopeptide repeat protein equipped with a terminal DYW-type cytidine deaminase domain. Transferred into Escherichia coli, PPR56 works faithfully on its two native RNA editing targets, nad3eU230SL and nad4eU272SL, and also converts cytidines into uridines at over 100 off-targets in the bacterial transcriptome. Accordingly, PPR56 is attractive for detailed mechanistic studies in the heterologous bacterial setup, allowing for scoring differential RNA editing activities of many target and protein variants in reasonable time. Here, we report (i) on the effects of numerous individual and combined PPR56 protein and target modifications, (ii) on the spectrum of off-target C-to-U editing in the bacterial background transcriptome for PPR56 and two variants engineered for target re-direction and (iii) on combinations of targets in tandem or separately at the 5'- and 3'-ends of large mRNAs. The latter experimentation finds enhancement of RNA editing at weak targets in many cases, including cox3eU290SF as a new candidate mitogenome target. We conclude that C-to-U RNA editing can be much enhanced by transcript features also outside the region ultimately targeted by PPRs of a plant editing factor, possibly facilitated by its enrichment or scanning along transcripts.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Kira Ritzenhofen
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Jessica Otrzonsek
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Jingchan Xie
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | | | - Volker Knoop
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| |
Collapse
|
22
|
Turner CB, Blount ZD, Mitchell DH, Lenski RE. Evolution of a cross-feeding interaction following a key innovation in a long-term evolution experiment with Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001390. [PMID: 37650867 PMCID: PMC10482366 DOI: 10.1099/mic.0.001390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
The evolution of a novel trait can profoundly change an organism's effects on its environment, which can in turn affect the further evolution of that organism and any coexisting organisms. We examine these effects and feedbacks following the evolution of a novel function in the Long-Term Evolution Experiment (LTEE) with Escherichia coli. A characteristic feature of E. coli is its inability to grow aerobically on citrate (Cit-). Nonetheless, a Cit+ variant with this capacity evolved in one LTEE population after 31 000 generations. The Cit+ clade then coexisted stably with another clade that retained the ancestral Cit- phenotype. This coexistence was shaped by the evolution of a cross-feeding relationship based on C4-dicarboxylic acids, particularly succinate, fumarate, and malate, that the Cit+ variants release into the medium. Both the Cit- and Cit+ cells evolved to grow on these excreted resources. The evolution of aerobic growth on citrate thus led to a transition from an ecosystem based on a single limiting resource, glucose, to one with at least five resources that were either shared or partitioned between the two coexisting clades. Our findings show that evolutionary novelties can change environmental conditions in ways that facilitate diversity by altering ecosystem structure and the evolutionary trajectories of coexisting lineages.
Collapse
Affiliation(s)
- Caroline B. Turner
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- Present address: Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Zachary D. Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Daniel H. Mitchell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Present address: Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics; and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Li J, Li P, Liu Q, Li J, Qi H. Translation initiation consistency between in vivo and in vitro bacterial protein expression systems. Front Bioeng Biotechnol 2023; 11:1201580. [PMID: 37304134 PMCID: PMC10248181 DOI: 10.3389/fbioe.2023.1201580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Strict on-demand control of protein synthesis is a crucial aspect of synthetic biology. The 5'-terminal untranslated region (5'-UTR) is an essential bacterial genetic element that can be designed for the regulation of translation initiation. However, there is insufficient systematical data on the consistency of 5'-UTR function among various bacterial cells and in vitro protein synthesis systems, which is crucial for the standardization and modularization of genetic elements in synthetic biology. Here, more than 400 expression cassettes comprising the GFP gene under the regulation of various 5'-UTRs were systematically characterized to evaluate the protein translation consistency in the two popular Escherichia coli strains of JM109 and BL21, as well as an in vitro protein expression system based on cell lysate. In contrast to the very strong correlation between the two cellular systems, the consistency between in vivo and in vitro protein translation was lost, whereby both in vivo and in vitro translation evidently deviated from the estimation of the standard statistical thermodynamic model. Finally, we found that the absence of nucleotide C and complex secondary structure in the 5'-UTR significantly improve the efficiency of protein translation, both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Peixian Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Qian Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinjin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| |
Collapse
|
24
|
Ascensao JA, Denk J, Lok K, Yu Q, Wetmore KM, Hallatschek O. Rediversification Following Ecotype Isolation Reveals Hidden Adaptive Potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539206. [PMID: 37205326 PMCID: PMC10187175 DOI: 10.1101/2023.05.03.539206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about if communities can regenerate ecological diversity following species removal or extinction, and how the rediversified communities would compare to the original ones. Here we show that simple two-ecotype communities from the E. coli Long Term Evolution Experiment (LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexisting via negative frequency-dependent selection. Communities separated by more than 30,000 generations of evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of growth traits with the ecotype it replaces. However, the rediversified community is also different compared to the original community in ways relevant to the mechanism of ecotype coexistence, for example in stationary phase response and survival. We found substantial variation in the transcriptional states between the two original ecotypes, whereas the differences within the rediversified community were comparatively smaller, but with unique patterns of differential expression. Our results suggest that evolution may leave room for alternative diversification processes even in a maximally reduced community of only two strains. We hypothesize that the presence of alternative evolutionary pathways may be even more pronounced in communities of many species, highlighting an important role for perturbations, such as species removal, in evolving ecological communities.
