1
|
Romero‐Pérez PS, Martínez‐Castro LV, Linares A, Arroyo‐Mosso I, Sánchez‐Puig N, Cuevas‐Velazquez CL, Sukenik S, Guerrero A, Covarrubias AA. Self-association and multimer formation in AtLEA4-5, a desiccation-induced intrinsically disordered protein from plants. Protein Sci 2024; 33:e5192. [PMID: 39467203 PMCID: PMC11516066 DOI: 10.1002/pro.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
During seed maturation, plants may experience severe desiccation, leading to the accumulation of late embryogenesis abundant (LEA) proteins. These intrinsically disordered proteins also accumulate in plant tissues under water deficit. Functional roles of LEA proteins have been proposed based on in vitro studies, where monomers are considered as the functional units. However, the potential formation of homo-oligomers has been little explored. In this work, we investigated the potential self-association of Arabidopsis thaliana group 4 LEA proteins (AtLEA4) using in vitro and in vivo approaches. LEA4 proteins represent a compelling case of study due to their high conservation throughout the plant kingdom. This protein family is characterized by a conserved N-terminal region, with a high alpha-helix propensity and invitro protective activity, as compared to the highly disordered and low-conserved C-terminal region. Our findings revealed that full-length AtLEA4 proteins oligomerize and that both terminal regions are sufficient for self-association in vitro. However, the ability of both amino and carboxy regions of AtLEA4-5 to self-associate invivo is significantly lower than that of the entire protein. Using high-resolution and quantitative fluorescence microscopy, we were able to disclose the unreported ability of LEA proteins to form high-order oligomers in planta. Additionally, we found that high-order complexes require the simultaneous engagement of both terminal regions, indicating that the entire protein is needed to attain such structural organization. This research provides valuable insights into the self-association of LEA proteins in plants and emphasizes the role of protein oligomer formation.
Collapse
Affiliation(s)
- Paulette Sofía Romero‐Pérez
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Laura V. Martínez‐Castro
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandro Linares
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Inti Arroyo‐Mosso
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Nuria Sánchez‐Puig
- Departamento de Química de BiomacromoléculasInstituto de Química, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Cesar L. Cuevas‐Velazquez
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California at MercedMercedCaliforniaUSA
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandra A. Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| |
Collapse
|
2
|
Lima MP, Hornsby BD, Lim CS, Cheatham TE. Molecular Modeling of Single- and Double-Hydrocarbon-Stapled Coiled-Coil Inhibitors against Bcr-Abl: Toward a Treatment Strategy for CML. J Phys Chem B 2024; 128:6476-6491. [PMID: 38951498 PMCID: PMC11247501 DOI: 10.1021/acs.jpcb.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias and a subset of acute lymphoblastic leukemias. As a result of the so-called Philadelphia chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase, which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown that conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation relative to traditional small-molecule therapeutics. Here, we iterate a new generation of CCmut3 inhibitors against Bcr-CC-mediated Bcr-Abl assembly designed to address these constraints through incorporation of all-hydrocarbon staples spanning i and i + 7 positions in α-helix 2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to evaluate single- and double-stapled CCmut3 candidates in silico for dynamics and binding energetics. We further model a truncated system characterized by the deletion of α-helix 1 and the flexible loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems devoid of the CPP, with a cyclized CPP, and with an open-configuration CPP, for a total of six systems that comprise our library. From this library, we present lead-stapled peptide candidates to be synthesized and evaluated experimentally as our next iteration of inhibitors against Bcr-Abl.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/metabolism
- Models, Molecular
- Molecular Dynamics Simulation
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell-Penetrating Peptides/chemistry
- Cell-Penetrating Peptides/pharmacology
- Cell-Penetrating Peptides/metabolism
Collapse
Affiliation(s)
- Maria
Carolina P. Lima
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Braxten D. Hornsby
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Thomas E. Cheatham
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Lima MCP, Hornsby BD, Lim CS, Cheatham TE. Computational Modeling of Stapled Coiled-Coil Inhibitors Against Bcr-Abl: Toward a Treatment Strategy for CML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.566894. [PMID: 38014060 PMCID: PMC10680756 DOI: 10.1101/2023.11.15.566894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias (CML) and a subset of acute lymphoblastic leukemias (ALL). As a result of the so-called Philadelphia Chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation, relative to traditional small molecule therapeutics. Here, we iterate a new generation of our inhibitor against Bcr-CC mediated Bcr-Abl assembly that is designed to address these constraints through incorporation of all-hydrocarbon staples spanning i, i + 7 positions in helix α2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to design and characterize single and double staple candidates in silico, evaluating binding energetics and building upon our seminal work modeling single hydrocarbon staples when applied to a truncated Bcr-CC sequence. This strategy enables us to efficiently build, characterize, and screen lead single/double stapled CPP-CCmut3-st candidates for experimental studies and validation in vitro and in vivo. In addition to full-length CPP-CCmut, we model a truncated system characterized by deletion of helix α1 and the flexible-loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems without CPP, with cyclized CPP, and with linear CPP, for a total of six systems which comprise our library. From this library, we present lead stapled peptide candidates to be synthesized and evaluated experimentally as our next-generation inhibitors against Bcr-Abl.
Collapse
Affiliation(s)
- Maria Carolina P. Lima
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Braxten D. Hornsby
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Choudhury A, Saha S, Maiti NC, Datta S. Exploring structural features and potential lipid interactions of Pseudomonas aeruginosa type three secretion effector PemB by spectroscopic and calorimetric experiments. Protein Sci 2023; 32:e4627. [PMID: 36916835 PMCID: PMC10044109 DOI: 10.1002/pro.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Type Three Secretion System (T3SS) is a sophisticated nano-scale weapon utilized by several gram negative bacteria under stringent spatio-temporal regulation to manipulate and evade host immune systems in order to cause infection. To the best of our knowledge, this present study is the first report where we embark upon characterizing inherent features of native type three secretion effector protein PemB through biophysical techniques. Herein, first, we demonstrate binding affinity of PemB for phosphoinositides through isothermal calorimetric titrations. Second, we shed light on its strong homo-oligomerization propensity in aqueous solution through multiple biophysical methods. Third, we also employ several spectroscopic techniques to delineate its disordered and helical conformation. Lastly, we perform a phylogenetic analysis of this new effector to elucidate evolutionary relationship with other organisms. Taken together, our results shall surely contribute to our existing knowledge of Pseudomonas aeruginosa secretome.
Collapse
Affiliation(s)
- Arkaprabha Choudhury
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| | - Saumen Saha
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
| | - Nakul Chandra Maiti
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| | - Saumen Datta
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| |
Collapse
|
5
|
Badonyi M, Marsh JA. Large protein complex interfaces have evolved to promote cotranslational assembly. eLife 2022; 11:79602. [PMID: 35899946 PMCID: PMC9365393 DOI: 10.7554/elife.79602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Assembly pathways of protein complexes should be precise and efficient to minimise misfolding and unwanted interactions with other proteins in the cell. One way to achieve this efficiency is by seeding assembly pathways during translation via the cotranslational assembly of subunits. While recent evidence suggests that such cotranslational assembly is widespread, little is known about the properties of protein complexes associated with the phenomenon. Here, using a combination of proteome-specific protein complex structures and publicly available ribosome profiling data, we show that cotranslational assembly is particularly common between subunits that form large intermolecular interfaces. To test whether large interfaces have evolved to promote cotranslational assembly, as opposed to cotranslational assembly being a non-adaptive consequence of large interfaces, we compared the sizes of first and last translated interfaces of heteromeric subunits in bacterial, yeast, and human complexes. When considering all together, we observe the N-terminal interface to be larger than the C-terminal interface 54% of the time, increasing to 64% when we exclude subunits with only small interfaces, which are unlikely to cotranslationally assemble. This strongly suggests that large interfaces have evolved as a means to maximise the chance of successful cotranslational subunit binding.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Li Y, Zhang R, Wang C, Forouhar F, Clarke OB, Vorobiev S, Singh S, Montelione GT, Szyperski T, Xu Y, Hunt JF. Oligomeric interactions maintain active-site structure in a noncooperative enzyme family. EMBO J 2022; 41:e108368. [PMID: 35801308 DOI: 10.15252/embj.2021108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022] Open
Abstract
The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chi Wang
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Cryo-Electron Microscopy Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Farhad Forouhar
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics and Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Vorobiev
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Shikha Singh
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Chemistry & Chemical Biology and Center for Biotechnology & Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - John F Hunt
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Sun F, Ding L, Feng W, Cao Y, Lu F, Yang Q, Li W, Lu Y, Shabek N, Fu F, Yu H. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1714-1726. [PMID: 33206180 DOI: 10.1093/jxb/eraa544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
The BES1/BZR1 transcription factors regulate the expression of genes responsive to brassinosteroids and play pivotal roles in plant development, but their role in regulating kernel development in maize remains unclear. In this study, we found that ZmBES1/BZR1-5 positively regulates kernel size. Association analysis of candidate genes in 513 diverse maize inbred lines indicated that three SNPs related to ZmBES1/BZR1-5 were significantly associated with kernel width and whilst four SNPs were related to 100-kernel weight. Overexpression of ZmBES1/BZR1-5 in Arabidopsis and rice both significantly increased seed size and weight, and smaller kernels were produced in maize Mu transposon insertion and EMS mutants. The ZmBES1/BZR1-5 protein locates in the nucleus, contains bHLH and BAM domains, and shows no transcriptional activity as a monomer but forms a homodimer through the BAM domain. ChIP-sequencing analysis, and yeast one-hybrid and dual-luciferase assays demonstrated that the protein binds to the promoters of AP2/EREBP genes (Zm00001d010676 and Zm00001d032077) and inhibits their transcription. cDNA library screening showed that ZmBES1/BZR1-5 interacts with casein kinase II subunit β4 (ZmCKIIβ4) and ferredoxin 2 (ZmFdx2) in vitro and in vivo, respectively. Taken together, our study suggests that ZmBES1/BZR1-5 positively regulates kernel size, and provides new insights into understanding the mechanisms of kernel development in maize.
Collapse
Affiliation(s)
- Fuai Sun
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Lei Ding
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wenqi Feng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fengzhong Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Fischer A, Smieško M, Sellner M, Lill MA. Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results. J Med Chem 2021; 64:2489-2500. [PMID: 33617246 DOI: 10.1021/acs.jmedchem.0c02227] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular docking is a computational method widely used in drug discovery. Due to the inherent inaccuracies of molecular docking, visual inspection of binding modes is a crucial routine in the decision making process of computational medicinal chemists. Despite its apparent importance for medicinal chemistry projects, guidelines for the visual docking pose assessment have been hardly discussed in the literature. Here, we review the medicinal chemistry literature with the aim of identifying consistent principles for visual inspection, highlighting cases of its successful application, and discussing its limitations. In this context, we conducted a survey reaching experts in both academia and the pharmaceutical industry, which also included a challenge to distinguish native from incorrect poses. We were able to collect 93 expert opinions that offer valuable insights into visually supported decision-making processes. This perspective shall motivate discussions among experienced computational medicinal chemists and guide young scientists new to the field to stratify their compounds.
Collapse
Affiliation(s)
- André Fischer
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Manuel Sellner
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Seychell BC, Beck T. Molecular basis for protein-protein interactions. Beilstein J Org Chem 2021; 17:1-10. [PMID: 33488826 PMCID: PMC7801801 DOI: 10.3762/bjoc.17.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023] Open
Abstract
This minireview provides an overview on the current knowledge of protein-protein interactions, common characterisation methods to characterise them, and their role in protein complex formation with some examples. A deep understanding of protein-protein interactions and their molecular interactions is important for a number of applications, including drug design. Protein-protein interactions and their discovery are thus an interesting avenue for understanding how protein complexes, which make up the majority of proteins, work.
Collapse
Affiliation(s)
- Brandon Charles Seychell
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Tobias Beck
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
10
|
Quantifying the distribution of protein oligomerization degree reflects cellular information capacity. Sci Rep 2020; 10:17689. [PMID: 33077848 PMCID: PMC7573690 DOI: 10.1038/s41598-020-74811-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022] Open
Abstract
The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.
Collapse
|
11
|
Yoo SH, Kim IR, Jung YJ. Novel functional characterization of the insecticidal protein Vip3Aa on DNA binding activity. Biochem Biophys Res Commun 2020; 530:322-328. [PMID: 32828306 DOI: 10.1016/j.bbrc.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/30/2022]
Abstract
The toxicity of Vip3Aa protein on insect pests is known, however, it remains unclear underlying the structure-dependent molecular function of the Vip3Aa protein. To investigate the novel function of the Vip3Aa protein, we isolated recombinant Vip3Aa protein. The recombinant Vip3Aa protein was mostly present as oligomeric form depending on the hydrophobic amino acid residue. We found that the oligomeric Vip3Aa protein specifically binds to nucleic acids, including single-stranded (ssDNA) and double-stranded DNA (dsDNA). The conformational and functional domains of the Vip3Aa protein were confirmed by separating the Vip3Aa full and Vip3Aa active (actVip3Aa) forms using size exclusion chromatography and nucleic acid binding activity. Interestingly, actVip3Aa protein had a conformational change and decreased DNA binding activity compared to that of the Vip3Aa full, suggesting that N-terminal part of the Vip3Aa play an important role in maintaining the conformation and nucleic acid binding activity. These studies highlight novel functional characterization of the insecticidal protein Vip3Aa on DNA binding activity and may be attributed to the protection of DNA from the damage caused by oxidative stress.