Collapse
Affiliation(s)
- Joao A Ascensao
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Jonas Denk
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kristen Lok
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - QinQin Yu
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Present affiliation: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Kelly M Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Oskar Hallatschek
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
25
|
McGuire BE, Nano FE. Whole-genome sequencing analysis of two heat-evolved Escherichia coli strains. BMC Genomics 2023; 24:154. [PMID: 36973666 PMCID: PMC10044804 DOI: 10.1186/s12864-023-09266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND High temperatures cause a suite of problems for cells, including protein unfolding and aggregation; increased membrane fluidity; and changes in DNA supercoiling, RNA stability, transcription and translation. Consequently, enhanced thermotolerance can evolve through an unknown number of genetic mechanisms even in the simple model bacterium Escherichia coli. To date, each E. coli study exploring this question resulted in a different set of mutations. To understand the changes that can arise when an organism evolves to grow at higher temperatures, we sequenced and analyzed two previously described E. coli strains, BM28 and BM28 ΔlysU, that have been laboratory adapted to the highest E. coli growth temperature reported to date. RESULTS We found three large deletions in the BM28 and BM28 ΔlysU strains of 123, 15 and 8.5 kb in length and an expansion of IS10 elements. We found that BM28 and BM28 ΔlysU have considerably different genomes, suggesting that the BM28 culture that gave rise to BM28 and BM28 ΔlysU was a mixed population of genetically different cells. Consistent with published findings of high GroESL expression in BM28, we found that BM28 inexplicitly carries the groESL bearing plasmid pOF39 that was maintained simply by high-temperature selection pressure. We identified over 200 smaller insertions, deletions, single nucleotide polymorphisms and other mutations, including changes in master regulators such as the RNA polymerase and the transcriptional termination factor Rho. Importantly, this genome analysis demonstrates that the commonly cited findings that LysU plays a crucial role in thermotolerance and that GroESL hyper-expression is brought about by chromosomal mutations are based on a previous misinterpretation of the genotype of BM28. CONCLUSIONS This whole-genome sequencing study describes genetically distinct mechanisms of thermotolerance evolution from those found in other heat-evolved E. coli strains. Studying adaptive laboratory evolution to heat in simple model organisms is important in the context of climate change. It is important to better understand genetic mechanisms of enhancing thermotolerance in bacteria and other organisms, both in terms of optimizing laboratory evolution methods for various organisms and in terms of potential genetic engineering of organisms most at risk or most important to our societies and ecosystems.
Collapse
Affiliation(s)
- Bailey E McGuire
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada.
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada
| |
Collapse
|
26
|
Fromm SA, O'Connor KM, Purdy M, Bhatt PR, Loughran G, Atkins JF, Jomaa A, Mattei S. The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services. Nat Commun 2023; 14:1095. [PMID: 36841832 PMCID: PMC9968351 DOI: 10.1038/s41467-023-36742-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Our understanding of protein synthesis has been conceptualised around the structure and function of the bacterial ribosome. This complex macromolecular machine is the target of important antimicrobial drugs, an integral line of defence against infectious diseases. Here, we describe how open access to cryo-electron microscopy facilities combined with bespoke user support enabled structural determination of the translating ribosome from Escherichia coli at 1.55 Å resolution. The obtained structures allow for direct determination of the rRNA sequence to identify ribosome polymorphism sites in the E. coli strain used in this study and enable interpretation of the ribosomal active and peripheral sites at unprecedented resolution. This includes scarcely populated chimeric hybrid states of the ribosome engaged in several tRNA translocation steps resolved at ~2 Å resolution. The current map not only improves our understanding of protein synthesis but also allows for more precise structure-based drug design of antibiotics to tackle rising bacterial resistance.
Collapse
Affiliation(s)
- Simon A Fromm
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Kate M O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Michael Purdy
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland. .,MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Ahmad Jomaa
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA. .,Centre for Cell and Membrane Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
27
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
28
|
Sun Y, Xu J, Zhou H, Zhang H, Wu J, Yang L. Recombinant Protein Expression Chassis Library of Vibrio natriegens by Fine-Tuning the Expression of T7 RNA Polymerase. ACS Synth Biol 2023; 12:555-564. [PMID: 36719178 DOI: 10.1021/acssynbio.2c00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vibrio natriegens is the fastest-growing bacteria, and its doubling time is less than 10 min. At present, the T7 expression system has been introduced into V. natriegens for heterologous protein expression, including the commercial strain Vmax1 and the variant VnDX,2 which is a backup expression chassis of Escherichia coli BL21(DE3). However, the strength of the existing T7 expression system is not optimal for every recombinant protein. The different expression strengths of T7 RNA polymerase (T7 RNAP) can be obtained by changing the promoter and ribosome binding site (RBS) sequences of T7 RNAP at different transcription and translation levels. In this work, we obtained a robust VnDX variant library with the fine-tuning T7 RNAP using the industrially used enzyme glucose dehydrogenase (GDH) as the reporter protein. Among this library, the variant VnDX-tet, whose promoter of T7 RNAP was changed from PlacUV5 to Ptet, showed that the reporter enzyme GDH activity was increased by 109% by the T7 expression system. Similarly, variants with different T7 RNAP translation levels were obtained by changing RBS sequences upstream of T7 RNAP, and the results showed that the variant VnDX-RBS12/pGDH had the highest GDH activity, which increased by 12.6%. The VnDX variant library constructed in this study with different T7 expression strengths provides a choice for expressing various recombinant proteins, greatly expanding the application of V. natriegens.