Collapse
Affiliation(s)
- Su-Hyang Yoo
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea
| | - Il Ryong Kim
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea
| | - Young Jun Jung
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea.
| |
Collapse
|
12
|
Zabel WJ, Hagner KP, Livesey BJ, Marsh JA, Setayeshgar S, Lynch M, Higgs PG. Evolution of protein interfaces in multimers and fibrils. J Chem Phys 2019; 150:225102. [PMID: 31202237 PMCID: PMC6561775 DOI: 10.1063/1.5086042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A majority of cellular proteins function as part of multimeric complexes of two or more subunits. Multimer formation requires interactions between protein surfaces that lead to closed structures, such as dimers and tetramers. If proteins interact in an open-ended way, uncontrolled growth of fibrils can occur, which is likely to be detrimental in most cases. We present a statistical physics model that allows aggregation of proteins as either closed dimers or open fibrils of all lengths. We use pairwise amino-acid contact energies to calculate the energies of interacting protein surfaces. The probabilities of all possible aggregate configurations can be calculated for any given sequence of surface amino acids. We link the statistical physics model to a population genetics model that describes the evolution of the surface residues. When proteins evolve neutrally, without selection for or against multimer formation, we find that a majority of proteins remain as monomers at moderate concentrations, but strong dimer-forming or fibril-forming sequences are also possible. If selection is applied in favor of dimers or in favor of fibrils, then it is easy to select either dimer-forming or fibril-forming sequences. It is also possible to select for oriented fibrils with protein subunits all aligned in the same direction. We measure the propensities of amino acids to occur at interfaces relative to noninteracting surfaces and show that the propensities in our model are strongly correlated with those that have been measured in real protein structures. We also show that there are significant differences between amino acid frequencies at isologous and heterologous interfaces in our model, and we observe that similar effects occur in real protein structures.
Collapse
Affiliation(s)
- W Jeffrey Zabel
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Kyle P Hagner
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Sima Setayeshgar
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona 85287, USA
| | - Paul G Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
13
|
Schlee S, Straub K, Schwab T, Kinateder T, Merkl R, Sterner R. Prediction of quaternary structure by analysis of hot spot residues in protein-protein interfaces: the case of anthranilate phosphoribosyltransferases. Proteins 2019; 87:815-825. [PMID: 31134642 DOI: 10.1002/prot.25744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic "hot spot" amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.
Collapse
Affiliation(s)
- Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kristina Straub
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Schwab
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Pandhare A, Stuebler AG, Pirayesh E, Jansen M. A modified clear-native polyacrylamide gel electrophoresis technique to investigate the oligomeric state of MBP-5-HT 3A-intracellular domain chimeras. Protein Expr Purif 2018; 153:45-52. [PMID: 30130580 DOI: 10.1016/j.pep.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 11/27/2022]
Abstract
The main principles of higher-order protein oligomerization are elucidated by many structural and biophysical studies. An astonishing number of proteins self-associate to form dimers or higher-order quaternary structures which further interact with other biomolecules to elicit complex cellular responses. In this study, we describe a simple and convenient approach to determine the oligomeric state of purified protein complexes that combines implementation of a novel form of clear-native gel electrophoresis and size exclusion chromatography in line with multi-angle light scattering. Here, we demonstrate the accuracy of this ensemble approach by characterizing the previously established pentameric state of the intracellular domain of serotonin type 3A (5-HT3A) receptors.
Collapse
Affiliation(s)
- Akash Pandhare
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Antonia G Stuebler
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Elham Pirayesh
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
15
|
Lynch M. Phylogenetic divergence of cell biological features. eLife 2018; 7:34820. [PMID: 29927740 PMCID: PMC6013259 DOI: 10.7554/elife.34820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
16
|
Bianchetti L, Wassmer B, Defosset A, Smertina A, Tiberti ML, Stote RH, Dejaegere A. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain. Biochim Biophys Acta Gen Subj 2018; 1862:1810-1825. [PMID: 29723544 DOI: 10.1016/j.bbagen.2018.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. METHODS We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. RESULTS Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. CONCLUSIONS Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. GENERAL SIGNIFICANCE This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research.
Collapse
Affiliation(s)
- Laurent Bianchetti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Bianca Wassmer
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Audrey Defosset
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Anna Smertina
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marion L Tiberti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Roland H Stote
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Annick Dejaegere
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France.
| |
Collapse
|
17
|
Singh SS, Jois SD. Homo- and Heterodimerization of Proteins in Cell Signaling: Inhibition and Drug Design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:1-59. [PMID: 29459028 DOI: 10.1016/bs.apcsb.2017.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein dimerization controls many physiological processes in the body. Proteins form homo-, hetero-, or oligomerization in the cellular environment to regulate the cellular processes. Any deregulation of these processes may result in a disease state. Protein-protein interactions (PPIs) can be inhibited by antibodies, small molecules, or peptides, and inhibition of PPI has therapeutic value. PPI drug discovery research has steadily increased in the last decade, and a few PPI inhibitors have already reached the pharmaceutical market. Several PPI inhibitors are in clinical trials. With advancements in structural and molecular biology methods, several methods are now available to study protein homo- and heterodimerization and their inhibition by drug-like molecules. Recently developed methods to study PPI such as proximity ligation assay and enzyme-fragment complementation assay that detect the PPI in the cellular environment are described with examples. At present, the methods used to design PPI inhibitors can be classified into three major groups: (1) structure-based drug design, (2) high-throughput screening, and (3) fragment-based drug design. In this chapter, we have described some of the experimental methods to study PPIs and their inhibition. Examples of homo- and heterodimers of proteins, their structural and functional aspects, and some of the inhibitors that have clinical importance are discussed. The design of PPI inhibitors of epidermal growth factor receptor heterodimers and CD2-CD58 is discussed in detail.
Collapse
Affiliation(s)
- Sitanshu S Singh
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Seetharama D Jois
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States.
| |
Collapse
|
18
|
Plant DHDPR forms a dimer with unique secondary structure features that preclude higher-order assembly. Biochem J 2018; 475:137-150. [PMID: 29187521 DOI: 10.1042/bcj20170709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
Abstract
Dihydrodipicolinate reductase (DHDPR) catalyses the second reaction in the diaminopimelate pathway of lysine biosynthesis in bacteria and plants. In contrast with the tetrameric bacterial DHDPR enzymes, we show that DHDPR from Vitis vinifera (grape) and Selaginella moellendorffii are dimeric in solution. In the present study, we have also determined the crystal structures of DHDPR enzymes from the plants Arabidopsis thaliana and S. moellendorffii, which are the first dimeric DHDPR structures. The analysis of these models demonstrates that the dimer forms through the intra-strand interface, and that unique secondary features in the plant enzymes block tetramer assembly. In addition, we have also solved the structure of tetrameric DHDPR from the pathogenic bacteria Neisseria meningitidis Measuring the activity of plant DHDPR enzymes showed that they are much more prone to substrate inhibition than the bacterial enzymes, which appears to be a consequence of increased flexibility of the substrate-binding loop and higher affinity for the nucleotide substrate. This higher propensity to substrate inhibition may have consequences for ongoing efforts to increase lysine biosynthesis in plants.