Collapse
Affiliation(s)
- Yijie Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Haisheng Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Hongyu Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| |
Collapse
|
29
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Glandorf B, Herman L, Andryszkiewicz M, Gomes A, Liu Y, Peluso S, Chesson A. Safety evaluation of the food enzyme d-tagatose 3-epimerase from the genetically modified Escherichia coli strain PS-Sav-001. EFSA J 2023; 21:e07752. [PMID: 36789357 PMCID: PMC9909378 DOI: 10.2903/j.efsa.2023.7752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The food enzyme d-tagatose 3-epimerase (EC 5.1.3.31) is produced with the genetically modified Escherichia coli strain PS-Sav-001 by SAVANNA Ingredients GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. The food enzyme is used while retained inside a membrane reactor to convert d-fructose into the speciality carbohydrate d-allulose (syn. d-psicose). Since residual amounts of total organic solids (TOS) are removed by the purification steps applied during the production of d-allulose, dietary exposure was not calculated and toxicological studies were not considered necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
30
|
Browning DF, Hobman JL, Busby SJW. Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Microb Genom 2023; 9:mgen000922. [PMID: 36745549 PMCID: PMC9997739 DOI: 10.1099/mgen.0.000922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli K-12 was originally isolated 100 years ago and since then it has become an invaluable model organism and a cornerstone of molecular biology research. However, despite its pedigree, since its initial isolation E. coli K-12 has been repeatedly cultured, passaged and mutagenized, resulting in an organism that carries many genetic changes. To understand more about this important model organism, we have sequenced the genomes of two ancestral K-12 strains, WG1 and EMG2, considered to be the progenitors of many key laboratory strains. Our analysis confirms that these strains still carry genetic elements such as bacteriophage lambda (λ) and the F plasmid, but also indicates that they have undergone extensive laboratory-based evolution. Thus, scrutinizing the genomes of ancestral E. coli K-12 strains leads us to examine whether E. coli K-12 is a sufficiently robust model organism for 21st century microbiology.
Collapse
Affiliation(s)
- Douglas F Browning
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
Crystal Structure of Allantoinase from Escherichia coli BL21: A Molecular Insight into a Role of the Active Site Loops in Catalysis. Molecules 2023; 28:molecules28020827. [PMID: 36677881 PMCID: PMC9863593 DOI: 10.3390/molecules28020827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Allantoinase (ALLase; EC 3.5.2.5) possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carbamylated lysine. ALLase acts as a key enzyme for the biogenesis and degradation of ureides by catalyzing the conversion of allantoin into allantoate. Biochemically, ALLase belongs to the cyclic amidohydrolase family, which also includes dihydropyrimidinase, dihydroorotase, hydantoinase (HYDase), and imidase. Previously, the crystal structure of ALLase from Escherichia coli K-12 (EcALLase-K12) was reported; however, the two active site loops crucial for substrate binding were not determined. This situation would limit further docking and protein engineering experiments. Here, we solved the crystal structure of E. coli BL21 ALLase (EcALLase-BL21) at a resolution of 2.07 Å (PDB ID 8HFD) to obtain more information for structural analyses. The structure has a classic TIM barrel fold. As compared with the previous work, the two missed active site loops in EcALLase-K12 were clearly determined in our structure of EcALLase-BL21. EcALLase-BL21 shared active site similarity with HYDase, an important biocatalyst for industrial production of semisynthetic penicillin and cephalosporins. Based on this structural comparison, we discussed the functional role of the two active site loops in EcALLase-BL21 to better understand the substrate/inhibitor binding mechanism for further biotechnological and pharmaceutical applications.
Collapse
|
32
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 6'-sialyllactose (6'-SL) sodium salt produced by derivative strains of Escherichia coli BL21 (DE3) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07645. [PMID: 36507098 PMCID: PMC9728050 DOI: 10.2903/j.efsa.2022.7645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 6'-sialyllactose (6'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 6'-SL, but it also contains d-lactose, 6'-sialyllactulose, sialic acid, N-acetyl-d-glucosamine and a small fraction of other related oligosaccharides. The NF is produced by fermentation with two genetically modified strains of Escherichia coli BL21 (DE3), the production strain and the optional degradation strain. The information provided on the identity, manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for special medical purposes and food supplements. The target population is the general population. In some scenarios at the maximum use levels, the estimated intakes per kg body weight were higher than the high average natural intake of 6'-SL from human milk. However, given the intrinsic nature of human milk oligosaccharides (HMOs), the wide range of intakes from human milk, and considering that infants are naturally exposed to similar amounts of these substances, the Panel considers that the consumption of the NF at the proposed conditions of use does not raise safety concerns. The intake of 6'-SL in breastfed infants on a body weight basis is also expected to be safe for other population groups. The intake of other carbohydrate-type compounds structurally related to 6'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added 6'-SL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
33
|
Favate JS, Liang S, Cope AL, Yadavalli SS, Shah P. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation. eLife 2022; 11:e81979. [PMID: 36214449 PMCID: PMC9645810 DOI: 10.7554/elife.81979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here, we use the Escherichia coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution.
Collapse
Affiliation(s)
- John S Favate
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Shun Liang
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Alexander L Cope
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Robert Wood Johnson Medical School, Rutgers UniversityNew BrunswickUnited States
| | - Srujana S Yadavalli
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Premal Shah
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New Jersey, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
34
|
Izutsu M, Lenski RE. Experimental test of the contributions of initial variation and new mutations to adaptive evolution in a novel environment. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.958406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experimental evolution is an approach that allows researchers to study organisms as they evolve in controlled environments. Despite the growing popularity of this approach, there are conceptual gaps among projects that use different experimental designs. One such gap concerns the contributions to adaptation of genetic variation present at the start of an experiment and that of new mutations that arise during an experiment. The primary source of genetic variation has historically depended largely on the study organisms. In the long-term evolution experiment (LTEE) using Escherichia coli, for example, each population started from a single haploid cell, and therefore, adaptation depended entirely on new mutations. Most other microbial evolution experiments have followed the same strategy. By contrast, evolution experiments using multicellular, sexually reproducing organisms typically start with preexisting variation that fuels the response to selection. New mutations may also come into play in later generations of these experiments, but it is generally difficult to quantify their contribution in these studies. Here, we performed an experiment using E. coli to compare the contributions of initial genetic variation and new mutations to adaptation in a new environment. Our experiment had four treatments that varied in their starting diversity, with 18 populations in each treatment. One treatment depended entirely on new mutations, while the other three began with mixtures of clones, whole-population samples, or mixtures of whole-population samples from the LTEE. We tracked a genetic marker associated with different founders in two treatments. These data revealed significant variation in fitness among the founders, and that variation impacted evolution in the early generations of our experiment. However, there were no differences in fitness among the treatments after 500 or 2,000 generations in the new environment, despite the variation in fitness among the founders. These results indicate that new mutations quickly dominated, and eventually they contributed more to adaptation than did the initial variation. Our study thus shows that preexisting genetic variation can have a strong impact on early evolution in a new environment, but new beneficial mutations may contribute more to later evolution and can even drive some initially beneficial variants to extinction.
Collapse
|
35
|
Characterization of novel nuclease and protease activities among Leptospiral immunoglobulin-like proteins. Arch Biochem Biophys 2022; 727:109349. [PMID: 35820644 DOI: 10.1016/j.abb.2022.109349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022]
Abstract
Bacterial immunoglobulin-like (BIg) domain containing proteins play a variety of biological functions. Leptospiral Immunoglobulin-like (Lig) proteins are well-known virulence factors located on the surface of the pathogenic Leptospira that act during adhesion, invasion, and immune evasion. The Lig proteins have many roles and have been designated as multifaceted proteins. However, the hydrolyzing function of Lig proteins is not yet investigated in detail. Here, we report novel in-vitro nuclease and protease activities in the Ig-like domain of LigA protein. All Ig-like domains were able to cleave DNA in the presence of a divalent ion, but not RNA. Site-directed mutagenesis revealed Mg+2 binding residues in the Ig-like domain of LigA7. The basis of novel nuclease activity may be associated with protein adopting different conformation in the presence of divalent ions and substrate as investigated by change of intrinsic fluorescence. The docking of a stretch of double-strand DNA shows the binding on the positive surface of the protein. In addition, the protein is also observed to cleave a general protease substrate, β-casein, in our experimental condition. Our results proposed that the novel functions may be associated with neutrophil extracellular Trap (NET) evasion. Overall this study enhances the basic knowledge of non-nuclease proteins involved in the DNA cleavage activity and makes the foundation to explore its in-vivo activity in pathogenic Leptospira and other pathogens as well. Moreover, this information may be utilized to develop preventive strategies to interfere with Leptospira immune evasion.
Collapse
|
36
|
Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, Sun XM. Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact 2022; 21:191. [PMID: 36109777 PMCID: PMC9479345 DOI: 10.1186/s12934-022-01917-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli, one of the most efficient expression hosts for recombinant proteins (RPs), is widely used in chemical, medical, food and other industries. However, conventional expression strains are unable to effectively express proteins with complex structures or toxicity. The key to solving this problem is to alleviate the host burden associated with protein overproduction and to enhance the ability to accurately fold and modify RPs at high expression levels. Here, we summarize the recently developed optimization strategies for the high-level production of RPs from the two aspects of host burden and protein activity. The aim is to maximize the ability of researchers to quickly select an appropriate optimization strategy for improving the production of RPs.