Collapse
|
19
|
Eek P, Põldemaa K, Kasvandik S, Järving I, Samel N. A PDZ-like domain mediates the dimerization of 11 R -lipoxygenase. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1121-1128. [DOI: 10.1016/j.bbalip.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023]
|
20
|
Ihms EC, Kleckner IR, Gollnick P, Foster MP. Mechanistic Models Fit to Variable Temperature Calorimetric Data Provide Insights into Cooperativity. Biophys J 2017; 112:1328-1338. [PMID: 28402876 DOI: 10.1016/j.bpj.2017.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022] Open
Abstract
Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding it is necessary to define at a microscopic level the structural and thermodynamic consequences of binding of each ligand to its allosterically coupled site(s). However, dynamic sampling of alternative conformations (microstates) in allosteric molecules complicates interpretation of both structural and thermodynamic data. Isothermal titration calorimetry has the potential to directly quantify the thermodynamics of allosteric interactions, but usually falls short of enabling mechanistic insight. This is because 1) its measurements reflect the sum of overlapping caloric processes involving binding-linked population shifts within and between microstates, and 2) data are generally fit with phenomenological binding polynomials that are underdetermined. Nevertheless, temperature-dependent binding data have the potential to resolve overlapping thermodynamic processes, while mechanistically constrained models enable hypothesis testing and identification of informative parameters. We globally fit temperature-dependent isothermal titration calorimetry data for binding of 11 tryptophan ligands to the homo-undecameric trp RNA-binding Attenuation Protein from Bacillus stearothermophilus using nearest-neighbor statistical thermodynamic models. This approach allowed us to distinguish alternative nearest-neighbor interaction models, and quantifies the thermodynamic contribution of neighboring ligands to individual binding sites. We also perform conventional Hill equation modeling and illustrate how comparatively limited it is in quantitative or mechanistic value. This work illustrates the potential of mechanistically constrained global fitting of binding data to yield the microscopic thermodynamic parameters essential for deciphering mechanisms of cooperativity in a wide range of ligand-regulated homo-oligomeric assemblies.
Collapse
Affiliation(s)
- Elihu C Ihms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Ian R Kleckner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Paul Gollnick
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
21
|
Lanfranco MF, Gárate F, Engdahl AJ, Maillard RA. Asymmetric configurations in a reengineered homodimer reveal multiple subunit communication pathways in protein allostery. J Biol Chem 2017; 292:6086-6093. [PMID: 28188293 DOI: 10.1074/jbc.m117.776047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Many allosteric proteins form homo-oligomeric complexes to regulate a biological function. In homo-oligomers, subunits establish communication pathways that are modulated by external stimuli like ligand binding. A challenge for dissecting the communication mechanisms in homo-oligomers is identifying intermediate liganded states, which are typically transiently populated. However, their identities provide the most mechanistic information on how ligand-induced signals propagate from bound to empty subunits. Here, we dissected the directionality and magnitude of subunit communication in a reengineered single-chain version of the homodimeric transcription factor cAMP receptor protein. By combining wild-type and mutant subunits in various asymmetric configurations, we revealed a linear relationship between the magnitude of cooperative effects and the number of mutant subunits. We found that a single mutation is sufficient to change the global allosteric behavior of the dimer even when one subunit was wild type. Dimers harboring two mutations with opposite cooperative effects had different allosteric properties depending on the arrangement of the mutations. When the two mutations were placed in the same subunit, the resulting cooperativity was neutral. In contrast, when placed in different subunits, the observed cooperativity was dominated by the mutation with strongest effects over cAMP affinity relative to wild type. These results highlight the distinct roles of intrasubunit interactions and intersubunit communication in allostery. Finally, dimers bound to either one or two cAMP molecules had similar DNA affinities, indicating that both asymmetric and symmetric liganded states activate DNA interactions. These studies have revealed the multiple communication pathways that homo-oligomers employ to transduce signals.
Collapse
Affiliation(s)
- Maria Fe Lanfranco
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Fernanda Gárate
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Ashton J Engdahl
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Rodrigo A Maillard
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| |
Collapse
|
22
|
Feng Z, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C, Hu J, You X, Liu X, Yang X, Guo X, Zhang X, Wu F, Terzaghi W, Kim SK, Jiang L, Wan J. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4241-53. [PMID: 27252468 PMCID: PMC5301929 DOI: 10.1093/jxb/erw204] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grain size and leaf angle are two important traits determining grain yield in rice. However, the mechanisms regulating the two traits remain largely unknown. Here, we characterized a rice gain-of-function mutant, slender grain Dominant (slg-D), which exhibited longer and narrower grains and larger leaf angles, similar to plants with elevated brassinosteroid (BR) levels or strengthened BR signaling. The increased cell length is responsible for the mutant phenotypes in slg-D We demonstrated that the phenotype of slg-D is caused by enhanced expression of SLG, a BAHD acyltransferase-like protein gene. SLG is preferentially expressed in young panicles and lamina joints, implying its role in controlling cell growth in those two tissues. slg-D was restored to wild type by treatment with brassinazole, an inhibitor of BR biosynthesis. Overexpression of SLG in d11-2 (deficient in BR synthesis) and d61-1 (deficient in BR signaling) did not change the existing phenotypes. The slg-D plants had elevated BR contents and, accordingly, expression of BR-related genes was changed in a manner similar to BR treatment. Moreover, SLG RNAi plants displayed mild BR-deficient phenotypes including shorter grains, smaller leaf angles, and compact semi-dwarf plant types. The in vitro biochemical assays and transgenic approaches collectively demonstrated that SLG functions as homomers. Taken together, we conclude that SLG is an important regulator in BR homeostasis and that manipulation of SLG expression to an optimal level may provide a way to develop an ideal plant type.
Collapse
Affiliation(s)
- Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Long Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengzhong Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlong Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Sudha G, Srinivasan N. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications. Proteins 2016; 84:1190-202. [PMID: 27177429 DOI: 10.1002/prot.25065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 11/08/2022]
Abstract
A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
24
|
Maheshwari S, Brylinski M. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures. BMC STRUCTURAL BIOLOGY 2015; 15:23. [PMID: 26597230 PMCID: PMC4657198 DOI: 10.1186/s12900-015-0050-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023]
Abstract
Background Protein-protein interactions (PPIs) mediate the vast majority of biological processes, therefore, significant efforts have been directed to investigate PPIs to fully comprehend cellular functions. Predicting complex structures is critical to reveal molecular mechanisms by which proteins operate. Despite recent advances in the development of new methods to model macromolecular assemblies, most current methodologies are designed to work with experimentally determined protein structures. However, because only computer-generated models are available for a large number of proteins in a given genome, computational tools should tolerate structural inaccuracies in order to perform the genome-wide modeling of PPIs. Results To address this problem, we developed eRankPPI, an algorithm for the identification of near-native conformations generated by protein docking using experimental structures as well as protein models. The scoring function implemented in eRankPPI employs multiple features including interface probability estimates calculated by eFindSitePPI and a novel contact-based symmetry score. In comparative benchmarks using representative datasets of homo- and hetero-complexes, we show that eRankPPI consistently outperforms state-of-the-art algorithms improving the success rate by ~10 %. Conclusions eRankPPI was designed to bridge the gap between the volume of sequence data, the evidence of binary interactions, and the atomic details of pharmacologically relevant protein complexes. Tolerating structure imperfections in computer-generated models opens up a possibility to conduct the exhaustive structure-based reconstruction of PPI networks across proteomes. The methods and datasets used in this study are available at www.brylinski.org/erankppi.
Collapse
Affiliation(s)
- Surabhi Maheshwari
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
25
|
Sudha G, Singh P, Swapna LS, Srinivasan N. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes. Protein Sci 2015; 24:1856-73. [PMID: 26311309 DOI: 10.1002/pro.2792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Prashant Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Lakshmipuram S Swapna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
26
|
Abstract
Lipocalins are one of the most important groups of inhalant animal allergens. The analysis of structural features of these proteins is important to get insights into their allergenicity. We have determined two different dimeric crystal structures for bovine dander lipocalin Bos d 2, which was earlier described as a monomeric allergen. The crystal structure analysis of all other determined lipocalin allergens also revealed oligomeric structures which broadly utilize inherent structural features of the β-sheet in dimer formation. According to the moderate size of monomer-monomer interfaces, most of these dimers would be transient in solution. Native mass spectrometry was employed to characterize quantitatively transient dimerization of two lipocalin allergens, Bos d 2 and Bos d 5, in solution.