Collapse
|
37
|
Mayer F, Cserjan-Puschmann M, Haslinger B, Shpylovyi A, Dalik T, Sam C, Hahn R, Striedner G. Strain specific properties of Escherichia coli can prevent non-canonical amino acid misincorporation caused by scale-related process heterogeneities. Microb Cell Fact 2022; 21:170. [PMID: 35999607 PMCID: PMC9396823 DOI: 10.1186/s12934-022-01895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact. RESULTS We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed-batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. CONCLUSIONS This study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Florian Mayer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Benedikt Haslinger
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Anton Shpylovyi
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Thomas Dalik
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christian Sam
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
38
|
Foster AW, Clough SE, Aki Z, Young TR, Clarke AR, Robinson NJ. Metalation calculators for E. coli strain JM109 (DE3): Aerobic, anaerobic and hydrogen peroxide exposed cells cultured in LB media. Metallomics 2022; 14:6657815. [PMID: 35933161 PMCID: PMC9434800 DOI: 10.1093/mtomcs/mfac058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/24/2022] [Indexed: 11/14/2022]
Abstract
Three web-based calculators, and three analogous spreadsheets, have been generated that predict in vivo metal occupancies of proteins based on known metal affinities. The calculations exploit estimates of the availabilities of the labile buffered pools of different metals inside a cell. Here, metal availabilities have been estimated for a strain of E. coli that is commonly used in molecular biology and biochemistry research, for example in the production of recombinant proteins. Metal availabilities have been examined for cells grown in LB medium aerobically, anaerobically and in response to H2O2 by monitoring the abundance of a selected set of metal-responsive transcripts by qPCR. The selected genes are regulated by DNA-binding metal sensors that have been thermodynamically characterised in related bacterial cells enabling gene expression to be read-out as a function of intracellular metal availabilities expressed as free energies for forming metal complexes. The calculators compare these values with the free energies for forming complexes with the protein of interest, derived from metal affinities, to estimate how effectively the protein can compete with exchangeable binding sites in the intracellular milieu. The calculators then inter-compete the different metals, limiting total occupancy of the site to a maximum stoichiometry of 1, to output percentage occupancies with each metal. In addition to making these new and conditional calculators available, an original purpose of this article was to provide a tutorial which discusses constraints of this approach and presents ways in which such calculators might be exploited in basic and applied research, and in next-generation manufacturing.
Collapse
Affiliation(s)
- Andrew W Foster
- Department of Biosciences, Durham University, Durham, UK.,Department of Chemistry, Durham University, Durham, UK
| | - Sophie E Clough
- Department of Biosciences, Durham University, Durham, UK.,Department of Chemistry, Durham University, Durham, UK
| | - Zeynep Aki
- Advanced Research Computing, Durham University, Durham, UK
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham, UK.,Department of Chemistry, Durham University, Durham, UK
| | | | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham, UK.,Department of Chemistry, Durham University, Durham, UK
| |
Collapse
|
39
|
McElwain L, Phair K, Kealey C, Brady D. Current trends in biopharmaceuticals production in Escherichia coli. Biotechnol Lett 2022; 44:917-931. [PMID: 35796852 DOI: 10.1007/s10529-022-03276-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
Since the manufacture of the first biotech product for a fledgling biopharmaceutical industry in 1982, Escherichia coli, has played an important role in the industrial production of recombinant proteins. It is now 40 years since the introduction of Humulin® for the treatment of diabetes. E. coli remains an important production host, its use as a cell factory is well established and it has become the most popular expression platform particularly for non-glycosylated therapeutic proteins. A number of significant inherent obstacles in the use of prokaryotic expression systems to produce biologics has always restricted production. These include codon usage, the absence of post-translational modifications and proteolytic processing at the cell envelope. In this review, we reflect on the contribution that this model organism has made in the production of new biotech products for human medicine. This will include new advancements in the E. coli expression system to meet the biotechnology industry requirements, such as novel engineered strains to glycosylate heterologous proteins, add disulphide bonds and express complex proteins. The biopharmaceutical market is growing rapidly, with two production systems competing for market dominance: mammalian cells and microorganisms. In the past 10 years, with increased growth of antibody-based therapies, mammalian hosts particularly CHO cells have dominated. However, with new antibody like scaffolds and mimetics emerging as future proteins of interest, E. coli has again the opportunity to be the selected as the production system of choice.