Collapse
|
27
|
Goncearenco A, Shaytan AK, Shoemaker BA, Panchenko AR. Structural Perspectives on the Evolutionary Expansion of Unique Protein-Protein Binding Sites. Biophys J 2015. [PMID: 26213149 DOI: 10.1016/j.bpj.2015.06.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.
Collapse
Affiliation(s)
- Alexander Goncearenco
- Computational Biology Branch of the National Center for Biotechnology Information, Bethesda, Maryland
| | - Alexey K Shaytan
- Computational Biology Branch of the National Center for Biotechnology Information, Bethesda, Maryland
| | - Benjamin A Shoemaker
- Computational Biology Branch of the National Center for Biotechnology Information, Bethesda, Maryland
| | - Anna R Panchenko
- Computational Biology Branch of the National Center for Biotechnology Information, Bethesda, Maryland.
| |
Collapse
|
28
|
Evolutionary meandering of intermolecular interactions along the drift barrier. Proc Natl Acad Sci U S A 2014; 112:E30-8. [PMID: 25535374 DOI: 10.1073/pnas.1421641112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many cellular functions depend on highly specific intermolecular interactions, for example transcription factors and their DNA binding sites, microRNAs and their RNA binding sites, the interfaces between heterodimeric protein molecules, the stems in RNA molecules, and kinases and their response regulators in signal-transduction systems. Despite the need for complementarity between interacting partners, such pairwise systems seem to be capable of high levels of evolutionary divergence, even when subject to strong selection. Such behavior is a consequence of the diminishing advantages of increasing binding affinity between partners, the multiplicity of evolutionary pathways between selectively equivalent alternatives, and the stochastic nature of evolutionary processes. Because mutation pressure toward reduced affinity conflicts with selective pressure for greater interaction, situations can arise in which the expected distribution of the degree of matching between interacting partners is bimodal, even in the face of constant selection. Although biomolecules with larger numbers of interacting partners are subject to increased levels of evolutionary conservation, their more numerous partners need not converge on a single sequence motif or be increasingly constrained in more complex systems. These results suggest that most phylogenetic differences in the sequences of binding interfaces are not the result of adaptive fine tuning but a simple consequence of random genetic drift.
Collapse
|
29
|
Abstract
The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.
Collapse
Affiliation(s)
- Joseph A Marsh
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom;
| | | |
Collapse
|
30
|
MacKinnon SS, Wodak SJ. Landscape of intertwined associations in multi-domain homo-oligomeric proteins. J Mol Biol 2014; 427:350-70. [PMID: 25451036 DOI: 10.1016/j.jmb.2014.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
This study charts the landscape of multi-domain protein structures that form intertwined homodimers by exchanging structural domains between subunits. A representative dataset of such homodimers was derived from the Protein Data Bank, and their structural and topological properties were compared to those of a representative set of non-intertwined homodimers. Most of the intertwined dimers form closed assemblies with head-to-tail arrangements, where the subunit interface involves contacts between dissimilar domains. In contrast, the non-intertwined dimers form preferentially head-to-head arrangements, where the subunit interface involves contacts between identical domains. Most of these contacts engage only one structural domain from each subunit, leaving the remaining domains free to form other associations. Remarkably, we find that multi-domain proteins closely related to the intertwined homodimers are significantly more likely than relatives of the non-intertwined versions to adopt alternative intramolecular domain arrangements. In ~40% of the intertwined dimers, the plasticity in domain arrangements among relatives affords maintenance of the head-to-head or head-to-tail topology and conservation of the corresponding subunit interface. This property seems to be exploited in several systems to regulate DNA binding. In ~58%, however, intramolecular domain re-arrangements are associated with changes in oligomeric states and poorly conserved interfaces among relatives. This time, the corresponding structural plasticity appears to be exploited by evolution to modulate function by switching between active and inactive states of the protein. Surprisingly, in total, only three systems were found to undergo the classical monomer to intertwined dimer conversion associated with three-dimensional domain swapping.
Collapse
Affiliation(s)
- Stephen S MacKinnon
- Molecular Structure and Function Program, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Shoshana J Wodak
- Molecular Structure and Function Program, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
31
|
Hassinen A, Kellokumpu S. Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers. J Biol Chem 2014; 289:26937-26948. [PMID: 25135644 DOI: 10.1074/jbc.m114.595058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycosylation of proteins and lipids takes place in the Golgi apparatus by the consecutive actions of functionally distinct glycosidases and glycosyltransferases. Current evidence indicates that they function as enzyme homomers and/or heteromers in the living cell. Here we investigate their organizational interplay and show that glycosyltransferase homomers are assembled in the endoplasmic reticulum. Upon transport to the Golgi, the majority of homomers are disassembled to allow the formation of enzyme heteromers between sequentially acting medial-Golgi enzymes GnT-I and GnT-II or trans-Golgi enzymes GalT-I and ST6Gal-I. This transition is driven by the acidic Golgi environment, as it was markedly inhibited by raising Golgi luminal pH with chloroquine. Our FRAP (fluorescence recovery after photobleaching) measurements showed that the complexes remain mobile Golgi membrane constituents that can relocate to the endoplasmic reticulum or to the scattered Golgi mini-stacks upon brefeldin A or nocodazole treatment, respectively. During this relocation, heteromers undergo a reverse transition back to enzyme homomers. These data unveil an unprecedented organizational interplay between Golgi N-glycosyltransferases that involves dynamic and organelle microenvironment-driven transitions between enzyme homomers and heteromers during their trafficking within the early secretory compartments.
Collapse
Affiliation(s)
- Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland.