Collapse
Affiliation(s)
- L McElwain
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - K Phair
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - C Kealey
- Department of Pharmaceutical Sciences and Biotechnology, Technical University of the Shannon: Midlands Midwest, Athlone Campus, Dublin Road, Kilmacuagh, Athlone, N37 HD68, County Westmeath, Ireland
| | - D Brady
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland.
| |
Collapse
|
40
|
Ezzeroug Ezzraimi A, Hannachi N, Mariotti A, Rolland C, Levasseur A, Baron SA, Rolain JM, Camoin-Jau L. The Antibacterial Effect of Platelets on Escherichia coli Strains. Biomedicines 2022; 10:biomedicines10071533. [PMID: 35884840 PMCID: PMC9313237 DOI: 10.3390/biomedicines10071533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023] Open
Abstract
Platelets play an important role in defense against pathogens; however, the interaction between Escherichia coli and platelets has not been well described and detailed. Our goal was to study the interaction between platelets and selected strains of E. coli in order to evaluate the antibacterial effect of platelets and to assess bacterial effects on platelet activation. Washed platelets and supernatants of pre-activated platelets were incubated with five clinical colistin-resistant and five laboratory colistin-sensitive strains of E. coli in order to study bacterial growth. Platelet activation was measured with flow cytometry by evaluating CD62P expression. To identify the difference in strain behavior toward platelets, a pangenome analysis using Roary and O-antigen serotyping was carried out. Both whole platelets and the supernatant of activated platelets inhibited growth of three laboratory colistin-sensitive strains. In contrast, platelets promoted growth of the other strains. There was a negative correlation between platelet activation and bacterial growth. The Roary results showed no logical clustering to explain the mechanism of platelet resistance. The diversity of the responses might be due to strains of different types of O-antigen. Our results show a bidirectional interaction between platelets and E. coli whose expression is dependent on the bacterial strain involved.
Collapse
Affiliation(s)
- Amina Ezzeroug Ezzraimi
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
| | - Nadji Hannachi
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- Département de Pharmacie, Faculté de Médecine, Université Ferhat Abbas Sétif I, Sétif 19000, Algeria
| | - Antoine Mariotti
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Aix Marseille University, IRD, SSA, APHM, VITROME, IHU Méditerranée Infection, 13385 Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Aix Marseille University, IRD, SSA, APHM, VITROME, IHU Méditerranée Infection, 13385 Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
| | - Jean-Marc Rolain
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
| | - Laurence Camoin-Jau
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
- Correspondence: ; Tel.: +33-4-13-73-24-01; Fax: +33-4-13-73-24-02
| |
Collapse
|
41
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 3-fucosyllactose (3-FL) produced by a derivative strain of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07329. [PMID: 35646167 PMCID: PMC9131588 DOI: 10.2903/j.efsa.2022.7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3-fucosyllactose (3-FL) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3-FL, but it also contains d-lactose, l-fucose, d-glucose and d-galactose, and a small fraction of other related saccharides. The NF is produced by fermentation with a genetically modified strain of Escherichia coli BL21 (DE3). The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for infants and young children, food for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 3-FL from both proposed and combined (authorised and proposed) uses at their respective maximum use levels in all population categories does not exceed the highest intake level of 3-FL from human milk in infants on a body weight basis. The intake of 3-FL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3-FL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added 3-FL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
42
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of lacto-N-tetraose (LNT) produced by derivative strains of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07242. [PMID: 35600267 PMCID: PMC9109231 DOI: 10.2903/j.efsa.2022.7242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on lacto-N-tetraose (LNT) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is a powdered mixture mainly composed of the human-identical milk oligosaccharide (HiMO) LNT, but it also contains d-lactose, lacto-N-triose II and para-lacto-N-hexaose, and a small fraction of other related saccharides. The NF is produced by fermentation with two genetically modified strains of Escherichia coli BL21 (DE3), the production strain and the optional degradation strain. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant and follow-on formula, food for infants and young children, food for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of LNT from the NF at the maximum proposed use levels does not exceed the intake level of naturally occurring LNT in breastfed infants on a body weight basis. The intake of LNT in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to LNT is also considered of no safety concern. Food supplements are not intended to be used if other foods with added LNT or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
43
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 3'-sialyllactose (3'-SL) sodium salt produced by derivative strains of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07331. [PMID: 35646166 PMCID: PMC9131611 DOI: 10.2903/j.efsa.2022.7331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3'-sialyllactose (3'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3'-SL, but it also contains d-lactose, 3'-sialyllactulose, sialic acid, N-acetyl-d-glucosamine and a small fraction of other related oligosaccharides. The NF is produced by fermentation with two genetically modified strains of Escherichia coli BL21 (DE3), the production strain and the optional degradation strain. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for infants and young children, food for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 3'-SL from both proposed and combined (authorised and proposed) uses at their respective maximum use levels in all population categories does not exceed the highest intake level of 3'-SL from human milk in infants on a body weight basis. The intake of 3'-SL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added 3'-SL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
44
|
Li M, Wang Z, Zhou M, Zhang C, Zhi K, Liu S, Sun X, Wang Z, Liu J, Liu D. Continuous Production of Human Epidermal Growth Factor Using Escherichia coli Biofilm. Front Microbiol 2022; 13:855059. [PMID: 35495696 PMCID: PMC9039743 DOI: 10.3389/fmicb.2022.855059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing demand for recombinant proteins necessitates efficient protein production processes. In this study, a continuous process for human epidermal growth factor (hEGF) secretion by Escherichia coli was developed by taking advantage of biofilm formation. Genes bcsB, fimH, and csgAcsgB that have proved to facilitate biofilm formation and some genes moaE, yceA, ychJ, and gshB potentially involved in biofilm formation were examined for their effects on hEGF secretion as well as biofilm formation. Finally, biofilm-based fermentation processes were established, which demonstrated the feasibility of continuous production of hEGF with improved efficiency. The best result was obtained from ychJ-disruption that showed a 28% increase in hEGF secretion over the BL21(DE3) wild strain, from 24 to 32 mg/L. Overexpression of bcsB also showed great potential in continuous immobilized fermentation. Overall, the biofilm engineering here represents an effective strategy to improve hEGF production and can be adapted to produce more recombinant proteins in future.