| |
Collapse
|
32
|
Sudha G, Nussinov R, Srinivasan N. An overview of recent advances in structural bioinformatics of protein-protein interactions and a guide to their principles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:141-50. [PMID: 25077409 DOI: 10.1016/j.pbiomolbio.2014.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/13/2014] [Indexed: 12/20/2022]
Abstract
Rich data bearing on the structural and evolutionary principles of protein-protein interactions are paving the way to a better understanding of the regulation of function in the cell. This is particularly the case when these interactions are considered in the framework of key pathways. Knowledge of the interactions may provide insights into the mechanisms of crucial 'driver' mutations in oncogenesis. They also provide the foundation toward the design of protein-protein interfaces and inhibitors that can abrogate their formation or enhance them. The main features to learn from known 3-D structures of protein-protein complexes and the extensive literature which analyzes them computationally and experimentally include the interaction details which permit undertaking structure-based drug discovery, the evolution of complexes and their interactions, the consequences of alterations such as post-translational modifications, ligand binding, disease causing mutations, host pathogen interactions, oligomerization, aggregation and the roles of disorder, dynamics, allostery and more to the protein and the cell. This review highlights some of the recent advances in these areas, including design, inhibition and prediction of protein-protein complexes. The field is broad, and much work has been carried out in these areas, making it challenging to cover it in its entirety. Much of this is due to the fast increase in the number of molecules whose structures have been determined experimentally and the vast increase in computational power. Here we provide a concise overview.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
33
|
Nchongboh CG, Wu GW, Hong N, Wang GP. Protein–protein interactions between proteins of Citrus tristeza virus isolates. Virus Genes 2014; 49:456-65. [DOI: 10.1007/s11262-014-1100-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022]
|
34
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
35
|
Goncearenco A, Shoemaker BA, Zhang D, Sarychev A, Panchenko AR. Coverage of protein domain families with structural protein-protein interactions: current progress and future trends. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:187-93. [PMID: 24931138 DOI: 10.1016/j.pbiomolbio.2014.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/14/2014] [Accepted: 05/17/2014] [Indexed: 11/16/2022]
Abstract
Protein interactions have evolved into highly precise and regulated networks adding an immense layer of complexity to cellular systems. The most accurate atomistic description of protein binding sites can be obtained directly from structures of protein complexes. The availability of structurally characterized protein interfaces significantly improves our understanding of interactomes, and the progress in structural characterization of protein-protein interactions (PPIs) can be measured by calculating the structural coverage of protein domain families. We analyze the coverage of protein domain families (defined according to CDD and Pfam databases) by structures, structural protein-protein complexes and unique protein binding sites. Structural PPI coverage of currently available protein families is about 30% without any signs of saturation in coverage growth dynamics. Given the current growth rates of domain databases and structural PPI deposition, complete domain coverage with PPIs is not expected in the near future. As a result of this study we identify families without any protein-protein interaction evidence (listed on a supporting website http://www.ncbi.nlm.nih.gov/Structure/ibis/coverage/) and propose them as potential targets for structural studies with a focus on protein interactions.
Collapse
Affiliation(s)
- Alexander Goncearenco
- Computational Biology Branch of the National Center for Biotechnology Information in Bethesda, Maryland, United States
| | - Benjamin A Shoemaker
- Computational Biology Branch of the National Center for Biotechnology Information in Bethesda, Maryland, United States
| | - Dachuan Zhang
- Computational Biology Branch of the National Center for Biotechnology Information in Bethesda, Maryland, United States
| | - Alexey Sarychev
- Computational Biology Branch of the National Center for Biotechnology Information in Bethesda, Maryland, United States
| | - Anna R Panchenko
- Computational Biology Branch of the National Center for Biotechnology Information in Bethesda, Maryland, United States.
| |
Collapse
|
36
|
Marsh JA, Teichmann SA. Protein flexibility facilitates quaternary structure assembly and evolution. PLoS Biol 2014; 12:e1001870. [PMID: 24866000 PMCID: PMC4035275 DOI: 10.1371/journal.pbio.1001870] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
The flexibility of individual proteins aids their evolutionary recruitment into complexes with increasing numbers of distinct subunits. The intrinsic flexibility of proteins allows them to undergo large conformational fluctuations in solution or upon interaction with other molecules. Proteins also commonly assemble into complexes with diverse quaternary structure arrangements. Here we investigate how the flexibility of individual protein chains influences the assembly and evolution of protein complexes. We find that flexibility appears to be particularly conducive to the formation of heterologous (i.e., asymmetric) intersubunit interfaces. This leads to a strong association between subunit flexibility and homomeric complexes with cyclic and asymmetric quaternary structure topologies. Similarly, we also observe that the more nonhomologous subunits that assemble together within a complex, the more flexible those subunits tend to be. Importantly, these findings suggest that subunit flexibility should be closely related to the evolutionary history of a complex. We confirm this by showing that evolutionarily more recent subunits are generally more flexible than evolutionarily older subunits. Finally, we investigate the very different explorations of quaternary structure space that have occurred in different evolutionary lineages. In particular, the increased flexibility of eukaryotic proteins appears to enable the assembly of heteromeric complexes with more unique components. Proteins often interact with other proteins and assemble into complexes. Here we show that the flexibility of individual proteins is important for their recruitment to complexes, as it facilitates the formation of asymmetric interfaces between different subunits. The role of flexibility becomes increasingly important as a greater number of distinct proteins are packed together within a single complex: the more distinct subunits, the more flexible those subunits need to be. A consequence of this is that, when a protein complex gains a new subunit during evolution, the newer subunit will tend to be more flexible than the older subunits. This suggests that we may be able to partially reconstruct the evolutionary history of a protein complex by considering the flexibility of its subunits. We also find that the types of protein complexes an organism forms are closely related to the flexibility of its proteins, with eukaryotic species, and particularly animals, using their increased flexibility to assemble complexes involving more distinct components.
Collapse
Affiliation(s)
- Joseph A. Marsh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail:
| | - Sarah A. Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
37
|
Asymmetric perturbations of signalling oligomers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:153-69. [PMID: 24650570 DOI: 10.1016/j.pbiomolbio.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on rapid and reversible noncovalent interactions for symmetric oligomers of signalling proteins. Symmetry mismatch, transient symmetry breaking and asymmetric perturbations via chemical (ligand binding) and physical (electric or mechanic) effects can initiate the signalling events. Advanced biophysical methods can reveal not only structural symmetries of stable membrane-bound signalling proteins but also asymmetric functional transition states. Relevant techniques amenable to distinguish between symmetric and asymmetric architectures are discussed including those with the capability of capturing low-populated transient conformational states. Typical examples of signalling proteins are overviewed for symmetry breaking in dimers (GPCRs, growth factor receptors, transcription factors); trimers (acid-sensing ion channels); tetramers (voltage-gated cation channels, ionotropic glutamate receptor, CNG and CHN channels); pentameric ligand-gated and mechanosensitive channels; higher order oligomers (gap junction channel, chaperonins, proteasome, virus capsid); as well as primary and secondary transporters. In conclusion, asymmetric perturbations seem to play important functional roles in a broad range of communicating networks.
Collapse
|
38
|
Cukuroglu E, Gursoy A, Nussinov R, Keskin O. Non-redundant unique interface structures as templates for modeling protein interactions. PLoS One 2014; 9:e86738. [PMID: 24475173 PMCID: PMC3903793 DOI: 10.1371/journal.pone.0086738] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/18/2013] [Indexed: 01/16/2023] Open
Abstract
Improvements in experimental techniques increasingly provide structural data relating to protein-protein interactions. Classification of structural details of protein-protein interactions can provide valuable insights for modeling and abstracting design principles. Here, we aim to cluster protein-protein interactions by their interface structures, and to exploit these clusters to obtain and study shared and distinct protein binding sites. We find that there are 22604 unique interface structures in the PDB. These unique interfaces, which provide a rich resource of structural data of protein-protein interactions, can be used for template-based docking. We test the specificity of these non-redundant unique interface structures by finding protein pairs which have multiple binding sites. We suggest that residues with more than 40% relative accessible surface area should be considered as surface residues in template-based docking studies. This comprehensive study of protein interface structures can serve as a resource for the community. The dataset can be accessed at http://prism.ccbb.ku.edu.tr/piface.