Collapse
Affiliation(s)
- Mengting Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Miao Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kaiqi Zhi
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Shuli Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Xiujuan Sun
- Institute of Industrial Biotechnology, Jiangsu Industrial Technology Research Institute (JITRI), Nanjing, China
| | - Zhi Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Jinle Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
- Institute of Industrial Biotechnology, Jiangsu Industrial Technology Research Institute (JITRI), Nanjing, China
| |
Collapse
|
45
|
Mathé-Hubert H, Amia R, Martin M, Gaffé J, Schneider D. Evolution of Bacterial Persistence to Antibiotics during a 50,000-Generation Experiment in an Antibiotic-Free Environment. Antibiotics (Basel) 2022; 11:antibiotics11040451. [PMID: 35453204 PMCID: PMC9028194 DOI: 10.3390/antibiotics11040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Failure of antibiotic therapies causes > 700,000 deaths yearly and involves both bacterial resistance and persistence. Persistence results in the relapse of infections by producing a tiny fraction of pathogen survivors that stay dormant during antibiotic exposure. From an evolutionary perspective, persistence is either a ‘bet-hedging strategy’ that helps to cope with stochastically changing environments or an unavoidable minimal rate of ‘cellular errors’ that lock the cells in a low activity state. Here, we analyzed the evolution of persistence over 50,000 bacterial generations in a stable environment by improving a published method that estimates the number of persister cells based on the growth of the reviving population. Our results challenged our understanding of the factors underlying persistence evolution. In one case, we observed a substantial decrease in persistence proportion, suggesting that the naturally observed persistence level is not an unavoidable minimal rate of ‘cellular errors’. However, although there was no obvious environmental stochasticity, in 11 of the 12 investigated populations, the persistence level was maintained during 50,000 bacterial generations.
Collapse
|
46
|
Tan Y, Henehan GT, Kinsella GK, Ryan BJ. Extracellular secretion of a cutinase with polyester-degrading potential by E. coli using a novel signal peptide from Amycolatopsis mediterranei. World J Microbiol Biotechnol 2022; 38:60. [PMID: 35195792 PMCID: PMC8866283 DOI: 10.1007/s11274-022-03246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 10/26/2022]
Abstract
Recent studies in this laboratory showed that an extracellular cutinase from A. mediterranei (AmCut) was able to degrade the plastics polycaprolactone and polybutylene succinate. Such plastics can be slow to degrade in soils due to a lack of efficient polyester degrading organisms. AmCut also showed potential for the biocatalytic synthesis of esters by reverse hydrolysis. The gene for AmCut has an upstream leader sequence whose transcript is not present in the purified enzyme. In this study, we show using predictive modelling, that this sequence codes for an N-terminal signal peptide that directs transmembrane expression via the Sec secretion pathway. E. coli is a useful host for recombinant enzymes used in biocatalysis due to the ease of genetic manipulation in this organism, which allows tuning of enzymes for specific applications, by mutagenesis. When a truncated GST-tagged AmCut gene (lacking its signal peptide) was expressed in E. coli, all cutinase activity was observed in the cytosolic fraction. However, when GST-tagged AmCut was expressed in E. coli along with its native signal peptide, cutinase activity was observed in both the periplasmic space and the culture medium. This finding revealed that the native signal peptide of a Gram-positive organism (AmCut) was being recognised by the Gram-negative (E. coli) Sec transmembrane transport system. AmCut was transported into E. coli's periplasmic space from where it was released into the culture medium. Surprisingly, the presence of a bulky GST tag at the N-terminus of the signal peptide did not hinder transmembrane targeting. Although the periplasmic targeting was unexpected, it is not unprecedented due to the conservation of the Sec pathway across species. It was more surprising that AmCut was secreted from the periplasmic space into the culture medium. This suggests that extracellular AmCut translocation across the E. coli outer membrane may involve non-classical secretion pathways. This tuneable recombinant E. coli expressing extracellular AmCut may be useful for degradation of polyester substrates in the environment; this and other applications are discussed.
Collapse
Affiliation(s)
- Yeqi Tan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Gary T Henehan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Barry J Ryan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland.
| |
Collapse
|
47
|
inPOSE: A Flexible Toolbox for Chromosomal Cloning and Amplification of Bacterial Transgenes. Microorganisms 2022; 10:microorganisms10020236. [PMID: 35208691 PMCID: PMC8875745 DOI: 10.3390/microorganisms10020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Cloning the genes and operons encoding heterologous functions in bacterial hosts is now almost exclusively carried out using plasmid vectors. This has multiple drawbacks, including the need for constant selection and variation in copy numbers. The chromosomal integration of transgenes has always offered a viable alternative; however, to date, it has been of limited use due to its tedious nature and often being limited to a single copy. We introduce here a strategy that uses bacterial insertion sequences, which are the simplest autonomous transposable elements to insert and amplify genetic cargo into a bacterial chromosome. Transgene insertion can take place either as transposition or homologous recombination, and copy number amplification is achieved using controlled copy-paste transposition. We display the successful use of IS1 and IS3 for this purpose in Escherichia coli cells using various selection markers. We demonstrate the insertion of selectable genes, an unselectable gene and a five-gene operon in up to two copies in a single step. We continue with the amplification of the inserted cassette to double-digit copy numbers within two rounds of transposase induction and selection. Finally, we analyze the stability of the cloned genetic constructs in the lack of selection and find it to be superior to all investigated plasmid-based systems. Due to the ubiquitous nature of transposable elements, we believe that with proper design, this strategy can be adapted to numerous other bacterial species.
Collapse
|
48
|
Tagua VG, Molina‐Henares MA, Travieso ML, Nisa‐Martínez R, Quesada JM, Espinosa‐Urgel M, Ramos‐González MI. C‐di‐GMP
and biofilm are regulated in
Pseudomonas putida
by the
CfcA
/
CfcR
two‐component system in response to salts. Environ Microbiol 2022; 24:158-178. [DOI: 10.1111/1462-2920.15891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor G. Tagua
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | | - María L. Travieso
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Rafael Nisa‐Martínez
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - José Miguel Quesada
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Manuel Espinosa‐Urgel
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | |
Collapse
|
49
|
Karyolaimos A, de Gier JW. Strategies to Enhance Periplasmic Recombinant Protein Production Yields in Escherichia coli. Front Bioeng Biotechnol 2021; 9:797334. [PMID: 34970535 PMCID: PMC8712718 DOI: 10.3389/fbioe.2021.797334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Main reasons to produce recombinant proteins in the periplasm of E. coli rather than in its cytoplasm are to -i- enable disulfide bond formation, -ii- facilitate protein isolation, -iii- control the nature of the N-terminus of the mature protein, and -iv- minimize exposure to cytoplasmic proteases. However, hampered protein targeting, translocation and folding as well as protein instability can all negatively affect periplasmic protein production yields. Strategies to enhance periplasmic protein production yields have focused on harmonizing secretory recombinant protein production rates with the capacity of the secretory apparatus by transcriptional and translational tuning, signal peptide selection and engineering, increasing the targeting, translocation and periplasmic folding capacity of the production host, preventing proteolysis, and, finally, the natural and engineered adaptation of the production host to periplasmic protein production. Here, we discuss these strategies using notable examples as a thread.
Collapse
Affiliation(s)
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
50
|
Liao J, Shen D, Lin L, Chen H, Jin Y, Chou SH, Yu XQ, Li T, Qian G. Bacterial quorum sensing quenching activity of Lysobacter leucyl aminopeptidase acts by interacting with autoinducer synthase. Comput Struct Biotechnol J 2021; 19:6179-6190. [PMID: 34900131 PMCID: PMC8632722 DOI: 10.1016/j.csbj.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/02/2023] Open
Abstract
Acyl-homoserine lactone (AHL) is the most studied autoinducer in gram-negative bacteria controlling infections of various pathogens. Quenching of AHL signaling by inhibiting AHL synthesis or AHL-receptor binding via small molecular chemicals or enzymatically degrading AHL is commonly used to block bacterial infections. Here, we describe a new quorum-quenching strategy that directly “acquires” bacterial genes/proteins through a defined platform. We artificially expressed a typical AHL synthase gene pcoI from the biocontrol Pseudomonas fluorescens 2P24 in the antifungal bacterium Lysobacter enzymogenes OH11 lacking AHL production. This step led to the discovery of multiple PcoI interacting protein candidates from L. enzymogenes. The individual expression of these candidate genes in 2P24 led to the identification of Le0959, which encodes leucyl aminopeptidase, an effective protein that inhibits AHL synthesis in 2P24. Therefore, we define Le0959 as LqqP (Lysobacterquorum-quenching protein). The expression of pcoI in E. coli could produce AHL, and the introduction of lqqP into E. coli expressing pcoI could prevent the production of AHL. LqqP directly binds to PcoI, and this protein–protein binding reduced the abundance of free PcoI (capable of AHL synthesis) in vivo, thereby blocking PcoI-dependent AHL production. Overall, this study highlights the discovery of LqqP in quenching AHL quorum sensing by binding to AHL synthase via developing a previously-uncharacterized screening technique for bacterial quorum quenching.
Collapse
Affiliation(s)
- Jinxing Liao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yajie Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|