Collapse
Affiliation(s)
- Engin Cukuroglu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- National Cancer Institute, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
39
|
Marsh JA, Teichmann SA. Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. Bioessays 2013; 36:209-18. [DOI: 10.1002/bies.201300134] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joseph A. Marsh
- European Molecular Biology Laboratory; European Bioinformatics Institute; Wellcome Trust Genome Campus, Hinxton Cambridge UK
| | - Sarah A. Teichmann
- European Molecular Biology Laboratory; European Bioinformatics Institute; Wellcome Trust Genome Campus, Hinxton Cambridge UK
- Wellcome Trust Sanger Institute; Wellcome Trust Genome Campus; Hinxton Cambridge UK
| |
Collapse
|
40
|
Shoemaker B, Wuchty S, Panchenko AR. Computational large-scale mapping of protein-protein interactions using structural complexes. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2013; 73:3.9.1-3.9.9. [PMID: 24510594 PMCID: PMC3920302 DOI: 10.1002/0471140864.ps0309s73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although the identification of protein interactions by high-throughput methods progresses at a fast pace, "interactome" datasets still suffer from high rates of false positives and low coverage. To map the interactome of any organism, this unit presents a computational framework to predict protein-protein or gene-gene interactions utilizing experimentally determined evidence of structural complexes, atomic details of binding interfaces and evolutionary conservation.
Collapse
Affiliation(s)
- Benjamin Shoemaker
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Stefan Wuchty
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Kundrotas PJ, Vakser IA, Janin J. Structural templates for modeling homodimers. Protein Sci 2013; 22:1655-63. [PMID: 23996787 DOI: 10.1002/pro.2361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022]
Abstract
Oligomeric proteins are more abundant in nature than monomeric proteins, and involved in all biological processes. In the absence of an experimental structure, their subunits can be modeled from their sequence like monomeric proteins, but reliable procedures to build the oligomeric assembly are scarce. Template-based methods, which start from known protein structures, are commonly applied to model subunits. We present a method to model homodimers that relies on a structural alignment of the subunits, and test it on a set of 511 target structures recently released by the Protein Data Bank, taking as templates the earlier released structures of 3108 homodimeric proteins (H-set), and 2691 monomeric proteins that form dimer-like assemblies in crystals (M-set). The structural alignment identifies a H-set template for 97% of the targets, and in half of the cases, it yields a correct model of the dimer geometry and residue-residue contacts in the target. It also identifies a M-set template for most of the targets, and some of the crystal dimers are very similar to the target homodimers. The procedure efficiently detects homology at low levels of sequence identities, and points to erroneous quaternary structures in the Protein Data Bank. The high coverage of the target set suggests that the content of the Protein Data Bank already approaches the structural diversity of protein assemblies in nature, and that template-based methods should become the choice method for modeling oligomeric as well as monomeric proteins.
Collapse
Affiliation(s)
- Petras J Kundrotas
- Center for Bioinformatics, The University of Kansas, 2030 Becker Dr., Lawrence, Kansas, 66047
| | | | | |
Collapse
|
42
|
The role of the N-terminal tail for the oligomerization, folding and stability of human frataxin. FEBS Open Bio 2013; 3:310-20. [PMID: 23951553 PMCID: PMC3741918 DOI: 10.1016/j.fob.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 01/30/2023] Open
Abstract
The N-terminal stretch of human frataxin (hFXN) intermediate (residues 42–80) is not conserved throughout evolution and, under defined experimental conditions, behaves as a random-coil. Overexpression of hFXN56–210 in Escherichia coli yields a multimer, whereas the mature form of hFXN (hFXN81–210) is monomeric. Thus, cumulative experimental evidence points to the N-terminal moiety as an essential element for the assembly of a high molecular weight oligomer. The secondary structure propensity of peptide 56–81, the moiety putatively responsible for promoting protein–protein interactions, was also studied. Depending on the environment (TFE or SDS), this peptide adopts α-helical or β-strand structure. In this context, we explored the conformation and stability of hFXN56–210. The biophysical characterization by fluorescence, CD and SEC-FPLC shows that subunits are well folded, sharing similar stability to hFXN90–210. However, controlled proteolysis indicates that the N-terminal stretch is labile in the context of the multimer, whereas the FXN domain (residues 81–210) remains strongly resistant. In addition, guanidine hydrochloride at low concentration disrupts intermolecular interactions, shifting the ensemble toward the monomeric form. The conformational plasticity of the N-terminal tail might impart on hFXN the ability to act as a recognition signal as well as an oligomerization trigger. Understanding the fine-tuning of these activities and their resulting balance will bear direct relevance for ultimately comprehending hFXN function. hFXN56–210 is well-folded and shares similar stability to hFXN90–210. The oligomeric form of hFXN56–210 can be disassembled and reassembled in vitro. Proteolysis leads to the oligomer disassembly: subunits are abridged to hFXN81–210. Isolated peptide hFXN56–81 acquires structure in TFE and SDS solutions. The N-terminal tail is structurally malleable and triggers oligomerization.
Collapse
|
43
|
Abstract
One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.
Collapse
|
44
|
Mowrey D, Cheng MH, Liu LT, Willenbring D, Lu X, Wymore T, Xu Y, Tang P. Asymmetric ligand binding facilitates conformational transitions in pentameric ligand-gated ion channels. J Am Chem Soc 2013; 135:2172-80. [PMID: 23339564 DOI: 10.1021/ja307275v] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anesthetic propofol inhibits the currents of the homopentameric ligand-gated ion channel GLIC, yet the crystal structure of GLIC with five propofol molecules bound symmetrically shows an open-channel conformation. To address this dilemma and determine if the symmetry of propofol binding sites affects the channel conformational transition, we performed a total of 1.5 μs of molecular dynamics simulations for different GLIC systems with propofol occupancies of 0, 1, 2, 3, and 5. GLIC without propofol binding or with five propofol molecules bound symmetrically, showed similar channel conformation and hydration status over multiple replicates of 100-ns simulations. In contrast, asymmetric binding to one, two or three equivalent sites in different subunits accelerated the channel dehydration, increased the conformational heterogeneity of the pore-lining TM2 helices, and shifted the lateral and radial tilting angles of TM2 toward a closed-channel conformation. The results differentiate two groups of systems based on the propofol binding symmetry. The difference between symmetric and asymmetric groups is correlated with the variance in the propofol-binding cavity adjacent to the hydrophobic gate and the force imposed by the bound propofol. Asymmetrically bound propofol produced greater variance in the cavity size that could further elevate the conformation heterogeneity. The force trajectory generated by propofol in each subunit over the course of a simulation exhibits an ellipsoidal shape, which has the larger component tangential to the pore. Asymmetric propofol binding creates an unbalanced force that expedites the channel conformation transitions. The findings from this study not only suggest that asymmetric binding underlies the propofol functional inhibition of GLIC, but also advocate for the role of symmetry breaking in facilitating channel conformational transitions.
Collapse
Affiliation(s)
- David Mowrey
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Levy ED, Teichmann S. Structural, evolutionary, and assembly principles of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:25-51. [PMID: 23663964 DOI: 10.1016/b978-0-12-386931-9.00002-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the protein universe, 30-50% of proteins self-assemble to form symmetrical complexes consisting of multiple copies of themselves, called homomers. The prevalence of homomers motivates us to review many of their properties. In Section 1, we describe the methods and challenges associated with quaternary structure inference-these methods are indeed at the basis of any analysis on homomers. In Section 2, we describe the morphological properties of homomers, as well as the database 3DComplex, which provides a taxonomy for both homomeric and heteromeric protein complexes. In Section 3, we review interface properties of homomeric complexes. In Section 4, we then present recent findings on the evolution of homomer interfaces, which we link in Section 5 to the evolution of homomers as entire entities. In Section 6, we discuss mechanisms involved in their assembly and how these mechanisms can be linked to evolution.
Collapse
Affiliation(s)
- Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
46
|
Nishi H, Hashimoto K, Madej T, Panchenko AR. Evolutionary, physicochemical, and functional mechanisms of protein homooligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:3-24. [PMID: 23663963 PMCID: PMC3786560 DOI: 10.1016/b978-0-12-386931-9.00001-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein homooligomers afford several important benefits for the cell; they mediate and regulate gene expression, activity of many enzymes, ion channels, receptors, and cell-cell adhesion processes. The evolutionary and physical mechanisms of oligomer formation are very diverse and are not well understood. Certain homooligomeric states may be conserved within protein subfamilies and between different subfamilies, therefore providing the specificity to particular substrates while minimizing interactions with unwanted partners. In addition, transitions between different oligomeric states may regulate protein activity and support the switch between different pathways. In this chapter, we summarize the biological importance of homooligomeric assemblies, physicochemical properties of their interfaces, experimental methods for their identification, their evolution, and role in human diseases.
Collapse
Affiliation(s)
- Hafumi Nishi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
47
|
Swapna LS, Srikeerthana K, Srinivasan N. Extent of structural asymmetry in homodimeric proteins: prevalence and relevance. PLoS One 2012; 7:e36688. [PMID: 22629324 PMCID: PMC3358323 DOI: 10.1371/journal.pone.0036688] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/11/2012] [Indexed: 11/21/2022] Open
Abstract
Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2∶1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers.
Collapse
|
48
|
Deiss K, Kisker C, Lohse MJ, Lorenz K. Raf kinase inhibitor protein (RKIP) dimer formation controls its target switch from Raf1 to G protein-coupled receptor kinase (GRK) 2. J Biol Chem 2012; 287:23407-17. [PMID: 22610096 DOI: 10.1074/jbc.m112.363812] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins controlling cellular networks have evolved distinct mechanisms to ensure specificity in protein-protein interactions. Raf kinase inhibitor protein (RKIP) is a multifaceted kinase modulator, but it is not well understood how this small protein (21 kDa) can coordinate its diverse signaling functions. Raf1 and G protein-coupled receptor kinase (GRK) 2 are direct interaction partners of RKIP and thus provide the possibility to untangle the mechanism of its target specificity. Here, we identify RKIP dimer formation as an important mechanistic feature in the target switch from Raf1 to GRK2. Co-immunoprecipitation and cross-linking experiments revealed RKIP dimerization upon phosphorylation of RKIP at serine 153 utilizing purified proteins as well as in cells overexpressing RKIP. A functional phosphomimetic RKIP mutant had a high propensity for dimerization and reproduced the switch from Raf1 to GRK2. RKIP dimerization and GRK2 binding, but not Raf1 interaction, were prevented by a peptide comprising amino acids 127-146 of RKIP, which suggests that this region is critical for dimer formation. Furthermore, a dimeric RKIP mutant displayed a higher affinity to GRK2, but a lower affinity to Raf1. Functional analyses of phosphomimetic as well as dimeric RKIP demonstrated that enhanced dimerization of RKIP translates into decreased Raf1 and increased GRK2 inhibition. The detection of RKIP dimers in a complex with GRK2 in murine hearts implies their physiological relevance. These findings represent a novel mechanistic feature how RKIP can discriminate between its different interaction partners and thus advances our understanding how specific inhibition of kinases can be achieved.
Collapse
Affiliation(s)
- Katharina Deiss
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Wuerzburg, Germany
| | | | | | | |
Collapse
|
49
|
Evolution of oligomeric state through geometric coupling of protein interfaces. Proc Natl Acad Sci U S A 2012; 109:8127-32. [PMID: 22566652 DOI: 10.1073/pnas.1120028109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oligomerization plays an important role in the function of many proteins. Thus, understanding, predicting, and, ultimately, engineering oligomerization presents a long-standing interest. From the perspective of structural biology, protein-protein interactions have mainly been analyzed in terms of the biophysical nature and evolution of protein interfaces. Here, our aim is to quantify the importance of the larger structural context of protein interfaces in protein interaction evolution. Specifically, we ask to what extent intersubunit geometry affects oligomerization state. We define a set of structural parameters describing the overall geometry and relative positions of interfaces of homomeric complexes with different oligomeric states. This allows us to quantify the contribution of direct sequence changes in interfaces versus indirect changes outside the interface that affect intersubunit geometry. We find that such indirect, or allosteric mutations affecting intersubunit geometry via indirect mechanisms are as important as interface sequence changes for evolution of oligomeric states.
Collapse
|
50
|
Jordan RA, EL-Manzalawy Y, Dobbs D, Honavar V. Predicting protein-protein interface residues using local surface structural similarity. BMC Bioinformatics 2012; 13:41. [PMID: 22424103 PMCID: PMC3386866 DOI: 10.1186/1471-2105-13-41] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 03/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of the residues in protein-protein interaction sites has a significant impact in problems such as drug discovery. Motivated by the observation that the set of interface residues of a protein tend to be conserved even among remote structural homologs, we introduce PrISE, a family of local structural similarity-based computational methods for predicting protein-protein interface residues. RESULTS We present a novel representation of the surface residues of a protein in the form of structural elements. Each structural element consists of a central residue and its surface neighbors. The PrISE family of interface prediction methods uses a representation of structural elements that captures the atomic composition and accessible surface area of the residues that make up each structural element. Each of the members of the PrISE methods identifies for each structural element in the query protein, a collection of similar structural elements in its repository of structural elements and weights them according to their similarity with the structural element of the query protein. PrISEL relies on the similarity between structural elements (i.e. local structural similarity). PrISEG relies on the similarity between protein surfaces (i.e. general structural similarity). PrISEC, combines local structural similarity and general structural similarity to predict interface residues. These predictors label the central residue of a structural element in a query protein as an interface residue if a weighted majority of the structural elements that are similar to it are interface residues, and as a non-interface residue otherwise. The results of our experiments using three representative benchmark datasets show that the PrISEC outperforms PrISEL and PrISEG; and that PrISEC is highly competitive with state-of-the-art structure-based methods for predicting protein-protein interface residues. Our comparison of PrISEC with PredUs, a recently developed method for predicting interface residues of a query protein based on the known interface residues of its (global) structural homologs, shows that performance superior or comparable to that of PredUs can be obtained using only local surface structural similarity. PrISEC is available as a Web server at http://prise.cs.iastate.edu/ CONCLUSIONS Local surface structural similarity based methods offer a simple, efficient, and effective approach to predict protein-protein interface residues.
Collapse
Affiliation(s)
- Rafael A Jordan
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
- Department of Systems and Computer Engineering, Pontificia Universidad Javeriana, Cali, Colombia
| | - Yasser EL-Manzalawy
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
- Department of Systems and Computer Engineering, Al-Azhar University, Cairo, Egypt
| | - Drena Dobbs
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Vasant Honavar
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|